Correspondence

To the editor:

T-cell clonality of undetermined significance

We read with great interest the report of Delfau-Larue et al on the ongoing discussion about the significance of dominant T-cell clones as a hallmark of T-cell malignancy. The authors showed the occurrence of dominant T-cell clones in the peripheral blood of patients with cutaneous T-cell lymphoma (CTCL) (30%), non-CTCL-related skin diseases (41%), and other benign infiltrates (34%). From these findings, they conclude that demonstration of T-cell clonality in the peripheral blood is not of undetermined significance, but of no significance at all. Based on our own results, we wish to point out the view shared by many investigators using polymerase chain reaction (PCR) for clonality studies: that, with some technical precautions taken, T-cell receptor gene rearrangement analysis is reliable and specific and may considerably add to the diagnosis of malignant lymphoproliferative disorders, even in peripheral blood.

We are well aware that expansion of T-cell clones is a prerequisite for antigen-specific T-cell responses and that T-cell clones may be present under many reactive conditions. Therefore, it is not surprising that different PCR-based methods are able to amplify dominant T-cell clones with varying frequency depending on their sensitivity. We have shown that overinterpretation of these dominant PCR products with respect to the diagnosis of malignancy can be avoided by repeated independent PCR determinations of the same samples and application of high resolution separation techniques such as GeneScan analysis and/or sequencing. Under reactive conditions dominant PCR products vary, whereas under malignant conditions dominant PCR products are exactly reproducible. Our investigation of 21 clear-cut benign skin infiltrates (psoriasis and contact dermatitis) revealed dominant T-cell clones in 15 cases (63%) of parapsoriasis and pseudo T-cell lymphoma (Table 1). Similar to the results of Delfau-Larue et al, 19 of 30 cases (63%) of parapsoriasis and pseudo T-cell lymphoma showed a dominant T-cell clone in the peripheral blood at prima vista analysis. But repeated analysis of these samples revealed PCR products of different size, that is, pseudo monoclonality, in all but 1 of the samples, so that the truly monoclonal cases in these nonmalignant conditions amounted to just 3.3%. In stage IV CTCL patients, the opposite picture appeared: the prima vista dominant PCR products seen in 9 of 11 patients (81.8%) were confirmed by repeated analysis of the same sample. In addition, identical amplificates were generated from lesional skin and peripheral blood samples in these 9 patients, further confirming T-cell clonality in different lymphocyte recirculation compartments as expected from T-cell malignancies. In contrast, true T-cell clonality is a very rare finding under nonmalignant conditions; in such cases, the term “T-cell clonality of undetermined significance” should be reserved, in analogy to the term “monoclonal gammopathy of undetermined significance.” In the study by Delfau-Larue et al, only 6% of 211 patients with non-CTCL lesions showed the same clonal T-cell population (of undetermined significance) after denaturing gradient gel electrophoresis (DGGE) analysis in skin and peripheral blood; the identity of the comigrating bands, however, should be confirmed by an independent assay with higher resolution such as GeneScan analysis or sequencing.

Patients with clinically clear-cut nonmalignant conditions and confirmed T-cell clonality should be carefully documented and followed to further determine the natural course of T-cell clonality of undetermined significance.

In summary, we wish to suggest that “dominant T-cell clone” is a rather technical term of still unknown clinical relevance which should be interpreted carefully. The term “clonality” should only be used when pseudo monoclonality has been excluded by repeated independent PCR determinations. Under these considerations, the analysis of peripheral blood samples of patients suffering from cutaneous T-cell lymphoproliferative diseases is of high diagnostic value.

Table 1. T-cell clonality in the peripheral blood of 49 patients with cutaneous T-cell lymphoma, parapsoriasis, and pseudo T-cell lymphoma

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of patients</th>
<th>Dominant clone</th>
<th>Oligo/polygonality</th>
<th>Pseudo monoclonality</th>
<th>Monoclonality</th>
<th>Identical clone in skin and PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stages Ia-III†</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stage IV†</td>
<td>11</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Parapsoriasis‡</td>
<td>15</td>
<td>11</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>ND</td>
</tr>
<tr>
<td>Pseudo T-cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lymphoma§</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Analysis is TCR-PCR and GeneScan analysis. ND, not determined.

