The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia

Mehmet Uzunel, Jonas Mattsson, Marie Jaksch, Mats Remberger, and Olle Ringdén

Relapse is the major cause of treatment failure after allogeneic stem cell transplantation (SCT) in patients with acute lymphoblastic leukemia (ALL).1,2 Graft-versus-host (GVH) disease, however, has been shown to protect against relapse.1,3 In particular, the combination of acute and chronic GVH disease seems to have the best antitumor effect.3,5

Analysis of antigen receptor (immunoglobulin [Ig] and T-cell receptor [TcR]) gene rearrangements to assess minimal residual disease (MRD) has started to become a part of routine laboratory work, and standardized protocols for monitoring MRD have therefore been developed.6 Using the polymerase chain reaction, MRD techniques are now sensitive enough to detect 1 leukemic cell among 104 to 105 normal cells.7,8

MRD studies after SCT have found a strong correlation between the presence of MRD and relapse.9,10 Increasing MRD levels have usually preceded a hematologic relapse. The importance of a pretransplant tumor burden to transplantation outcome has been shown by a better outcome in patients receiving transplants in complete remission (CR) than in those receiving transplants during relapse or with high MRD levels.11,12 However, many patients receiving transplants in remission still relapse after allogeneic SCT. The existence of residual disease not detected with morphologic analysis may therefore have an effect on outcome.

In this study of 30 patients with ALL, we quantified the leukemic cell burden before SCT to determine whether the level of MRD was correlated with outcome.

Study design

Patients

Between May 1989 and February 1999, 91 ALL patients received transplants at the Center for Allogeneic Stem Cell Transplantation, Huddinge University Hospital. Of these 91, 80 received transplants in remission. Nine patients were excluded from the study because of transplant-related mortality before day 100 after SCT, and another 37 were excluded for whom no samples were available at diagnosis or before SCT. Antigen receptor rearrangement was not found in 4 of the remaining 34 patients. Table 1 summarizes patient and donor characteristics of the remaining 30 patients in relation to the MRD results.

Details regarding the transplantation procedure and supportive care have been published elsewhere.13,14

DNA samples and MRD analysis

All DNA material used in the MRD analysis was extracted from archival slides from BM aspirates. A salting-out procedure was performed as described by others.15

For MRD detection, the junctional regions of Ig and TcR gene rearrangements were amplified, cloned, and sequenced, and “patient-specific” primers were constructed for each patient. The methodology, polymerase chain reaction protocols, and primers for IgH, TcRδ, TcRγ, and Igk (Kde) gene rearrangements are described in detail elsewhere.5,16,17

Quantification was performed by parallel amplification of 1 μg pre-SCT DNA with a 10-fold serial dilution of leukemic cell DNA in mononuclear cell DNA from 5 healthy donors. The percentage of leukemic cells in the diagnosis sample was found from morphology and immunophenotype analysis done on the same day as the preparation of the slides.

MRD levels were defined as high (10-2 to 10-3), low (10-4 to 10-5), or negative.
GVHD prophylaxis

<table>
<thead>
<tr>
<th>Conditioning</th>
<th>MTX + CsA</th>
<th>MTX</th>
<th>CsA</th>
<th>MTX + CsA + TcD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTX + CsA</td>
<td>10/25</td>
<td>0/1</td>
<td>1/2</td>
<td>2/0</td>
</tr>
<tr>
<td>MTX</td>
<td>0/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>CsA</td>
<td>1/2</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
</tr>
<tr>
<td>MTX + CsA + TcD</td>
<td>2/2</td>
<td>0/0</td>
<td>0/0</td>
<td>2/2</td>
</tr>
</tbody>
</table>

GVHD

<table>
<thead>
<tr>
<th>No GVHD</th>
<th>Only cGVHD</th>
<th>Only aGVHD III</th>
<th>aGVHD < cGVHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
</tr>
</tbody>
</table>

Recipient and donor

<table>
<thead>
<tr>
<th>Recipient age, y (median)</th>
<th>Donor age, y (median)</th>
<th>Recipient sex, M/F</th>
<th>Donor sex, M/F</th>
<th>Cell dose, 10^6/kg (median)</th>
<th>Days in remission before SCT (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 (2-53)</td>
<td>28 (6-60)</td>
<td>17/13</td>
<td>18/12</td>
<td>3.0 (1.2-9.7)</td>
<td>68 (19-355)</td>
</tr>
</tbody>
</table>

MRD results and outcome

Fifteen patients had high-level MRD (10^{-2} to 10^{-3}), 10 low-level MRD (10^{-4} to 10^{-5}), and 5 were MRD-.

