Title: **Paternal Mosaicism Proves the Pathogenic Nature of Mutations in Neutrophil Elastase in Severe Congenital Neutropenia.**

Running Title: Mosaicism in the *ELA2* gene in SCN

Scientific Section Heading: **Hematopoiesis**

Authors: Phil J. Ancliff, Rosemary E. Gale, Michael J. Watts, Ri Liesner, Ian M. Hann, Stephan Strobel and David C. Linch

Institutions: Departments of Haematology & Immunology, University College London and Great Ormond Street Children's Hospital, LONDON, UK.

Corresponding Author: Phil Ancliff, Department of Haematology, University College London, 98 Chenies Mews, London, WC1E 6HX. Tel: +44 20 7679 6232, Fax: +44 20 7679 6222
Email: p.ancliff@ucl.ac.uk

Word Counts: Abstract 150
Main Text 1196

Acknowledgements: PA is supported jointly by the Roald Dahl Foundation, Great Missenden, Bucks, UK and Amgen Ltd (unrestricted educational grant), Cambridge, UK.
Abstract

Heterozygous mutations in neutrophil elastase have been detected in many sporadic cases of congenital neutropenia. However, a convincing pathogenetic mechanism has not been established and it is unclear whether the effects of the mutant enzyme occur within the cell of production or are paracrine in nature. The healthy father of a patient was demonstrated to be mosaic for his daughter’s Cys42Arg elastase mutation. Using semi-quantitative PCR, approximately half of his T-cells were shown to carry the mutation in contrast to <10% of neutrophils. Individual hematopoietic colonies grown from peripheral blood were heterozygous for the mutation or homozygous wild-type. These results demonstrate that precursors containing the mutation are selectively lost during myelopoiesis or fail to develop into neutrophils. This is the first in vivo confirmation of the pathogenic nature of elastase mutations in man. The normal neutrophil count in the father suggests that the mutant elastase does not have paracrine effects. p.ancliff@ucl.ac.uk
Introduction

Severe congenital neutropenia (SCN) is manifest by persistent severe neutropenia, recurrent bacterial infection and a maturation arrest in the bone marrow at the promyelocyte/myelocyte stage.¹ Until recently, the pathogenesis of SCN was unknown, but genetic studies have now suggested a causal role for heterozygous mutations in the ELA2 gene encoding neutrophil elastase in approximately three quarters of sporadic cases.², ³ However, a convincing pathogenetic mechanism has not yet been established; neutrophil elastase knock-out mice are not neutropenic⁴, ⁵ and preliminary knock-in experiments have failed to produce an SCN phenotype.⁶ Recently, doubts have been raised as to whether the mutations described are actually sufficient to cause the phenotype of SCN.⁷

We present here evidence of mosaicism for an ELA2 mutation in the hematologically normal father of an SCN child which strongly supports the pathogenic nature of this mutation in myelopoiesis.

Patient and Methods

Case History

The patient had typical SCN diagnosed in infancy. Current white count at 4 years of age is 3.52x10⁹/L (neutrophils 0.04, monocytes 0.63x10⁹/L). Cytogenetic analyses have always been normal. She had no numerical or clinical response to granulocyte colony stimulating factor (G-CSF), even to doses >100µg/kg/day, or to the combination of prednisolone and G-CSF. Her parents were unrelated and of North-European origin and had normal full blood counts and white cell differentials (father: WBC=7.03x10⁹/L, neutrophils 4.18, monocytes 0.61x10⁹/L). Neither had a history of recurrent infections.

Mutational analysis

The ELA2 gene was amplified by polymerase chain reaction (PCR) and sequenced as described previously.³ To confirm the presence of the mutation, a fragment covering nucleotides 1768-1959 (GenBank accession number Y00477) was amplified using a 3’ mismatch primer which introduced a Sac II restriction endonuclease (RE) digestion site in mutant alleles only. Semi-quantitative PCR was performed with a γ-³²P-end labelled forward primer and 25 cycles of amplification on DNA from cells purified from peripheral blood by density gradient centrifugation and isolation with the MiniMACS® magnetic bead system (Miltenyi Biotec Ltd, Bisley, UK). Sac II-digested products were electrophoresed through 6% denaturing polyacrylamide gels and the bands quantified by densitometry.
PCR fragments covering the mutation (nucleotides 1768-1992) and the common C/A polymorphism at nucleotide 48908,9 (nucleotides 4599-5133) were sub-cloned and individual colonies analysed by mismatch PCR and RE digestion using Sac II and Bsp\text{XI} I respectively.

Peripheral blood colony assays
Fresh mononuclear cells (50x103/mL) were cultured in semi-solid media (Methocult H4230, Stem Cell Technologies, Vancouver, BC) supplemented with G-CSF (25ng/mL), granulocyte-macrophage-CSF (25ng/mL), interleukin-3 (30ng/mL), stem cell factor (10ng/mL) and erythropoietin (3u/mL). Individual colonies were plucked at day 12 of culture, lysed with proteinase K (1.2 µg in 20 µl of detergent lysis buffer) for 60 minutes at 55°C and then analysed by PCR and RE digestion as before.

