To the editor:

Cationic peptides from leukocytes might kill bacteria by activating their autolytic enzymes causing bacteriolysis: why are publications proposing this concept never acknowledged?

A large series of publications has proposed that cationic peptides from leukocytes kill bacteria primarily by causing a depolarization of their membranes leading to enhanced permeability. One group of cationic peptides from human neutrophils was even coined bactericidal/permeability-increasing proteins. Surprisingly, however, none of a large series of other publications that had proposed a concept that cationic agents from neutrophils might be bactericidal also by virtue of their capacity to activate the bacterial autolytic wall enzymes (muramidases), leading to bacteriolysis and cell death, has ever been cited in any of the publications by the leading authors in this field of research.

For the information of your readers, there exist a series of 16 publications since 1974 entitled “Effect of leukocyte hydrolases on bacteria” and several additional publications on the same subject under different titles, many of them published in journals covered by Medline; the references contain a selected list of these. These publications proposed that the highly cationic agents either present in plasma or generated by activated phagocytes (eg, lysozymes, PLA2, elastase, cathepsin G, myeloperoxidase, bactericidal/permeability-increasing proteins, defensins, etc) might kill bacteria not simply by acting on the membranes to cause depolarization and enhanced permeability but also by an indirect mechanism. This involves a deregulation, by the cationic agents, of the anionic and amphiphilic regulators of the autolytic wall enzymes (muramidases) (lipoteichoic acid in Gram-positives and Forssman antigens in Gram-negatives) resulting in hydrolysis of the peptidoglycan, in bacteriolysis, and in cell death. It is of great clinical importance that the bacteriolysis-inducing activity of cationic agents mimics that of beta-lactam antibiotics. Furthermore, the observations that a variety of highly negatively charged, sulfated anionic agents can act as potent inhibitors of the cationic agent–beta-lactam–induced bacteriolysis and stress the importance of the autolytic systems in bacterial killing. This phenomenon might also be of great clinical significance especially in selecting measures to control postinfectious sequelae that undoubtedly are triggered by the release of bacterial components, especially following bacteriolysis.

Regrettably, attempts to bring these issues to the awareness of the leading investigators in the field of cationic proteins and of clinicians involved in the clinical aspects of sepsis control have not been successful.

If the concept that cationic agents might be bactericidal also because of their bacteriolysis-inducing properties is reasonable and scientifically sound, it is expected that publications describing this phenomenon should be cited by authors studying the bactericidal effects of cationic agents. If on the other hand one deems that this concept is for some reason erroneous, nonsensical, and scientifically unacceptable, such publications should be instructed to discuss only a narrow field of research and to disregard others fields with direct relevance are unacceptable.

A failure to give credit to relevant papers is also unacademic, self-defeating, unethical, and therefore unacceptable by all standards. Furthermore, are papers older than 15 years, or so, already passe and, therefore, unworthy of being acknowledged?

Isaac Ginsburg
Department of Oral Biology
Hebrew University
Jerusalem, Israel

References

2. Levy O. Antimicrobial proteins and peptides of blood: template for novel anti-
3. Elsbach P. The bactericidal/permeability-increasing protein (BPI) in antibacte-
4. Elsbach P. Weiss G. Oxygen-independent antimicrobial systems of phago-
5. Elsbach P. Weiss G. Oxygen-independent antimicrobial systems of phago-
8. Hancock R. Antibacterial peptides and outer membranes of Gram-negative bac-
10. Neeman N, Lahav M, Ginsburg I. The effect of leukocyte hydrolases on bacte-
11. Lahav M, Ne’eman N, James J, Ginsburg I. The effect of leukocyte hydrolases on bacte-
12. Ginsburg I, Lahav M, Ne’eman N, Duchan Z, Chanes S, Sela MN. The interac-

From www.bloodjournal.org by guest on November 16, 2017. For personal use only.


31. Girnburg I. The Biochemical basis of bacteriolysis and its role in the pathophysiology of inflammation and post-infectious sequelae. APMIS. In press.
Cationic peptides from leukocytes might kill bacteria by activating their autolytic enzymes causing bacteriolysis: why are publications proposing this concept never acknowledged?

Isaac Ginsburg