†CTCL with lymph node involvement.
‡Small plaque parapsoriasis, n = 5; large plaque parapsoriasis, n = 7; lichenoid parapsoriasis, n = 3.
§Lymphocytic infiltration of the skin.
Response:

Peripheral blood T-cell clonality of no cutaneous T-cell lymphoma diagnostic value

I thank Dr Dippel and his colleagues for their comments on our report concerning the diagnostic value of peripheral blood (PB) T-cell clonality in clinical suspicion of CTCL. We have argued that demonstration of T-cell clonality in PB is of unknown significance (not "of no significance") and, more precisely, that it has no CTCL diagnostic value as long as the same clone has not been identified in the skin (in contrast to Gene Scan analysis, DGGE migration of PCR products depends on CDR3 sequences and not only on CDR3 size). By contrast, identification of the same clone in skin and blood is of high diagnostic value.

As Dippel et al remind us, PB T-cell clonal expansions occur in multiple clinical settings. For example, peripheral blood expansion of CD8+ clones have been described in healthy individuals, as well as in patients with rheumatoid arthritis, and have been shown to be remarkably stable over time (up to 4 years). They increased with age in both the CD45RA+ (naive or long-life memory cells) and CD45RO+ (memory) compartments. Accordingly, it has been our experience that, using PCR-DGGE, we detect a T-cell clone, dominant over polyclonal background, in the blood of 30% to 40% of studied patients, whether with cutaneous malignancy or benign disease. Moreover, dominant T-cell clones are increasingly detected with age, and once detected in a given patient, the T-cell clone remained detectable on all 2001 serial samples with a follow-up as long as 6 years (unpublished data, 2001).

Finally, although Dippel et al’s concept of "pseudoclonality" seems to us of no physiologic relevance, we agree with them that the study of peripheral blood samples in patients with a suspicion of CTCL is helpful for the diagnosis as long as the same T-cell clone is detectable in both skin and blood samples.

Marie-Hélène Delfau-Larue
Correspondence: Service d’ImmunoLogie Biologique du J. P. Farcet, Hôpital Henri-Mondor, 94000 Créteil, France

References

To the editor:

Homozygous gene conversion in von Willebrand factor gene as a cause of type 3 von Willebrand disease and predisposition to inhibitor development

Von Willebrand disease (VWD) is the commonest congenital bleeding disorder, with a prevalence, estimated from population studies, of about 1%. Although the prevalence of patients requiring treatment is much lower. This autosomally inherited disorder is caused by either qualitative (type 2) or quantitative (type 1 and 3) deficiency of von Willebrand factor (VWF). The human VWF gene is located on chromosome 12 and consists of 52 exons. A pseudogene on chromosome 22 has also been identified, which is 21-29 kb in length and corresponds to exons 23-34 of the VWF gene. It has 97% homology to the authentic VWF gene, but the presence of multiple stop codons on the pseudogene indicates that this is not a functional gene in humans.

In recent years, many molecular defects of the VWF gene have been identified in patients with VWD. Molecular defects in types 1 and 3 VWD are not confined to specific regions of the gene, as in type 2 VWD. The reported molecular defects that have caused autosomal recessive severe type 3 VWD are large gene deletions, frameshift mutations, nonsense mutations, splice-site mutations, defects at the level of mRNA expression, and some candidate missense mutations. Heterozygotes could present as mild type 1 VWD individuals and may be asymptomatic.

We have investigated a boy who was diagnosed as having severe type 3 VWD at the age of 13 months. His parents are Asian Indians and are first cousins. No previous family history of a bleeding disorder existed. The patient was initially treated for his bleeding episodes with intermediate purity factor VIII concentrate (BPL 8Y). At 6 years of age, he developed a high-titer anti-VWF inhibitor that was identified after a poor response to treatment. This inhibitor caused complete inhibition of von Willebrand factor activity and has persisted at high titer having been unaffected by an immune tolerance treatment regime.

Laboratory investigations of the patient have shown that FVIII:C, VWF:Ag, and VWF:Ricof were all below 0.01 U/mL (normal range, 0.5-1.5 U/mL), and VWF:Ag multimers were absent. The VIII:C, VWF:Ag, and VWF:Ricof values for the patient’s mother were 2.04 U/mL, 0.96 U/mL, and 0.60 U/mL, respectively, and for the patient’s father were 1.36 U/mL, 0.84 U/mL, and 0.64 U/mL respectively. Both parents have normal
In conclusion, we have investigated a boy with severe type 3
VWD who is homozygous for a gene conversion in exon 28 that
results in premature termination of the protein. The asymptomatic
parents, who are first cousins, are heterozygous for the same
mutation. It can be speculated that this mutation produces a
truncated dysfunctional protein lacking many of the essential
functional sites of VWF. In a patient homozygous for this mutation,
the protein cannot be assembled and, therefore, will not be secreted
and will be absent from the patient’s plasma.