Results and discussion

Antigen receptor rearrangements and primer sensitivity

To avoid the problem of false negative results due to continuing rearrangements, usually observed in IgH rearrangements, several gene targets were used to identify clone-specific rearrangements.18,19 Twenty-seven patients were analyzed with primers reaching a sensitivity of 10^{-3} (n = 17) or 10^{-4} (n = 10). A target sensitivity of 10^{-3} was observed in 3 patients. All 3 patients, however, had an MRD level of more than 10^{-3} in the pre-SCT sample.

Patients

Thirteen patients died at a median of 10 (range, 2-22) months after SCT. Causes of death were BM relapse in 12 cases (median 8 [range, 2-22] months) and multiorgan failure in 1. Sixteen patients are alive and without relapse with a median follow-up of 39 (range, 13-119) months. One is alive with relapse.

Samples

The diagnosis or relapse samples from which the patient-specific primers were generated were taken at a median of 4 (range, 2-13) months before SCT. The pre-SCT samples, analyzed for the presence of MRD, were taken at a median of 9 (range, 0-30) days before SCT.

Statistical analysis

The probability of relapse was calculated according to the Kaplan-Meier test. Differences in the incidence of GVH disease and relapse were compared with the Fisher exact test. The logistic regression model was used for multivariate analysis, which included risk factors such as sex, age, CR status, and acute and chronic GVH disease.
relapse (odds ratio 0.07; 95% confidence interval, 0.01-0.52; \(P = .014\)). The incidence of relapse was also higher in patients receiving transplants in second or later remission than in those receiving transplants in first remission (\(P = .077\)). MRD could not be included in the multivariate analysis because there was no relapse in the MRD \(^{-}\) group.

Although the present study is retrospective and includes a small number of patients, it indicates that patients with persistent disease are more likely to relapse than those in molecular remission. Patients at higher risk of relapse should therefore be followed more frequently after SCT, and those with persistent or increasing MRD levels may be given additional antitumor therapy, such as withdrawal of immunosuppression and/or donor lymphocyte infusions.\(^{22}\) It may be desirable to induce acute as well as chronic GVH disease to achieve the best antileukemic effect, as shown by several other studies.\(^{5,23}\) Our data may support this in patients with ALL who are MRD \(^{-}\) at the time of transplantation. Knowledge of the MRD status before SCT therefore may permit us to individually design the posttransplantation immunosuppressive strategy to decrease the risk of a threatening relapse.\(^{24}\)

Acknowledgments

We are indebted to Inger Buskas and Anita Lindström for their help with the patient material. We thank the staff at the Center for Allogeneic Stem Cell Transplantation, Department of Hematology and Pediatrics, for compassionate and competent patient care.

References

16. Zetterquist H, Mattsson J, Uzunel M, et al. Mixed Action: investigation of minimal residual disease to achieve the best antileukemic effect, as shown by several other studies.\(^{5,23}\) Our data may support this in patients with ALL who are MRD \(^{-}\) at the time of transplantation. Knowledge of the MRD status before SCT therefore may permit us to individually design the posttransplantation immunosuppressive strategy to decrease the risk of a threatening relapse.\(^{24}\)

17. Mattsson J, Uzunel M, Remberger M, et al. DNA extraction from DNA extraction from DNA extraction from DNA extraction from...
The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia

Mehmet Uzunel, Jonas Mattsson, Marie Jaksch, Mats Remberger and Olle Ringdén

Updated information and services can be found at:
http://www.bloodjournal.org/content/98/6/1982.full.html
Articles on similar topics can be found in the following Blood collections
 - Brief Reports (1941 articles)
 - Neoplasia (4182 articles)
 - Transplantation (2233 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml