RNA expression patterns change dramatically in human neutrophils exposed to bacteria

A comprehensive study of changes in messenger RNA (mRNA) levels in human neutrophils following exposure to bacteria is described. Within 2 hours there are dramatic changes in the levels of several hundred mRNAs including those for a variety of cytokines, receptors, apoptosis-regulating products, and membrane trafficking regulators. In addition, there are a large number of up-regulated mRNAs that appear to represent a common core of activation response genes that have been identified as early-response products to a variety of stimuli in a number of other cell types. The activation response of neutrophils to nonpathogenic bacteria is greatly altered by exposure to Yersinia pestis, which may be a major factor contributing to the virulence and rapid progression of plague. Several gene clusters were created based on the patterns of gene induction caused by different bacteria. These clusters were consistent with those found by a principal components analysis. A number of the changes could be interpreted in terms of neutrophil physiology and the known functions of the genes. These findings indicate that active regulation of gene expression plays a major role in the neutrophil contribution to the cellular inflammatory response. Interruption of these changes by pathogens, such as Y pestis, could be responsible, at least in part, for the failure to contain infections by highly virulent organisms. (Blood. 2001;97:2457-2468)

© 2001 by The American Society of Hematology

Introduction

Neutrophils are the first cells to be recruited from the blood stream to sites of inflammation and are critically important for determining the outcome of some acute infections. They are postmitotic cells that synthesize lower levels of protein and RNA than most dividing cells, and they can interact and/or modulate inflammation. Nevertheless, on exposure to bacteria or other activating agents, neutrophils are known to synthesize and secrete a number of cytokines including interleukin-1 (IL-1), IL-8, oncostatin M, and small inducible cytokine A3/macrophage inflammatory protein 1α(SCYA3/MIP1A).

10-12

Neutrophils are readily isolated from human peripheral blood. The isolated cells are more than 99% pure, with the principal contaminant being eosinophils, which themselves have relatively low levels of macromolecular synthetic activity. The cells can be synchronously exposed to “natural” stimuli such as opsonized bacteria and offer an attractive system for the study of gene expression in terminally differentiated cells. Although the cell biology of neutrophil activation has been studied in some detail, studies of responses at the messenger RNA (mRNA) level have been circumscribed, focusing principally on one or a few cytokine mRNA species.

Approaches for simultaneously detecting changes in levels of many of the polyadenylated RNA in a cell population fall into 3 categories: hybridization to arrays of targets complementary to specific mRNAs, sequencing of many randomly chosen complementary DNA (cDNA) fragments, or display of specific cDNA fragments on gels. A method for display of 3′-end restriction fragments of each species of RNA has the advantages that the position of fragments corresponding to known genes is predictable and that no prior knowledge of the sequence is needed to detect previously “unknown” genes.

We have applied cDNA display to study changes in mRNA levels in neutrophils activated by exposure to various bacteria. Sufficient analyses were performed to detect, on a statistical basis, more than 90% of all changes in transcripts. We used time-course studies to get insight into the mechanisms underlying these changes. There is a dramatic and complex change in the gene expression profiles of activated neutrophils, indicating an important role for neutrophil gene regulation in the propagation and early evolution of the inflammatory response.

Materials and methods

Bacterial strains and culture

Yersinia pestis strains KIM5 and KIM6 were derived from strain KIM (Kurdistan Iran man). KIM6, a derivative of KIM5, lacks the 70-kb plasmid pCD1. This plasmid carries 60 genes, 47 of which have been implicated in a system that enables the bacteria to inject specific proteins into the host cell. We have applied cDNA display to study changes in mRNA levels in neutrophils activated by exposure to various bacteria.

Supported by grants AI22176 (J.D.G.), CA42556 (S.M.W.), and DK54369 (P.E.N.) from the National Institutes of Health, Bethesda, MD, and by a research grant (P.E.N.) from the Arthritis Foundation.

Reprints: Sherman M. Weissman, Department of Genetics, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Ave, New Haven, CT 06536-0812; e-mail: sherman.weissman@yale.edu.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 U.S.C. section 1734.
directly into the cytoplasm of mammalian cells.17-20 The injection machinery, its substrate proteins, and its regulatory apparatus are encoded by this plasmid. \textit{Y pestis} strains lacking pCD1 are completely avirulent. \textit{Escherichia coli} K12 strain R594 (F− lac−3350 galK2 galT22 lac− rpsL179B (rrnD- rrnE)I) was chosen to serve as a generic avirulent enterobacterial isolate.

Overnight cultures of \textit{Y pestis} grown in modified Tryptose Blood Agar Base without the agar comprising 10 g tryptose, 3 g beef extract, and 5 g sodium chloride (NaCl) per liter supplemented with 2.5 mM calcium chloride (CaCl\textsubscript{2}) were diluted to a density of 3 \times 108 bacteria per mL and incubated for 3 hours at 26°C in a water bath. At this point the temperature was shifted to 37°C, and the incubation was continued for an additional 2 hours. The bacteria were collected by centrifugation, washed with Hanks balanced salt solution (HBSS, without Ca++ or Mg++), and resuspended in HBSS to a final density of 1.75 \times 109 bacteria per mL. At least 105 events were analyzed for CD45 and CD14 expression of CD45 and CD14. At least 105 events were analyzed for CD45 and CD14 expression of CD45 and CD14.

Monocytes were isolated from the peripheral blood mononuclear cells by using dextran sedimentation, centrifugation through Ficoll-Hypaque Plus, (Amersham Pharmacia Biotech, Uppsala, Sweden) and very brief hypotonic lysis of erythrocytes.21 All reagents, serum, buffers, and media were free of LPS (less than 0.01 ng/mL by limulus amoebocyte lysate assay [Sigma]). Monocytes were enumerated in neutrophil preparations by flow microfluorometry. A neutrophil suspension was incubated with fluorescein isothiocyanate (FITC–) conjugated anti-CD45 and phycoerythrin (PE)–conjugated anti-CD14 (Becton Dickinson, Mountain View, CA). The cells were then fixed with fluorescence-activated cell sorter (FACS) lysis buffer (Becton Dickinson) and analyzed with a FACSScan flow cytometer (Becton Dickinson). Monocytes were identified on the basis of their forward and side light scattering properties and expression of CD45 and CD14. At least 105 events were analyzed for each sample.

Freshly isolated neutrophils and opsonized bacteria, suspended in RPMI plus 10% heat-inactivated FCS, were mixed to final densities of 2 \times 109 cells per mL and 4 \times 107 bacteria per mL, respectively. These cultures or control neutrophils were then incubated for 2 hours, or other indicated times, at 37°C with gentle agitation.

Monocytes were isolated from the peripheral blood mononuclear cells by a spontaneous aggregation method at 4°C.22 To activate monocytes, they were exposed for 2 hours to opsonized \textit{E coli} K12 at a ratio of 20 bacteria per cell, which is the same procedure that was used for activation of neutrophils. Time-course experiments were analyzed with neutrophils incubated for at least 3 time points including 0 minutes (negative control), 10-30 minutes (early), and 120 minutes (late) with \textit{E coli} K12.

Northern blot analysis and in situ hybridization

Northern blot analysis of total cell RNA, extracted from neutrophils by the guanidine hydrochloride (HCl) method,23 was performed as described.24,25 Levels of hybridization were measured quantitatively by the Phosphorimager System (Molecular Dynamics, Sunnyvale, CA) and normalized to the 18S ribosomal RNA signals. In situ hybridization was performed by a previously described method,26 using Cy3 and FluorX (Amersham Pharmacia Biotech, Piscataway, NJ) labeled oligonucleotide probes.

Gel display of 3′-end restriction fragments

cDNA displays of cells activated by bacteria were prepared as previously described in detail.22,28 Bands were displayed on sequencing gels run to display products of at least 100 bases in length. Bands were excised, amplified by polymerase chain reaction (PCR), and sequenced. The enzymes used to digest cDNA for comparison of the effects of \textit{Y pestis} with those of \textit{E coli} were BamHI, BglII, BstGI, Clal, EcoRI, HindIII, NcoI, PstI, and XbaI. Enzymes used for time-course studies were ApuI, BglII, HindIII, KpnI, SacI, SpeI, SpIi, and XbaI.

For most experiments, every band that differed in relative intensity between the control pattern and any of the experimental patterns was sequenced. In different experiments using the same restriction enzymes, many bands could be confidently recognized as corresponding to previously sequenced bands on the basis of both band pattern and sequence.

