Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-β and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells

Zhouhong Cao, Kathleen C. Flanders, Daniel Bertolette*, Lyudmila A. Lyakh, Jens U. Wurthner, W. Tony Parks, John J. Letterio, Francis W. Ruscetti*, Anita B. Roberts

Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055 * Basic Research Laboratory, NCI-Frederick, National Cancer Institute, Frederick, MD 21702

Section title: Hematopoiesis

Running Title: Role of phospho-Smad2/3 in HL-60 differentiation

Key words: TGF-β1, HL-60, phosphatases, retinoic acid, phospho-Smad 2/3

Word count: Abstract 249; text: 5524 (excluding References, Figure legends, and Tables)

Corresponding author:

Anita B. Roberts, Ph.D., Chief, Laboratory of Cell Regulation and Carcinogenesis
National Cancer Institute
Building 41, Room C629, 41 Library Drive, MSC 5055, Bethesda, MD 20892-5055
telephone: 301-496-5391; FAX: 301-496-8395; email: Robertsa@dce41.nci.nih.gov

Copyright (c) 2002 American Society of Hematology
Abstract

We have investigated the role of Smad family proteins, known to be important cytoplasmic mediators of signals from the TGF-β receptor serine/threonine kinases, in TGF-β-dependent differentiation of hematopoietic cells, using as a model the human promyelocytic leukemia cell line, HL-60. TGF-β-dependent differentiation of these cells to monocytes, but not retinoic acid-dependent differentiation to granulocytes, was accompanied by rapid phosphorylation and nuclear translocation of Smad2 and Smad3. Vitamin D₃ also induced phosphorylation of Smad2/3 and monocytic differentiation, however the effects were indirect, dependent on its ability to induce expression of TGF-β1. Simultaneous treatment of these cells with TGF-β1 and ATRA, which leads to almost equal numbers of granulocytes and monocytes, significantly reduced the level of phospho-Smad2/3 and its nuclear accumulation, compared to that in cells treated with TGF-β1 alone. Both TGF-β1 and ATRA activate P42/44 MAP kinase with nearly identical kinetics, ruling out its involvement in these effects on Smad phosphorylation. Addition of the inhibitor of protein serine/threonine phosphatases, okadaic acid, blocks the ATRA-mediated reduction in TGF-β1-induced phospho-Smad2 and shifts the differentiation toward monocytic endpoints. In HL-60R mutant cells, which harbor a defective RARα, ATRA is unable to reduce levels of TGF-β-induced phospho-Smad2/3, coincident with its inability to differentiate these cells along granulocytic pathways. Together, these data suggest a new level of cross-talk between ATRA and TGF-β, whereby a putative RARα-dependent phosphatase activity limits the levels of phospho-Smad2/3 induced by TGF-β, ultimately reducing the levels of nuclear Smad complexes mediating the TGF-β-dependent differentiation of the cells to monocytic endpoints.

Roberts@dce41.nci.nih.gov
Introduction

The growth and differentiation of hematopoietic cells is regulated by a number of cytokines, \textit{in vitro} and \textit{in vivo}. HL-60, a human promyelocytic cell line, has been used extensively as an \textit{in vitro} model for studying the effects of factors which regulate growth and differentiation of hematopoietic cells in general, and of myeloid leukemia cells in particular1. These cells proliferate as promyelocytes yet retain the capacity to undergo terminal myeloid or monocytic differentiation in response to various inducing agents. In the presence of all-\textit{trans}-retinoic acid (ATRA), HL-60 cells undergo differentiation to granulocytes, while $1\alpha,25{(OH)}_2$-vitamin D\textsubscript{3} (Vit D\textsubscript{3}) and phorbol ester induce differentiation into monocytes/macrophages2. Transforming growth factor-β (TGF-β), known to be a negative regulator of growth at all stages of hematopoiesis3,4 induces differentiation of HL-60 cells to promonocytes5, and has been shown to act synergistically with Vit D\textsubscript{3}, tumor necrosis factor (TNF), or the combination of ATRA+ TNF to induce monocytic differentiation of several other myeloid leukemic cell lines6,7. Other studies showing that induction of terminal differentiation by retinoids and Vit D\textsubscript{3} requires TGF-β1 as an autocrine mediator suggest that endogenous TGF-β1 plays a critical role in the differentiation of leukemia cells8-10.

TGF-β binds to a heteromeric cell-surface complex consisting of two type II and two type I transmembrane receptor serine/threonine kinases in which ligand binding induces phosphorylation and activation of the type I receptors by the type II receptor kinases11,12. Signaling is mediated in part by Smad proteins which are activated directly by the TGF-β type I receptor kinase by phosphorylation on their C-terminus and then translocate to the nucleus in complex with the common mediator Smad4 to regulate transcription of target genes. The principal receptor-activated Smads involved in signaling from TGF-β receptors are Smad2 and Smad3. In the nucleus, Smad
proteins can bind directly to their cognate DNA binding sites and/or interact with an increasing number of transcription factors, transcriptional coactivators or transcriptional repressors13,14. The TGF-β1 response can also be regulated by Smad6 and Smad7, which inhibit the TGF-β1-induced activation of Smad2 and Smad315,16 and which target the receptor complex for proteasomal degradation17. The complexity of the TGF-β responses and their dependence on the physiological context and cell type, may relate to the relative levels of different Smad proteins and their cooperativity with specific transcription factors, which themselves may be regulated by different signaling pathways18. Ras, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), or p38 MAPK may also by TGF-β in different cell lines19. Yet other studies show the involvement of S6 kinase in inhibition of growth20,21 and PI-3 kinase in epithelial to mesenchymal transdifferentiation mediated by TGF-β22.