Gurcharan K. Surdhar, Mohammad S. Enayat, Sarah Lawson,
Michael D. Williams, and Frank G. H. Hill
Correspondence: Gurcharan K. Surdhar, Molecular Haemostasis Laboratory,
Department of Haematology, Birmingham Children’s Hospital NHS Trust,
Steelhouse Lane, Birmingham, B4 6NH, United Kingdom

References
1. Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the preva-
2. Werner EJ, Broxson EH, Tucker EL, Giroux DS, Shults J, Abshire TC. Preva-
1993;123:893-898.
3. Bloom AL. von Willebrand factor: clinical features of inherited and acquired dis-
von Willebrand disease type III patients with Q1311 mutation. Blood.
and pseudogene: structural analysis and differentiation by polymerase chain
7. Ginsburg D, Sadler JE. von Willebrand disease: a database of point mutations,
9. Mazurier C. von Willebrand disease masquerading as haemophilia A. Thromb
von Willebrand disease type III in the German population. Hum Genet. 1994;
94:640-652.
von Willebrand factor gene (VWF) in von Willebrand disease type III patients
mutations of the von Willebrand factor gene in patients with von Willebrand dis-
13. Jenkins PV. Screening for candidate mutations causing von Willebrand’s disease
(vWd). In: DJ Perry, KJ Pasi, eds. Methods of Molecular Medicine: Hemo-
14. Kentler AL, Birsheh BK. Chs. a promoter of generalized recombination in λ
15. Eikenboom JJC, Vink T, Briet E, Sixma JJ, Reitsma PH. Multiple substitutions
in the von Willebrand factor gene that mimic the pseudogene sequence. Proc
A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for \(\alpha\)-thalassemia

The molecular genetics of the \(\alpha\)-thalassemias has been comprehensively reviewed.\(^1\) Of the numerous mutations that have been described, deletions at the \(\alpha\)-globin gene locus account for the vast majority of \(\alpha\)-thalassemia alleles.\(^2\) The most widely occurring of these are the \(-\alpha^3.7\) and \(-\alpha^4.2\) single \(\alpha\)-globin gene deletions, while double \(\alpha\)-globin gene deletions in \textit{cis}, such as the \(-\alpha^4SEA\), \(-\alpha^4FL\), and \(-\alpha^4THA\) alleles are very common within Southeast Asia, and the \(-\alpha^2MED\) and \(-\alpha^2MED\) double-gene deletions occur more frequently in the Mediterranean area.

Since the publication of the entire sequence of the human \(\alpha\)-globin gene cluster,\(^3\) we and others have developed multiplex polymerase chain reaction (PCR) methods to diagnose different subsets of \(\alpha\)-thalassemia deletional determinants.\(^4,5\) Generally, however, the high G + C nucleotide content and high degree of homology between the genes and pseudogenes at this locus have made it technically challenging to develop a multiplex PCR assay capable of detecting all 7 of the above mutations \([-\alpha^3.7, -\alpha^4.2, -\alpha^4SEA, -\alpha^4FL, -\alpha^4MED, -\alpha^2MED, -\alpha^2MED\) and \(-\alpha^2THA\)] in a single reaction. We have now successfully developed an improved single-tube multiplex PCR assay that can detect heterozygosity, homozygosity, and compound heterozygosity of these 7 \(\alpha\)-globin gene deletions.

To achieve this, several aspects of our original multiplex PCR assay were modified. These included the redesign of several primers, inclusion of additional new primers, reoptimization of primer concentrations, and use of a different, chemically modified automatic hot-start DNA polymerase. Each 50-\(\mu\)L reaction contained 200 \(\mu\)M of each dNTP, 1.5 mM MgCl\(_2\), 1 \(\times\) Q-solution (Qiagen, Hilden, Germany), 2.5 U HotStarTaq DNA polymerase in supplied reaction buffer (Qiagen), 100-200 ng of genomic DNA, and 16 different primers at various concentrations (Table 1). Reactions were conducted in a T3 thermal cycler (Biometra, Göttingen, Germany), with an initial 15-minute denaturation at 96°C, followed by 30 cycles of 98°C denaturation for 45 seconds, 60°C annealing for 90 seconds, and 72°C extension for 135 seconds. A final 5-minute extension at 72°C completed the reaction. Ten microliters of each amplified product was analyzed by electrophoresis through a 1% agarose gel in 1 \(\times\) Tris-Borate-EDTA buffer at 10 volts/cm for an hour. The expected amplicon sizes for each of the deletion junction fragments and the control \(\alpha^2\)globin gene and \(LIS1\) gene \(3'\) untranslated region (UTR) fragments are listed in Table 1. Because any of the 7 deletions either partially or completely removes the \(\alpha^2\)globin gene, its positive amplification serves to indicate heterozygosity when a deletion allele is also present. The \(LIS1\) gene \(3'\) UTR fragment serves as a separate control for general amplification success. Multiplex PCR results from representative DNA samples with various \(\alpha\)-thalassemia genotypes are shown in Figure 1.

