We read with great interest the paper by Chesi et al regarding FGFR3 that further supports the role of FGFR3 in the pathogenesis of multiple myeloma (MM).1 Monoclonal gammapathy of undetermined significance (MGUS) also has genetic abnormalities seen in MM, including the t(4;14)(p16.3;q32)2,3 with presumptive up-regulation of the FGFR3 oncogene. Here we provide additional data attesting that the pathogenetic pathways in MM are highly specific. Specifically, we find that in MGUS and MM the t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities. This would strongly suggest that MM with the t(4;14)(p16.3;q32) represents a unique subtype of MM. We thus propose a refinement in the model, as shown in Figure 1, that incorporates the t(4;14)(p16.3;q32), Δ13, ras, and FGFR3 mutations. The results of this study also highlight the high likelihood that subgroups of MGUS patients, classified according to the underlying genetic abnormalities, may be at different risk of progression to MM. This is in need of a prospective study.

Acknowledgments. R.F. is a Leukemia and Lymphoma Society Translational Research Awardee. R.F. also supported by the Mayo Foundation and by the CI-5 Cancer Research Fund-Lilly Clinical Investigator Award of the Damon Runyon–Walter Winchell Foundation.

We thank the excellent technical assistance of S. Van Wier, R.J. Bailey, and K. Henderson.

Rafael Fonseca, Martin M. Oken, Philip R. Greipp, on behalf of the Eastern Cooperative Oncology Group Myeloma Group

Correspondence: Rafael Fonseca, Division of Hematology and Internal Medicine, Mayo Building W10B, Rochester, MN 55905; fonseca.rafael@mayo.edu.

Supported in part by Public Health Service grant R01 CA83724-01 from the National Cancer Institute. The Mayo Foundation also supports this study. Supported in part by research grant CA62242 (P.R.G. and B.V.N.). Supported by the ECOG grant CA21115-25C from the National Cancer Institute. The Mayo Foundation also supports this study.

References

To the editor:

Misleading information about ALIP and VEGF in myelodysplasia

The study by Bellamy et al. has numerous critical limitations. First, the authors incorrectly assume that abnormal localization of immature precursors (ALIPs) can be identified in the bone marrow clot section, which has no bony trabeculae. It should be pointed out that ALIPs are collections of immature myeloid precursors in the central, inter trabecular region of the bone marrow trephine biopsy section. Moreover, this is a feature of microarchitecture disorganization in the bone marrow biopsy sections in myelodysplastic syndromes (MDSs), which also show disorganized erythroid and monocytic clusters from their paratrabecular locale. Likewise, bone marrow clot sections are not suitable to start assuming about architectural disorganization in MDS. To get the full picture about ALIP in MDS and the autocrine or paracrine promotion by VEGF or other growth factors, authors should justify their conclusions on the basis of bone marrow biopsy examinations.

Manzoor H. Mangi
Correspondence: Manzoor H. Mangi, Department of Haematology, The Royal London Hospital, Whitechapel, London E1 1BB, England, United Kingdom; m.h.mangi@hms.qmw.ac.uk

Response:

Expression of VEGF in myelodysplasia

Dr Mangi interprets our data as indicating that the means by which we diagnose ALIP was based solely on findings derived from bone marrow clot sections. The definition of ALIP as originally proposed by Tricot et al. resides upon resolving the spatial relationship between myeloblast clusters to bone trabeculae within trephine biopsies, as we described in “Discussion.” Indeed, we stress that the displacement of myeloid precursor clusters from their paratrabecular locale represents an adverse

References

The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance

Rafael Fonseca, Martin M. Oken and Philip R. Greipp