In HL-60 cells, Vit D\textsubscript{3} and ATRA and have each been shown to stimulate MEK-dependent activation of ERK223,24, causing subsequent hypophosphorylation of pRB, cell differentiation, and G\textsubscript{0} arrest. The MAPK inhibitor PD98059 has been shown to block ATRA-induced granulocytic differentiation24. In this study, we have investigated the role of Smad proteins in TGF-β1-induced monocytic differentiation in HL-60 cells and in the interplay between MAPK pathways and Smad signaling pathways. We have found that whereas ATRA, Vit D\textsubscript{3}, or TGF-β1 each activate ERK1/2 in HL-60 cells, only TGF-β1 or Vit D\textsubscript{3}, each of which result in monocytic differentiation, result in phosphorylation of Smad2 and Smad3. Moreover, in cells treated simultaneously with TGF-β1 and ATRA, leading to differentiation of cells along both granulocytic and monocytic pathways, ATRA decreases the levels of phosphorylated Smad2/3 possibly by RAR-α-dependent activation of a putative phosphatase activity, as suggested by experiments using the inhibitor of protein
serine/threonine phosphatases, okadaic acid. Together our data suggest that levels of phosphorylated Smad2/3 are sensors of the interplay between ATRA and TGF-β or Vit D₃ on HL-60 cells and contribute to the balance achieved between granulocytic and monocytic pathways of differentiation.
Materials and Methods

Cell culture and induction of differentiation

The HL-60 cells (American Type Culture Collection, Rockville, MD) and HL-60R cells resistant to retinoic acid induced differentiation (a gift of Steve Collins, Fred Hutchinson Cancer Center, Seattle WA) were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum, 100 units/ml penicillin, 100µg/ml streptomycin, 4.0 mM glutamine, nonessential amino acids, 10 mM HEPES buffer (Life Technologies, Inc., Gaithersburg, MD). Experiments were carried out in the same medium supplemented with 5% fetal bovine serum. Differentiation was induced by exposing 3-5×10^5 cells/ml to 10 nM ATRA (Sigma, St Louis, MO), 10 ng/ml TGF-β1 (a kind gift of R&D Systems, Inc., Minneapolis, MN), or 10 nM ATRA+ 10 ng/ml TGF-β1 or 100 nM Vit D_3 (Roche Co., Basel, Switzerland) for the indicated time periods. For determination of cell morphology, cytospins were made following 4 days of culture with the various treatments, and slides were stained with Wright’s Giemsa and photographed at ×400 magnification. PD98059 (Cell Signaling Technology, Inc., Beverly, MA) was diluted from a 2mM stock in DMSO and added to cells 2 hrs prior to addition of TGF-β or ATRA. TGF-β control (12H5) or neutralizing(1D11) antibodies (Genzyme Diagnostics, Cambridge, MA) were used at 30 µg/ml. In the experiments in Table 2, a murine IgG_1,κ (BD Pharminingen, San Diego, CA) served as the isotype control. For effects of okadaic acid (LC Labs, Woburn, MA) on cellular differentiation, cells were cultured in 2.5 nM okadaic acid for 48 hrs (cells showed >60% viability cultured in 2.5 nM okadaic acid for 72 hrs).
Flow cytometry analyses

Aliquots of 1×10^6 cells were harvested, washed twice with PBS, and incubated for 45 minutes at room temperature with 0.5 µl FITC anti-human CD66b (Becton Dickinson, Mountain View, CA), 0.5 µl FITC anti-human CD15 (Becton Dickinson), or 0.5 µl PE anti-human CD14 (Becton Dickinson) to analyze the expression of these surface markers. Cells were then washed three times with ice-cold PBS, and resuspended in 1 ml PBS. Two-parameter analysis was performed using a FACS Calibur Flow Cytometer (Becton Dickinson, Franklin Lakes, NJ). Isotypic mouse IgG1 or IgM was used to set threshold parameters. Functional activity was assessed by cytochemical determination of monocytic non-specific serine esterase (NSE) or nitroblue tetrazolium reduction (NBT), as previously described.

Immunohistochemical staining

For intracellular localization of Smad proteins, cytospins collected at the different treatment time points were fixed in 10% neutral-buffered formalin for 5-10 minutes. Staining was performed using the Optimax Plus 2.0 Automated Cell Staining System with research software from BioGenex. Following blocking of endogenous peroxidase, non-specific protein binding was blocked with a solution containing 1% BSA and 5% goat serum for 30 min. Sections were incubated for 2h with rabbit anti-Smad2 IgG (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), rabbit anti-Smad3 IgG (Zymed Laboratories, South San Francisco, CA) or normal rabbit IgG at 4µg/ml in TBS/1% BSA. Antigen-antibody complexes were detected using the Vectastain Elite ABC peroxidase kit from Vector Laboratories according to the manufacturer’s instructions. After a 30 min incubation with biotinylated secondary antibody and a 30 min incubation with ABC reagent, a 5 min reaction with DAB/H$_2$O$_2$ (BioGenex, San Ramon, CA) was used to detect the
bound peroxidase. Carazzi hematoxylin was used as the counterstain. Cells were assessed for the presence of nuclear staining of the Smad proteins using a \(\times200 \) microscope.

Immunofluorescence staining and confocal microscopy

HL-60 cells were treated for the indicated times and the cells were attached to slides by cytopsin, fixed in cold 3.5 \% paraformaldehyde for 5 minutes, washed with PBS, and permeabilized in methanol at -20°C for 2 minutes as described previously\(^{26}\). After blocking with 10\% normal rabbit serum, the cells were incubated overnight with rabbit anti-Smad2 (1:50) (Santa Cruz Biotechnology, Inc.) or Smad3 antibodies (1:50) (Zymed Laboratories) in PBS containing 5\% normal rabbit serum. Cells were washed with PBS, incubated with anti-rabbit FITC secondary antibody (1:500) (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) for 1 hr at room temperature, washed, mounted with medium containing DAPI (Vectashield, Vector Labs, Burlingame, CA) and examined using a confocal immunofluorescence microscope.

Reverse transcriptase (RT)-PCR assays

Total RNA was extracted from HL-60 cells cultured with various inducing agents for different periods of time using TRIzol Reagent (Life Technologies, Inc.). cDNA was synthesized using 1\(\mu \)g of total RNA primed with oligo d(T) in 50\(\mu \)l reactions. To test for contamination by genomic DNA, additional reactions were done without adding reverse transcriptase. The resulting total cDNA was then used in the PCR to measure the mRNA levels of Smads using primers as described below, the mRNA level of GAPDH was used as internal control. Linear amplification cycles were determined separately for each Smad as published elsewhere\(^{27}\).
Smad2, Smad3, Smad4, and Smad7 primers were ordered from BioServe Biotechnologies (Laurel, MD) with the following sequences:

Smad2, forward-5’-TCAAGCTTGAGTGAACCCCTACCACATC-3’, reverse-5’-TAGCGGCCGCGAAAGCTATGATTACAGGGG-3’;
Smad3, forward-5’-TCAAGCTTGAACACCAGTTCTACCTCCTCG-3’, reverse-5’-TAGCGGCCGCGAAATGTCTCCCCGCACGCGCTG-3’;
Smad4, forward-5’-TCAAGCTTGATGATCTCTCAGGATTAACAC-3’, reverse-5’-TAGCGGCCGCGAACACCAATACTCAGGAGCAG-3’;
Smad7, forward-5’-GGCTGTGTTGCTGTGAATCTTACG-3’, reverse-5’—CAGTGTGGCGGACTTGATGAAG-3’; and
GAPDH, forward-5’-CGTTCCCAAAGTCCTCCTGTTTC-3’, reverse-5’-TTTTTTTCCGCAGCCGCCTG-3’.