Results & Discussion

Mutational analysis
Sequencing of the ELA2 gene of the patient identified a T1929C mutation which would lead to a Cys42Arg substitution. PCR and RE digestion confirmed that she was heterozygous for the mutation, with approximately 50% mutant DNA in her peripheral blood (Figure 1a). Her mother and 55 healthy individuals had only wild-type alleles. However, preliminary analysis of total white cells from her father detected a low level of the mutant. Semi-quantitative PCR on DNA from a fresh peripheral blood sample in March demonstrated that his T cells had 28.5±6.1% (mean±SD of 4 analyses) mutant alleles whereas his neutrophils had 4.6±1.2% (n=4). These results did not change significantly with time, in November his CD3+ cells had 38.4±0.9% (n=2), neutrophils 0.4±0.7% (n=3) and CD14+ cells 27.3±3.4% (n=2) mutant alleles. The patient had 54.5±2.3% (n=7) mutant alleles (Figure 1a). These results suggested that the father was a somatic mosaic for his daughter's neutrophil elastase mutation and had selective loss of myeloid cells expressing the mutation.
Figure 1. Mismatch PCR and restriction enzyme analysis. (a). DNA prepared from total white cells from the patient and purified cellular fractions from the father. Percentages of mutant DNA are derived from radioactive PCR analysis. Cell purity (November only): CD3+, >98%, CD14+, 85% (by flow cytometry); neutrophils >97% (400 cell differential). (b). Representative individual erythroid colonies grown in vitro from the father’s blood mononuclear cells. Neuts=neutrophils, W/T=wild-type, DDW=double de-ionised water.

Proof of mosaicism

In order to prove the probable mosaicism, two PCR fragments were sub-cloned from DNA from both the father's CD3+ cells and neutrophils (March samples). One fragment covered the T1929C mutation identified in the affected child. The other fragment covered the previously reported C4890A (Ser173Ser) silent polymorphism for which the father was heterozygous but the daughter homozygous CC, thus acting as an internal control. Attempts to use long-range PCR to amplify both sites within one fragment were unsuccessful, possibly due to the high GC content within that 3365bp fragment. Analysis of individual clones showed that the C and A alleles at the polymorphic site were equally distributed in the clones from both CD3+ cell and neutrophil DNA, as would be expected for a polymorphism (Table 1). However, only one-quarter of clones from CD3+ cells had the mutant C1929 allele.

<table>
<thead>
<tr>
<th>T1929C Mutation</th>
<th>C4890A Polymorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1929 clones (colonies) / Total analysed</td>
<td>A4890 clones / Total clones analysed</td>
</tr>
<tr>
<td>Number</td>
<td>%</td>
</tr>
<tr>
<td>55</td>
<td>29</td>
</tr>
</tbody>
</table>
Table 1. Analysis of individual sub-clones derived from paternal peripheral blood cell DNA and in vitro colonies for the presence of the T1929C mutation and C4890A polymorphism.

*The difference in the percentage of mutant clones derived from CD3+ and neutrophil DNA is statistically significant (p<0.001).

Expression of neutrophil elastase is exclusively limited to cells of the myeloid lineage and thus would not exert a functional selection pressure on T cells. These results indicated that one half of the father's non-myeloid cells contained the mutation and therefore the mutation arose at the first mitotic division post-fertilization on his allele with C at nucleotide 4890. Furthermore, the low proportion of C1929 clones from neutrophils (approximately 7%) suggested that cells expressing the elastase mutation had been selectively lost at an earlier stage in myelopoiesis.

Further proof of mosaicism was obtained from analysis of individual colonies cultured in vitro from the father's peripheral blood mononuclear cells. Normal numbers of colonies were obtained, 608 BFU-E and 231 CFU-GM/mL of peripheral blood (median ± SD for 20 healthy individuals analysed on 4 separate occasions = 356 ± 280 and 95 ± 127/mL respectively). PCR analysis confirmed the presence of wild-type and heterozygous colonies in both lineages (Table 1, Figure 1b). This apparently normal myeloid growth (by colony count) is consistent with growth factor supplemented in vitro studies previously reported in SCN patients, and may be explained by the increased proportion of macrophages in colonies from such patients. Cells of the monocyte/macrophage lineage express much lower levels (~6% of that of neutrophils) of neutrophil elastase and thus would be less susceptible to any potential toxic effects of the mutant enzyme.

Recent studies have demonstrated that mosaicism is a relatively common event in several genetic disorders. For example, in a recent study of hemophilia A, evidence of mosaicism was found in 8/61 (13%) of families studied. In the case presented here, a neutrophil elastase mutation acquired
in the father at the embryonic 2-cell stage had been passed on to his daughter, who was heterozygous for the mutation and had classical SCN. The phenotype of the child was unusually severe in that she failed to respond to G-CSF therapy. Mutations in the extracellular domain of the G-CSF receptor have been reported in two SCN patients who similarly had no response to G-CSF, but no evidence for such a mutation was found in the present case (data not shown). The hematologically normal phenotype of the father could be explained by the almost complete absence of mutation-expressing neutrophils in his blood, presumably because neutrophils never developed from stem cells expressing the ELA2 mutant or were destroyed before entering the circulation. This result not only provides the first in vivo confirmation of the pathogenic role of mutant neutrophil elastase in man, but also argues against a paracrine mechanism for the detrimental activity of the mutant enzyme.

References

3. Ancliff PJ, Gale RE, Liesner R, Hann IM, Linch DC. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease. Blood. 2001;98:2645-2650.

Paternal Mosaicism Proves the Pathogenic Nature of Mutations in Neutrophil Elastase in Severe Congenital Neutropenia

Phil J Ancliff, Rosemary E Gale, Michael J Watts, Ri Liesner, Ian M Hann, Stephan Strobel and David C Linch