Informatics

Most of the band intensities were quantified by eye, confirmed by a second investigator, and expressed as a single-digit numeric. A part of the bands was quantified by using the Phosphorimager. The integrated density of each band above background was calculated as a “volume” by the Phosphorimager, as described in Figure 1. A least-square linear regression model of the logarithm of the “volume” (\(Y\)) in terms of the visually quantified band intensity (\(X\)) gives \(Y = 0.56X + 8.22\), with Pearson correlation \(r = 0.93\), an acceptable reliability estimate. The standard error of a given \(\hat{Y}\) estimated for a new observation \(X_0\) is computed as:

\[
\sigma^2 = \frac{\sum (X_i - \bar{X})^2}{n - 1}
\]

Thus for any given \(X_0\), a 1 − \(\alpha\) confidence interval (CI) for \(\hat{Y}\) is the set of values of \(Y\) such that

\[
\hat{Y} - \Delta \cdot T_{\text{value}}(n - 2, \alpha) < Y < \hat{Y} + \Delta \cdot T_{\text{value}}(n - 2, \alpha),
\]

where \(T_{\text{value}}(n - 2, \alpha)\) is the 2-tailed t-value of a t-distribution with \(n - 2\) degrees of freedom.

The accuracy of such confidence limits depends on the validity of the assumption of linearity and equally normal distributions of \(Y\) values across all values of \(X\). However, measurements by the Phosphorimager at very low intensities are much less reliable. Therefore we fit the data to a linear regression model based on measurements at \(X > 1\), yielding \(Y = 0.49X + 8.64\) and a correlation of \(r = 0.96\). For all \(X_0\), \(\Delta X_0 = T_{\text{value}}(38,0.05) = 0.5\).

Quantitative measurement of Northern blots of several mRNAs confirms that genes identified by gel display to be up- or down-regulated do

Figure 1. Correlation between band intensities and Phosphorimager quantification. We confirmed the accuracy of our band quantification method by comparing our results with the Phosphorimager, whose sensitivity and reproducibility is comparable to scintillation counting.64 About 50 bands from randomly chosen lanes were selected, and each of their intensities was quantified by eye, confirmed by a second investigator, and expressed as a single-digit numeric. The same gel was digitized by the Phosphorimager, whose sensitivity and reproducibility is comparable to scintillation counting.64 We confirmed the accuracy of our band quantification method by comparing our results with the Phosphorimager, whose sensitivity and reproducibility is comparable to scintillation counting.64 About 50 bands from randomly chosen lanes were selected, and each of their intensities was quantified by eye, confirmed by a second investigator, and expressed as a single-digit numeric. The same gel was digitized by the Phosphorimager, whose sensitivity and reproducibility is comparable to scintillation counting.64 We confirmed the accuracy of our band quantification method by comparing our results with the Phosphorimager, whose sensitivity and reproducibility is comparable to scintillation counting.64 About 50 bands from randomly chosen lanes were selected, and each of their intensities was quantified by eye, confirmed by a second investigator, and expressed as a single-digit numeric. The same gel was digitized by the Phosphorimager, whose sensitivity and reproducibility is comparable to scintillation counting.64
Procedures for filter hybridization were previously described. Equal loading of lanes amplified from neutrophil cDNA. Primer sequences are available on request. Hybridization probes were cDNA-labeled by random priming of PCR products neutrophils. The total RNA of identically treated neutrophils used for either Northern BLAST/blast_overview.html). Matches to known genes were confirmed Alignment Search Tool (BLAST) program (http://www.ncbi.nlm.nih.gov/ National Center for Biotechnology Information (NCBI) by the Basic Local

correlation
the values correlate to estimates from the gel display method (Pearson
from a 10-fold decrease to a 71-fold increase (Table 1), and the logarithm of
indeed show increases or decreases of mRNA levels. These changes range
Indeed, the expression of genes in neutrophils after incubation for 2 hours with E coli, although the intensity of RNA staining was somewhat variable from cell to cell. Neutrophils incubated in the absence of bacteria showed considerably less intense staining (data not shown).

We prepared monocytes and neutrophils from the same blood sample. Both types of cells were exposed to E coli K12 for 2 hours and then harvested for cDNA display (Table 2 and Figure 2, left). In some cases RNA species that were among the most strongly induced in neutrophils were actually down-regulated in monocytes, excluding the possibility that monocytes activated by the bacteria were contributing to the observed pattern for these species. Northern blots also showed that RNA extracted from the neutrophils did not contain detectable transcripts for c-fms, the receptor for macrophage colony-stimulating factor (MCSF) (data not shown).