This simple assay has been validated on over two hundred DNA samples from \(\alpha\)-thalassemia-1 and HbH disease individuals, and represents a rapid and reliable method for detecting 7 of the most common mutations of \(\alpha\)-thalassemia.

Table 1. Primer sequences for \(\alpha\)-thalassemia multiplex PCR and expected amplicon sizes

<table>
<thead>
<tr>
<th>Name</th>
<th>5' (\rightarrow) 3' sequence</th>
<th>GenBank ID: nucleotides</th>
<th>Concentration</th>
<th>Amplicon size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIS1-F</td>
<td>ATACCATGTTACCCCATAGGC</td>
<td>HSUS10;510(\rightarrow)532</td>
<td>0.5 (\mu)M</td>
<td>LIS1 3' UTR fragment (2350 bp)</td>
</tr>
<tr>
<td>LIS1-R</td>
<td>AGGGCTTACATCACTGGGACCC</td>
<td>HSUS10;2869(\rightarrow)2838</td>
<td>0.5 (\mu)M</td>
<td>(-\alpha^{3.7}) jxn fragment (2022/2029 bp)</td>
</tr>
<tr>
<td>3.7/20.5-R</td>
<td>AAAGCCTCTAGGGTCCAGCG</td>
<td>HUMHBA4;5676(\rightarrow)5694</td>
<td>0.2 (\mu)M</td>
<td>(-\alpha^4) jxn fragment (1628 bp)</td>
</tr>
<tr>
<td>2/3.7-F</td>
<td>CCCCTCGGCAGTGTCGCCACCC</td>
<td>HUMHBA4;11514(\rightarrow)11494</td>
<td>0.2 (\mu)M</td>
<td>(-\alpha^4) jxn fragment (1349 bp)</td>
</tr>
<tr>
<td>2/3.7-F</td>
<td>AGACCGAGAAGGCCCGGTT</td>
<td>HUMHBA4;7475(\rightarrow)7475</td>
<td>0.2 (\mu)M</td>
<td>(-\alpha^2)gene (1800 bp)</td>
</tr>
<tr>
<td>4.2-F</td>
<td>GTTGGTACCTAGTGTCGCTC</td>
<td>HUMHBA4;3006(\rightarrow)3084</td>
<td>0.5 (\mu)M</td>
<td>(-\alpha^4.2) jxn fragment (1628 bp)</td>
</tr>
<tr>
<td>4.2-R</td>
<td>CCCCTGTTAATCTCTTCTTCCC</td>
<td>HUMHBA4;8942(\rightarrow)8920</td>
<td>0.5 (\mu)M</td>
<td>(-\alpha^4.2) jxn fragment (1349 bp)</td>
</tr>
<tr>
<td>SEA-F</td>
<td>GAATGGTACCTAGTGTCGCTC</td>
<td>HSUS10;26140(\rightarrow)26140</td>
<td>0.2 (\mu)M</td>
<td>(-\alpha^4SEA) jxn fragment (1153 bp)</td>
</tr>
<tr>
<td>SEA-R</td>
<td>AGCCAGGGTCATGGTCGCTC</td>
<td>HSCOS12;3817(\rightarrow)3797</td>
<td>0.2 (\mu)M</td>
<td>(-\alpha^4SEA) jxn fragment (1153 bp)</td>
</tr>
<tr>
<td>THAI-F</td>
<td>GCACCTTCTAGGGGCTTGGT</td>
<td>HSGS1;9592(\rightarrow)9612</td>
<td>0.3 (\mu)M</td>
<td>(-\alpha^4THAI) jxn fragment (1153 bp)</td>
</tr>
<tr>
<td>THAI-R</td>
<td>CAAGGGGTCATGGTCGCTC</td>
<td>HSCOS12;1241(\rightarrow)1221</td>
<td>0.3 (\mu)M</td>
<td>(-\alpha^4THAI) jxn fragment (1153 bp)</td>
</tr>
<tr>
<td>20.5-F</td>
<td>GCCCAACATCGGGACTATAGC</td>
<td>HSUS10;17904(\rightarrow)17924</td>
<td>0.2 (\mu)M</td>
<td>(-\alpha^4.5) jxn fragment (1007 bp)</td>
</tr>
<tr>
<td>3.7/20.5-R</td>
<td>ATACCATGTTACCCCATAGGC</td>
<td>HSUS10;510(\rightarrow)532</td>
<td>0.5 (\mu)M</td>
<td>LIS1 3' UTR fragment (2350 bp)</td>
</tr>
</tbody>
</table>