As negative controls, tubes without cDNA were included. The PCR products were checked on a 1.5% agarose gel with DNA molecular weight markers (Life Technologies, Inc.).

P44/42 MAPK kinase assays

Cell lysates (200 µl containing 200 µg total protein) were added to 15 µl (15µg) of resuspended immobilized phospho-p44/42 MAP kinase (Thr 202/Tyr204) monoclonal antibody (Cell Signaling Technology, Inc.), and incubated with gentle rocking overnight at 4°C. Samples were then microcentrifuged for 30 s at 4°C and the pellet was washed twice with 500 µl of 1× lysis buffer and twice with 500 µl of 1× kinase buffer before being resuspended in 50 µl of 1× kinase buffer supplemented with 200µM ATP and 2µg Elk-1 fusion protein and incubated for 30 min at 30°C. The reaction was terminated with 25µl 3× SDS sample buffer, boiled for 5 min, vortexed,
and micocentrifuged for 2 min. The sample (30µl) was loaded on SDS-PAGE and analyzed by western blotting using the phospho- Elk-1 antibody (1:100 dilution) (Cell Signaling Technology, Inc.).

Western blot analysis

Western Blot analysis was performed as described previously\(^{26}\). Briefly, cells were lysed in 0.5 ml of Triton X-100 lysis buffer (25mM HEPES at pH 7.5, 150mM NaCl, 10% glycerol, 5mM EDTA, 1% Triton X-100) in the presence of phosphatase and protease inhibitors. Whole cell lysates (40 µl) were separated by SDS-PAGE and transferred onto Immobilon-P membranes (Millipore). The membrane was incubated for 1 hr in blocking buffer (PBS containing 0.05% Tween 20 and 5% nonfat dry milk) followed by a 2 hr incubation with anti phospho-Smad2 antibody (Upstate Biotech, Lake Placid, NY) or with anti Smad2 antibody (Santa Cruz Biotechnology, Inc.) in blocking buffer. After extensive washing, the blot was incubated with secondary antibody for 1 hr and processed using the Chemiluminescence Reagent according to the manufacturer’s directions (Pierce, Rockford, IL). For experiments with okadaic acid and MG-132 (Calbiochem, San Diego, CA), the cells were shifted to medium containing the inhibitors and 0.2% serum for 3 hrs, then washed 3 times with 5 % serum-containing medium and incubated in the presence of TGF-β, ATRA, or the combination for another 24 hours in the absence of inhibitors.
Results

Induction of differentiation of HL-60 cells by TGF-β1 and ATRA

It has previously been shown that TGF-β1 and ATRA inhibit the growth of HL-60 cells in a dose-dependent fashion. Morphological studies revealed that whereas treatment with TGF-β1 alone induced differentiation of HL-60 cells to promonocytes (68%), treatment with both TGF-β1 and ATRA induced both monocytic (54%) and granulocytic (46%) differentiation. We obtained similar results from assessment of the morphology of the cells treated with these two agents (data not shown) and confirmed the nature and the extent of differentiation induced by ATRA or TGF-β1 by examining the expression of lineage-specific markers on HL-60 cells by FACS analysis (Table 1). Addition of ATRA to the culture medium induced the expression of the granulocyte marker CD66b in about 90% of the cells, whereas addition of TGF-β induced expression of the monocyte-specific marker CD14 in about 23% of the cells (Table 1). When treated with both TGF-β1 and ATRA, a mixed cell population appeared where approximately half of the cells expressed CD14 and half of them CD66b; only 5% of the cells exhibited both monocytic and granulocytic characteristics (not shown). Similar to that previously reported, TGF-β treatment induced expression of the cytoplasmic enzyme, nonspecific esterase, NSE in about 22% of the cells, whereas about 26% of the cells expressed NSE following treatment with both ATRA and TGF-β1 (Table 1). The increased expression of CD14 and NSE following induction of differentiation in these cells by TGF-β1 confirms previous observations that TGF-β1 stimulates monocytic differentiation of HL-60 cells. It is noteworthy that while TGF-β1 enhances the commitment of HL-60 cells to the monocytic lineage, it can induce differentiation only to promonocytes which variably express either no CD14 or low CD14. ATRA, in combination with TGF-β, acts both to drive the differentiation of these committed cells all the way to mature,
CD14 positive monocytes, and to enhance the differentiation of cells committed to the granulocytic lineage to CD66b positive granulocytes.

Expression of Smad mRNAs in HL-60 cells is not modulated by TGF-β or ATRA

To ascertain whether treatment with TGF-β or ATRA might alter the expression of Smads in the cells, we examined the expression of Smad2, 3, 4 and 7 mRNAs in HL-60 cells by semi-quantitative RT-PCR. Each Smad was expressed in the cells and the levels of expression were invariant in cells treated with 10 nM ATRA, 10 ng/ml TGF-β1, or 10 nM ATRA+ 10 ng/ml TGF-β1 for 2, 4, or 7 days (Figure 1).

TGF-β1 induces the phosphorylation and nuclear accumulation of endogenous Smad2/3

The phosphorylation of Smad2 on Ser465/467 and subsequent dimerization with Smad4 and translocation to the nucleus are known to be required for signal transduction by the TGF-β receptor, leading to the transcriptional activation of target genes. To investigate if Smad2 is phosphorylated following treatment of HL-60 cells with ATRA, TGF-β1, or the combination of ATRA+TGF-β1, the levels of C-terminally phosphorylated Smad2 in cell lysates were measured by Western blot. Immunoblotting with an antibody that specifically recognizes Ser465/467 phosphorylated Smad2 showed that whereas ATRA alone had no detectable effect on the phosphorylation of Smad2 at 2hr or 24hr, treatment with TGF-β1 strongly induced Smad2 phosphorylation (Figure 2a). Combined treatment with ATRA+TGF-β1 significantly reduced the level of phospho-Smad2 in the total cell population compared to that seen in cells treated with TGF-β alone (Figure 2b). The expression level of total Smad2 remained unchanged, as shown by reblotting the membranes with an anti-Smad2 antibody (Figure 2a,b). Although an
antibody for phospho-Smad3 is not available, assessment of the binding of Smad3 to a biotinylated CAGA Smad-binding oligonucleotide \(^{28,29}\) showed that it was activated in a pattern similar to that of Smad2 (data not shown).

To ascertain whether these observed changes in the phosphorylation of Smad2 and Smad3 were accompanied by changes in the intracellular distribution of these Smad proteins in HL-60 cells, we used specific antibodies\(^ {30}\) to assess the intracellular localization of endogenous Smad2 and Smad3 after treatment of the cells with 10ng/ml TGF-\(\beta\)1, 10nM ATRA, or a combination of 10nM ATRA +10 ng/ml TGF-\(\beta\)1 for 18 hr. In the control group, endogenous Smad2 and Smad3 are found predominantly in the cytoplasm (Figure 3a). TGF-\(\beta\)1 stimulation resulted in the translocation of Smad2/Smad3 to the nucleus. Quantitation of the percentage of cells with nuclear staining showed that at 18 hrs about 75% and 41% of the cells showed staining for Smad3 or Smad2, respectively, in the nucleus (Figure 3b,c). Significantly, treatment with ATRA alone reduced the basal number of cells showing Smad2/Smad3 nuclear staining, and treatment with both ATRA and TGF-\(\beta\)1 strongly reduced the number of cells exhibiting nuclear Smad2/3, compared to that seen following treatment with TGF-\(\beta\)1 alone. These changes in the subcellular localization of Smad2/3 in particular subpopulations of cells were confirmed by confocal microscopy, which clearly demonstrated the nuclear translocation of Smad2 induced by treatment with TGF-\(\beta\)1 alone, and the presence of a mixed population of cells with either nuclear or cytoplasmic localization following treatment with both ATRA and TGF-\(\beta\)1 (Figure 4). Together, these results demonstrate that TGF-\(\beta\)1 induces phosphorylation and nuclear translocation of Smad2/Smad3 which likely play a critical role in activation of the transcriptome responsible for TGF-\(\beta\)1-induced monocytic differentiation of HL-60 cells. Moreover, the data
show that treatment with ATRA decreases the number of cells in which there is detectable nuclear Smad2/3 staining compared to cells treated with TGF-β1 alone, consistent with the hypothesis that the subset of cells lacking nuclear Smad2/3 may then be committed to differentiate to granulocytes.

Vitamin D₃ induces phosphorylation of Smad proteins indirectly through a mechanism dependent on TGF-β

It has been reported that the induction of terminal differentiation by Vit D₃ requires TGF-β1 as an autocrine mediator in U937 cells. We have shown that treatment of HL-60 cells with 100nM Vit D₃ induces monocytic differentiation to CD14 positive cells (not shown) characterized by NSE activity (Table 2). To investigate if Smad2 and Smad3 are also activated in Vit D₃-induced monocytic differentiation, we examined the level of phosphorylated Smad2. Strong phosphorylation of Smad2 can be seen after 24 hr incubation with 100nM Vit D₃ (Figure 5a) coincident with nuclear translocation of Smad2/Smad3 (Figure 5b). After incubation with 100nM Vit D₃ for 18 hr, about 74% and 39% of the cells showed nuclear staining for Smad3 or Smad2, respectively, similar to the pattern seen in cells treated with TGF-β (compare with Figure 3b,c). To test whether these effects of Vit D₃ on Smad phosphorylation were dependent on induction of TGF-β activity, we treated cells with either control antibodies or antibodies to TGF-β. As shown in Figure 5c, the TGF-β1 neutralizing antibody 1D11 blocked both Vit D₃- and TGF-β-induced phosphorylation of Smad2, while the control antibody had no effect. To ascertain that the effects of the blocking antibody on Smad2 phosphorylation paralleled effects on differentiation, we assessed the functional activity of HL-60 cells 6 days after treatment with Vit D₃ or TGF-β, using the NSE assay for monocytic differentiation and the reduction of NBT as
a measure of granulocytic differentiation. As shown in Table 2, addition of the 1D11 TGF-β blocking antibody to cells treated with Vit D₃ reduced the proportion of NSE positive cells from 66% to 23%, while an isotype control antibody had no effect. For comparison, addition of the antibody to cells treated with TGF-β reduced the number of NSE positive cells from 16% to 1%. Together, these results strongly suggest that Vit D₃ induces monocytic differentiation of HL-60 cells, at least in part, through expression of TGF-β and subsequent activation of the Smad signaling pathway.

Induction of both monocytic and granulocytic differentiation of HL-60 cells is accompanied by activation of ERK1/2

Activation of the ERK1/2 MAPK pathway is essential for granulocytic differentiation of HL-60 cells by retinoic acid. Since this same pathway has been shown to inhibit nuclear translocation of Smad2/Smad3 induced by TGF-β, we investigated whether cross-talk between the ERK1/2 MAPK pathway and the Smad pathway could alter the pattern of phosphorylation or nuclear accumulation of Smads in HL-60 cells treated with either TGF-β1 alone or the combination of ATRA and TGF-β1. A specific inhibitor of ERK1/2, PD98059 (1.0 and 10 µM), inhibited phosphorylation of ERK1/2 in a dose-dependent manner (data not shown), but had no effect on either TGF-β-induced phosphorylation of Smad2 (Figure 6a) or nuclear translocation of Smad3 in HL-60 cells treated with either TGF-β1 alone or the combination of TGF-β1 and ATRA (Figure 6b). Moreover, when we examined the effects of ATRA, TGF-β1, ATRA and TGF-β1, or Vit D₃ on the activation of the ERK1/2 MAPK pathway in HL-60 cells, each of these treatments increased activation of this pathway with a similar timecourse, as measured by phosphorylation of the substrate Elk-1 in an *in vitro* kinase assay (Figure 6c). The somewhat
delayed induction of ERK activation by Vit D₃ may suggest that it, like Vit D₃–induced Smad phosphorylation, is mediated indirectly by TGF-β1. Together, these data show that TGF-β activates both the Smad and ERK1/2 pathways in HL-60 cells, but that these pathways appear to act independently, since activation of ERK1/2 occurs at an early stage of differentiation independent of the effects of the various differentiating agents on activation of Smad2/Smad3 or on commitment to specific lineages