\(jxn\), junction.
To the editor:

Improve or abandon the standardized response criteria for myelodysplastic syndromes recommended by the International Working Group

Standardizing any aspect of a disease as clinically and biologically heterogeneous as the myelodysplastic syndromes (MDSs), whose natural history is not infrequently confounded by wide fluctuations in the peripheral blood (PB) indexes and where therapeutic options range from a simple watch-and-wait policy to stem cell transplantation, is a formidable task. Previous attempts of international experts to define some aspects of this cryptic disease include the French-American-British classification (FAB), the World Health Organization classification (WHO), and the International Prognostic Scoring System (IPSS). The latest in this series is a publication from the International Working Group (IWG) detailing standardized criteria to be used for response evaluation in MDS. First of all, the attempt must be lauded. It is a welcome and timely step, especially for those of us whose papers reporting the results of clinical trials have been returned over and over because the reviewer’s idea of a response differs. The major stumbling block was a mismatch of the patients responded to the therapy, the specific percent responders according to the 2 independent groups who used IWG protocols were evaluated by ourselves and by 2 independent reviewers, which are located on a different chromosome. Locations of X, Y, and Z sequence homology boxes and hypervariable regions (HVRs) are also shown. (B) Multiplex PCR results from genomic DNA samples with various α-globin genotypes. M indicates Genelurer 1kb DNA ladder (Fermentas, St Leon-Rot, Germany).

References

lack of specific criteria for establishing baseline parameter levels and for identifying the intratherapy values that should be used for response assessment.

Another problem is related to the interpretation of subtle differences between the responses of individual patients. Consider for example, the variations between just 2 patients whose responses according to the new criteria might read something like “PR, cytogenetics minor, HI-E major transfusion, HI-E minor Hb, HI-P minor, HI-N major,” versus “PR, cytogenetics minor (by FISH only), HI-E minor transfusion, HI-E major Hb, HI-P major, HI-N minor.” Are these 2 responders really different, and if so, among 20 responders, what is the likelihood of having 20 different types of responses with minor variations? Further, are not these greatly expanded numbers of variables likely to affect P values and the interpretation of what constitutes significance? How is this supposed to introduce uniformity in the interpretation of results?

I would like to suggest that, before making such detailed recommendations with the serious intent for universal application, the writers of these types of classifications should make an attempt to apply their recommendations to a practical situation, since at least their obvious deficiencies would be immediately apparent. The IWG paper would have been far more significant if the authors had included an analysis of an actual clinical trial to back the significance and universal utility of their recommendations. Failure to do so has resulted in adding to the confusion in an already complex situation. By neglecting to standardize baseline, as well as intratherapy, values of blood counts that must be used for response assessment, the IWG projects an image of a body far removed from patient care and evaluation of clinical trials. Rather, their recommendations appear to be a patchwork representing the unique interests of a few individual IWG participants. This situation is analogous to the ancient parable in the Upanishads where descriptions of an unseen elephant varied widely depending upon which part the narrator felt through a curtain. Perhaps it is time to address the ultimate Schrödinger-type interrogative: what constitutes MDS? I suggest that it is more prudent to consider refractory anemia, refractory anemia with ring sideroblasts, refractory anemia with excess of blasts, and chronic myelomonocytic leukemia as 4 distinct disorders, thereby simplifying interpretation of both biologic and clinical studies.

Azra Raza

Correspondence: Section of Myeloid Diseases, Rush University, 2242 W Harrison St, Suite 108, Chicago, IL 60612

Reference

T-cell clonality of undetermined significance

Edgar Dippel, Detlev Klemke, Michael Hummel, Harald Stein and Sergij Goerdt