ATRA increases dephosphorylation of Smad2

Since ATRA decreases levels of phospho-Smad2/Smad3 and reduces the number of cells with nuclear staining for Smad2/Smad3 in cells treated with TGF-β1, we investigated whether pre-exposure of HL-60 cells to ATRA or TGF-β1 would affect the subsequent ability of these agents to activate Smad2. HL-60 cells were incubated for 2 days in the presence of either TGF-β1 or ATRA or the combination, washed to remove these effectors, and then incubated with a different factor for another 24 hr prior to analysis of the levels of phospho-Smad2 (Figure 7a). These experiments showed that the level of phospho-Smad2 in cells that had been treated with TGF-β1 for 2 days was lower when that treatment was followed by addition of ATRA for 24 hours, than when cells were treated for the final 24 hours with only control medium. As before, there was no change in the expression level of total Smad2. We interpreted these data to suggest that treatment with ATRA actively reduced the level of existing phospho-Smad2 in cells previously treated with TGF-β1.

To address possible mechanisms whereby ATRA might decrease levels of phospho-Smad2/3 in cells treated with TGF-β1, we investigated whether either proteasome-mediated degradation of phospho-Smad 32 or phosphatase-mediated dephosphorylation might be involved. Addition of the
proteasome inhibitors MG-132 or lactacystin (not shown), had only a small effect, increasing slightly the levels of phospho-Smad2 seen in cells treated with either TGF-β1 alone or the combination of TGF-β1 and ATRA (Figure 7b). In contrast, preincubation of HL-60 cells with okadaic acid, an inhibitor of protein serine/threonine phosphatases, blocked the ability of ATRA to reduce the level of phospho-Smad2 in cells treated with both TGF-β and ATRA (Figure 7c). Surprisingly, treatment of the cells with okadaic acid alone, resulted in detectable phospho-Smad2, though at levels lower than that observed by treatment of the cells with TGF-β (Figure 7d). Together, these data suggest that endogenous protein serine-threonine phosphatases likely control the basal level of phospho-Smad2 and that ATRA reduces levels of phospho-Smad2 through induction of such phosphatases.

We then assessed the effect of okadaic acid on the differentiation of HL-60 cells treated with ATRA, TGF-β, or both to test the hypothesis that induction of the putative serine/threonine phosphatase would favor granulocytic differentiation and that inhibition of serine/threonine phosphatase activity would shift the balance towards monocytes. As shown in Table 3, treatment of HL-60 cells with ATRA for 2 days followed by incubation for an additional 2 days with 2.5 nM okadaic acid increased expression of both CD14 and NSE activity, and decreased expression of CD15, compared to cells treated with only ATRA. Okadaic acid also strongly enhanced the ability of TGF-β to induce differentiation to functional monocytes and, when added for the second two days to cells treated with the combination of ATRA and TGF-β, reduces the expression of CD15 and enhances expression of both CD14 and NSE activity. These data show that okadaic acid enhances the proportion of HL-60 cells expressing monocytic features, independently of the presence of other differentiating agents, and consistent with its effects on phospho-Smad2 (Figure
When cells are treated with both ATRA and TGF-β, which results in reduced nuclear phospho-Smad2/3 compared to that in cells treated with TGF-β alone (Figures 2, 3), the addition of okadaic acid inhibits the ATRA-dependent suppression of Smad2/3 phosphorylation (Figure 7c) simultaneous with its skewing the differentiation towards monocytes (Table 3).

The ability of ATRA to decrease levels of phospho-Smad2/3 is dependent on RARα

To further address the mechanism whereby ATRA modulates the levels of phospho-Smad2 and to link these effects to the ability of ATRA to induce granulocytic differentiation of HL-60 cells, we used retinoic acid-resistant cells (HL-60R), which have a point mutation in the RAR-α ligand-binding domain that confers dominant negative activity. ATRA is unable to induce granulocytic differentiation of HL-60R cells (data not shown), whereas the ability of TGF-β1 to induce monocytic differentiation, as assessed by expression of CD14, is unimpaired (Figure 8a). The ability of ATRA to stimulate maturation of promonocytic HL-60R cells, when added together with TGF-β, stands in strong contrast to its inability to stimulate granulocytic differentiation, suggesting different roles of RARα in these two processes. Immunoblotting with the anti-phospho-Smad2 antibody demonstrated that ATRA is unable to reduce levels of phospho-Smad2 in HL-60R cells treated with ATRA and TGF-β1, such that the level of phosphorylated Smad2 is similar in cells treated with TGF-β1 alone or with the combination of ATRA and TGF-β1 (Figure 8b). Consistent with this, immunohistochemical staining showed that the percentage of cells with nuclear staining for Smad2/Smad3 was also similar in cells treated with either TGF-β1 alone or with the combination of ATRA and TGF-β1 (Figure 8c, d, e).
Discussion

This study provides new insights into mechanisms whereby hematopoietic cells interpret and integrate the multiplicity of extracellular signals that ultimately specify distinct lineage decisions. Using the model system of HL-60 cells, a human myeloblastic leukemia with promyelocytic features, we have shown that the interplay of signals from ATRA which specifies differentiation to granulocytes, or TGF-β1/Vit D3, which specify commitment to monocytic differentiation, is mediated, in part, through a balance between protein serine/threonine phosphatase activity and levels of phosphorylated Smad2 and Smad3. Thus we have shown that TGF-β1 induces phosphorylation of Smad2/3 and that addition of ATRA together with TGF-β1, reduces the level of phospho-Smad2/3 and increases the extent of commitment to the granulocytic lineage at the expense of the monocytic lineage. Conversely, okadaic acid, which inhibits protein serine/threonine phosphatases and which enhances the level of phospho-Smad2/3 in cells, pushes the balance toward monocytic differentiation. Together these data suggest that monocytic differentiation is favored by lower protein phosphatase activity and/or increased levels of nuclear Smad2/3 (if the inducing agents are TGF-β or Vit D3) and that granulocytic differentiation is favored by higher protein phosphatase activity and/or reduced nuclear Smad2/3. In the specific case where ATRA and either TGF-β or Vit D3 are acting on the cell simultaneously, the data suggest that the induction of protein serine/threonine phosphatase activity by ATRA can modulate the levels of phospho-Smad2/3 induced by TGF-β and thereby alter the partitioning between the granulocytic and monocytic pathways.

Signal transduction pathways are regulated by dynamic interplay between protein kinases and phosphatases. Numerous reports have examined the ability of ATRA to alter phosphatase activity
in HL-60 cells during the process of differentiation to granulocytes35,36,37,38. Thus SHP-1, a protein tyrosine phosphatase, was shown to be induced by ATRA in HL-60 cells 35, but another report showing it to also be elevated by phorbol ester-induced monocytic differentiation of these same cells 39, raises questions regarding the lineage specificity of this effect. Most germane to our findings is the report that ATRA elicits a transient and reversible interconversion of the protein phosphatase 2A (PP2A) holoenzyme at the G1/S boundary during ATRA-induced granulocytic differentiation of HL-60 cells 36. PP2A accounts for the majority of the serine/threonine phosphatases activity in most cells and is inhibited by okadaic acid 40. Although several other studies show down-regulation of the catalytic subunit of PP2A beginning about 48 hr after treatment with ATRA and continuing for 3-5 days 37,38, it is probably the transient changes in the regulatory subunit at 18-24 hrs 36, which are predicted to result in a change in substrate specificity, which are most likely to affect levels of phospho-Smads at these times, as observed (Figure 2b, Figure 3). While effects of TGF-\beta on activation of serine-threonine phosphatase activity have been reported 41,42, our data are the first to implicate serine-threonine phosphatase activity in control of the phosphorylation state of receptor-activated Smad proteins in cells. In HL-60R cells which are resistant to effects of ATRA on granulocytic differentiation, cytosolic PP2A but not PP1 activity is reduced by almost 50\% compared to wildtype HL-60 cells 43. Consistent with our hypothesis that the ability of ATRA to reduce levels of phospho-Smad2/3 induced by TGF-\beta1 treatment may depend, in part, on alterations in phosphatase activity, ATRA is unable to decrease levels of TGF-\beta -induced phospho-Smad2/3 in either mutant HL-60R cells (Figure 8b) or in wildtype HL-60 cells treated with okaidic acid (Figure 7b). The ability of okadaic acid to induce both phenotypic and functional attributes of monocytes (Table 3) and to enhance
basal levels of phospho-Smad2/3 (Figure 7d), even in the absence of other inducing agents, further suggests that modulation of the levels of phosphatases can alter lineage commitment (Table 3).

Vit D$_3$ has been shown to induce an autocrine TGF-β pathway in several different cell types. Thus in NRP-152 rat prostatic epithelial cells, the ability of Vit D$_3$ to induce expression of fibronectin and thrombospondin, two target genes of TGF-β, was shown to be mediated indirectly by its activation of TGF-β44. U937 cells treated with Vit D$_3$ differentiate to CD14 positive cells with phagocytic capacity and this has been shown to result from activation of an autocrine TGF-β pathway8. In HL-60 cells, the Vit D$_3$ analog, EB1089, has been shown to induce expression of both TGF-β receptors and TGF-β ligand, and its antiproliferative activity is blocked by a TGF-β neutralizing antibody45. Our data now extend these studies and show that in HL-60 cells, the ability of Vit D$_3$ to phosphorylate Smad2/3 (Figure 5c) and to stimulate monocytic differentiation can each be blocked by neutralizing antibodies to TGF-β (Table 2), suggesting that Vit D$_3$ acts indirectly by activating signaling from either autocrine or paracrine (exogenous) TGF-β in these cells. Moreover, these data also show that reduction in levels of Smad2/3 phosphorylation is sufficient to reduce the commitment of these cells to differentiate to monocytes, even in the absence of changes in the levels of phosphatases. Whereas treatment with TGF-β alone results in arrest of differentiation at the CD14 negative promonocyte stage, Vit D$_3$ induces HL-60 cells to express CD14 and differentiate to mature monocytes, an effect that has been shown to be dependent on induction of phosphatidylinositol 3-kinase activity46. These additional effects of Vit D$_3$ are probably independent of TGF-β, or possibly dependent on synergistic interaction of the vitamin D receptor with Smad3 to regulate expression of certain
target genes containing both Vit D3 response elements and Smad binding elements as previously reported47,48.

Previous studies suggested that Smad5 is involved in the signaling pathway by which TGF-β inhibits proliferation of primitive human hematopoietic progenitor cells, since suppression of Smad5 expression by antisense oligonucleotides reversed the inhibitory effects of TGF β on hematopoietic colony formation49. While this study was one of the first to suggest that Smad 5, typically activated by bone morphogenetic proteins (BMPs), might be activated by TGF-β, more recent studies have shown this to occur in other cells as well, including intestinal epithelial cells50 and endothelial cells51,52. It has also been shown that BMPs can regulate the development of human hematopoietic stem cells, presumably through the BMP-activated Smad proteins, Smad1 and Smad5, which they express53. In contrast to these observations, our results suggest that in the more differentiated HL-60 cells, it is the canonical TGF-β-activated Smad proteins, Smad2 and Smad3, which mediate the effects of TGF-β.

Granulocytic differentiation of HL-60 cells has been shown to be mediated by the RAR-α receptor, consistent with the observations that it is the retinoid receptor most commonly expressed in hematopoietic cells and that the retinoid-resistant HL-60R cells have been shown to have a point mutation in ligand-binding domain of RAR-α34. Using similar reasoning, we have concluded that the ability of ATRA to reduce the levels of phospho-Smad2/3 induced by TGF-β is either directly or indirectly dependent on RAR-α. Whereas it has been suggested that the different retinoid receptors may control the expression of specific target genes in different cell types and thus may be functionally distinct, studies in HL-60 cells in which either RAR-α, RAR-β, RAR-γ, or RXR-α
have been transduced into the retinoid-resistant HL-60R cells show that each of these distinct receptors has the capacity to mediate granulocytic differentiation. Thus the possibility must be considered that in non-hematopoietic cells, other retinoid receptors may play a similar role as RAR-α in modulating effects of TGF-β on differentiation. Moreover, certain effects of ATRA may also be independent of RARα or compatible with the reduced ligand affinity of the point-mutated receptor in HL-60R cells, since ATRA cooperates with TGF-β in induction of fully mature CD14 positive monocytes in HL-60R cells where its ability to induce granulocytic differentiation is impaired (Figure 8a).

In summary, our data provide new insights into the mechanisms whereby HL-60 cells can integrate a multiplicity of differentiation signals impinging simultaneously on the cell. We demonstrate for the first time that cellular levels of phosphatase activity and of phosphorylated Smad2/3 induced by TGF-β can each affect the commitment to differentiation. However, in the particular context of treatment of cells simultaneously with ATRA and TGF-β, these two mechanisms are inter-related in that elevation of phosphatase activity by ATRA appears to underlie the decrease in the level of Smad2/3 phosphorylation. It remains to be demonstrated whether this unique mode of integration of signals from ATRA and TGF-β will also be relevant for other myeloid leukemia cells or for other cell systems regulated by these two agents.

Acknowledgements

We thank Xinle Cui and Carl Sadowski for many helpful discussions and technical assistance, and we also thank Jim McNally for excellent help on the use of the confocal microscopy facility.
Reference List

7. Selvakumaran M, Reed JC, Liebermann D, Hoffman B: Progression of the myeloid differentiation program is dominant to transforming growth factor-beta 1-induced apoptosis in M1 myeloid leukemic cells. Blood 84: 1036-1042, 1994

34. Robertson KA, Emami B, Collins SJ: Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood 80: 1885-1889, 1992

Figure 1. Expression of Smad mRNAs is not changed following induction of differentiation of HL-60 cells to monocytes or granulocytes by 10 nM ATRA or 10 ng/ml TGF-β1.

Human Smad-specific primer pairs were selected from the corresponding cDNA sequence information obtained from the NIH database as indicated under Materials and Methods. Primer pairs were used to amplify Smad specific fragments from reverse transcribed total RNA isolated from the indicated samples as template. 1 µg total RNA, quantified by spectrophotometry and agarose gel analysis, was used for reverse transcription in all cases. Smad2, Smad3, Smad4, Smad7 and GAPDH (as a internal control) were amplified by PCR and analyzed on an agarose gel.
Figure 2. Western blot analysis of activation of endogenous Smad2 in HL-60 cells. Protein prepared from HL-60 cells untreated or treated with 10 ng/ml TGF-β1, 10 nM ATRA (Figure 2a), or both (Figure 2b) for the indicated times as described in Materials and Methods, were directly subjected to immunoblotting with antibodies against Smad2 or C-terminally phosphorylated Smad2 (P-Smad2).
Figure. 3. Immunohistochemical staining of Smad3/Smad2 in HL-60 cells. HL-60 cells were treated with 10 ng/ml TGF-β1, 10 nM ATRA, or both for 18 hrs. (a) Expression of Smad3 as detected by anti-Smad3 antibody in HL-60 cells untreated (grey) or treated with 10 nM ATRA (grey striped), 10 ng/ml TGF-β1 (black), or both (black and white striped) for 18hr as described. Following immunohistochemical staining, the percentage of cells with Smad2 (b) or Smad3 (c) staining predominantly or exclusively in the nucleus was determined among 1000 cells in five different fields. Values are the means ± SEM of three experiments.
Figure 4. Localization of endogenous Smad2 in HL-60 cells by confocal microscopy. After 18 hr incubation with 10 ng/ml TGF-β1 or 10 nM ATRA or both, the cells were fixed, subjected to immunochemistry with primary antibodies against Smad2, and secondary antibodies linked to fluorescein isothiocyanate, and mounted with medium containing 4,6-diamidino-2-phenylindole (DAPI). The red arrow indicates that Smad2 is localized both in the nucleus and cytoplasm. Magnification: ×63. The result is representative of three similar experiments.
Figure. 5. Vitamin D₃ induces activation of Smad2/Smad3 in HL-60 cells in a TGF-β-dependent manner. (a) Western blot analysis of phosphorylation of endogenous Smad2 in HL-60 cells untreated or treated with 100 nM Vit D₃ for 24 hr. (b) Immunohistochemical staining of Smad3 in HL-60 cells untreated or treated with 100 nM Vit D₃ at 18 hr. (c) TGF-β1 neutralizing antibodies block the phosphorylation of Smad2 induced by treatment of HL-60 cells with either 10 ng/ml TGF-β or 100 nM Vit D₃. Lysates from cells incubated either in the presence or absence of 12.5μg/ml TGF-β1 control (12H5) or neutralizing (1D11) antibody at 2hr or 24hr, were directly subjected to immunoblotting with antibodies against Smad2 and phosphorylated Smad2.
Figure 6. The effect of inhibition of MAPK on phosphorylation and nuclear translocation of Smad2 induced by TGF-β1. (a) Phosphorylation of Smad2 was not affected by treatment with 10 μM PD98059 for 2 hrs followed by addition of 10 ng/ml TGF-β1 for an additional 24 hr. (b) There was no significant difference observed in the percentage of nuclei positive for Smad2 immunostaining (of 1000 cells counted in 5 different fields) 18 hr after treatment with 10 ng/ml TGF-β1 and 10 nM ATRA with or without addition of 10 μM PD98059 (10 μM PD) added 2 hrs prior to the other treatments (mean± SEM, n=3). (c) p44/42 MAP kinase activity is activated independent of the particular pathway of differentiation. Proteins were immunoprecipitated with anti-phospho-p44/42 MAP kinase antibody as described in Materials and Methods, and the immunoprecipitates were subjected to an in vitro kinase assay using the Elk-1 fusion protein. Reaction mixtures were separated by SDS-PAGE and immunoblotted with anti-phospho-Elk-1 antibody. The data shown are representative of three experiments with similar results.
Figure. 7. ATRA increases dephosphorylation of Smad2. (a) ATRA reduced the levels of phospho-Smad2 induced by TGF-β1 in HL-60 cells. HL-60 cells treated sequentially showed a lower level of phospho-Smad2 when cells were first incubated with 10 ng/ml TGF-β1 for 48 hrs, washed, and then treated with 10 nM ATRA for 24 hrs (lane 3), compared with cells similarly pretreated with 10 ng/ml TGF-β1, washed, and treated with control medium (lane 1). (b, c, d) Cells were changed to 0.2% serum and okadaic acid or MG-132 were added. After 3 hrs, cells were washed 3 times with medium containing 5% serum and incubated for an additional 24 hrs with addition of TGF-β, Vit D3, ATRA, or TGF-β plus ATRA, in the absence of the inhibitors. Lysates were analysed by immunoblotting using an antibody specific to C-terminally-phosphorylated Smad2. (b) The proteasome inhibitor MG-132 (50 µM) (lane 5-8) did not have specific effects on cells treated with ATRA. (c) Treatment with okadaic acid (100nM) blocks the ability of ATRA (10 nM) to decrease levels of phospho-Smad2 induced by TGF-β1 (10 ng/ml). (d) Treatment with okadaic acid (100nM) alone enhances detection of phospho-Smad2, in addition to its ability to augment levels induced by Vit D3.
Figure 8. The ability of ATRA to decrease levels of phospho-Smad2/Smad3 is dependent on RARα. (a) Treatment for 4 days with ATRA together with TGF-β1 (lane 4) enhances the expression of CD14 by HL-60R compared to cells treated with TGF-β1 alone (lane 3) (mean ± SEM). (b) In contrast to HL-60 wild type, ATRA is unable to reduce levels of phospho-Smad2 induced by TGF-β1 in RARα mutant HL-60 cells (HL-60R) treated simultaneously with ATRA and TGF-β1 (lane 4 compared to lane 3). Treatments were for 24 hrs. (c-e) Immunohistochemical staining showed that ATRA is unable to reduce the TGF-β1-dependent Smad3 nuclear localization in RARα mutant HL-60 cells treated for 18 hrs with ATRA and TGF-β1 (c) as seen in HL-60 wildtype cells (d). The arrow on the left shows a cell with both nuclear and cytoplasmic staining, and the arrow on the right shows a cell with only cytoplasmic staining. (e) Quantitation of the data in (c) obtained by assessment of the staining patterns in 1000 cells in five different fields of treated HL-60R cells. (a, b, e) Treatments were 1: vehicle (grey); 2: ATRA, 10 nM (grey striped); 3: TGF-β1, 10 ng/ml (black), or 4: the combination of ATRA and TGF-β1 (black and white striped).
Table 1. Effect of TGF-β1 and ATRA on HL-60 cell differentiation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CD14 (±)</th>
<th>CD66b (±)</th>
<th>NSE (±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4 ± 2</td>
<td>4 ± 1</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>23 ± 3</td>
<td>3 ± 1</td>
<td>22 ± 5</td>
</tr>
<tr>
<td>ATRA</td>
<td>5 ± 2</td>
<td>90 ± 7</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>TGF-β1+ATRA</td>
<td>46 ± 4</td>
<td>45 ± 9</td>
<td>26 ± 4</td>
</tr>
</tbody>
</table>

Table 1. Effect of TGF-β1 and ATRA on HL-60 cell differentiation

Cells were treated with 10 ng/ml TGF-β, 100 nM ATRA, or both for 4 days. Antibodies and FACS analysis and assay for NSE are as described in the Materials and Methods.
Table 2. Antibodies to TGF-β interfere with the induction of monocytic differentiation by Vitamin D3.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NSE (%)</th>
<th>NBT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3±1</td>
<td>5±3</td>
</tr>
<tr>
<td>Vit D3</td>
<td>66±5</td>
<td>3±2</td>
</tr>
<tr>
<td>1D11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vit D3/1D11</td>
<td>23±4</td>
<td>1±1</td>
</tr>
<tr>
<td>Vit D3/isotype control</td>
<td>61, 57</td>
<td>7, 5</td>
</tr>
<tr>
<td>TGF-β</td>
<td>16±7</td>
<td>0</td>
</tr>
<tr>
<td>TGF-β/1D11</td>
<td>1±1</td>
<td>0</td>
</tr>
</tbody>
</table>

Cells were cultured for 6 days in 5% serum plus the following additions as indicated: VitD3, 100 nM, TGF-β, 5 ng/ml; 1D11, 30 ug/ml, IgG1κ. NSE and NBT were assayed as described in the Materials and Methods. Data are the averaged values of 3 separate experiments±SE with the exception of the isotype control which was performed twice.
Table 3. Okadaic acid enhances monocytic differentiation of HL-60 cells

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CD14+/CD15-</th>
<th>CD15+/CD14-</th>
<th>NSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% single positive</td>
<td>% positive 500 cells</td>
<td></td>
</tr>
<tr>
<td>2dC/2dC</td>
<td>1, 1</td>
<td>84, 87</td>
<td>0, 0</td>
</tr>
<tr>
<td>2d C/2d OA</td>
<td>39, 32</td>
<td>7, 11</td>
<td>35, 32</td>
</tr>
<tr>
<td>2d ATRA/2d C</td>
<td>1, 2</td>
<td>79, 84</td>
<td>0, 3</td>
</tr>
<tr>
<td>2d ATRA/2d OA</td>
<td>29, 27</td>
<td>8, 11</td>
<td>62, 47</td>
</tr>
<tr>
<td>2d ATRA/2d ATRA</td>
<td>1, 3</td>
<td>84, 91</td>
<td>0, 0</td>
</tr>
<tr>
<td>2d ATRA/2d ATRA+OA</td>
<td>23, 24</td>
<td>11, 19</td>
<td>47, 38</td>
</tr>
<tr>
<td>2d TGF-β/2dC</td>
<td>6, 8</td>
<td>75, 71</td>
<td>37, 39</td>
</tr>
<tr>
<td>2d TGF-β/2d OA</td>
<td>43, 37</td>
<td>9, 14</td>
<td>74, 69</td>
</tr>
<tr>
<td>2d TGF-β+ATRA/2d TGF-β+ATRA</td>
<td>31, 35</td>
<td>63, 55</td>
<td>65, 57</td>
</tr>
<tr>
<td>2d TGF-β+ATRA/2d TGF-β+ATRA+OA</td>
<td>51, 52</td>
<td>22, 28</td>
<td>81, 91</td>
</tr>
</tbody>
</table>

Okadaic acid (OA) concentration is 2.5 nM, TGF-β is 10 ng/ml, ATRA is 100nM for the first 2 days of incubation and 10 nM for the second 2 days of incubation.

Experiments are done in 5% serum. Individual values are shown for 2 separate experiments.
Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-β and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells

Zhouhong Cao, Kathleen C Flanders, Daniel Bertolette, Lyudmila A Lyakh, Jens U Wurthner, W Tony Parks, John J Letterio, Francis W Ruscetti and Anita B Roberts