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Transcript encoding</th>
<th>Relative Northern blot expression</th>
<th>Differential display expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANXA5</td>
<td>Annexin A5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCYA7</td>
<td>Small inducible cytokine A7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IL10R1</td>
<td>IL-10 receptor, alpha</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LFA-1RA</td>
<td>MHCI class II, DR alpha</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CDW52</td>
<td>CDW52 antigen (CAMPATH-1 antigen)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VIL2</td>
<td>Villin 2 (ezrin)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HM74</td>
<td>Putative chemokine receptor; GTP-binding protein</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CD97</td>
<td>CD97 antigen</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>PPIF</td>
<td>Peptidyl-prolyl isomerase F (cyclophilin F)</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Gene symbols are taken from the HGMW-approved symbol and/or LocusLink database of NCBI. Cells with E coli were incubated with opsonized E coli K12 for 2 hours as described in “Materials and methods.” The intensity of each band in the sequencing gels was quantified and expressed as a single-digit numeric as described in “Materials and methods.”

Results

Quality of cell and RNA preparation

Morphologically, our neutrophil preparations were more than 99% pure except for the presence of 1% to 3% eosinophils; band forms accounted for less than 3% of the cells. No cells with the typical morphology of monocytes could be identified by light microscopy, nor did flow cytometry reveal any monocytes. Occasional preparations with more than 0.5% monocytes were discarded. The yield of total RNA from the neutrophil preparations averaged 13 µg/10⁸ cells (range, 7-17 g/10⁸ cells). We examined the distribution of IL-8 transcripts by in situ hybridization using a combination of 2 CY-3 (red)--labeled oligonucleotides complementary to different regions of the mRNA. IL-8 transcripts were detectable in virtually all neutrophils after incubation for 2 hours with E coli, although the intensity of RNA staining was somewhat variable from cell to cell. Neutrophils incubated in the absence of bacteria showed considerably less intense staining (data not shown).

We used LocusLink ID, when available, as a unique key to known genes, and we used the terms listed as gene symbol (the HGMW-approved symbol, where applicable) and gene name. For ESTs, we used UniGene cluster numbers as a unique key. Subsequently all sequences were clustered by a modified PHRAP approach. Public gene database search was completed on September 30, 2000.

Table 2. mRNA differently regulated in monocytes and neutrophils

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Gene name</th>
<th>Neutrophil (control)</th>
<th>Neutrophil + E coli</th>
<th>Monocyte (control)</th>
<th>Monocyte + E coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANXA5</td>
<td>Annexin A5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SCYA7</td>
<td>Small inducible cytokine A7 (monocyte chemotactic protein 3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IL10R1</td>
<td>IL-10 receptor, alpha</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>LFA-1RA</td>
<td>MHCI class II, DR alpha</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CDW52</td>
<td>CDW52 antigen (CAMPATH-1 antigen)</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>VIL2</td>
<td>Villin 2 (ezrin)</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>HM74</td>
<td>Putative chemokine receptor; GTP-binding protein</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CD97</td>
<td>CD97 antigen</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PPIF</td>
<td>Peptidyl-prolyl isomerase F (cyclophilin F)</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1. Northern blot analysis of gene expression in neutrophils: quantitative changes in mRNA levels induced by incubation with opsonized E coli

The relative Northern blot expression is expressed as neutrophils + E coli/control neutrophils. The total RNA of identically treated neutrophils used for either Northern blots or differential display.

RNA from HeLa cells was used as negative control for each measurement. Hybridization probes were cDNA-labeled by random priming of PCR products amplified from neutrophil cDNA. Primer sequences are available on request. Procedures for filter hybridization were previously described. Equal loading of lanes was demonstrated by ethidium bromide staining and by rehybridization with a 5.8-kb HindII restriction fragment of rat 18S ribosomal cDNA. Transcript levels in total RNA were quantified by the Phosphorimager System. Data are presented as the means of 2-4 determinations, within 20% of each other. The ratio of expression level of neutrophils incubated with E coli K12 for 2 hours to neutrophils incubated without bacteria for 2 hours is shown. See Figure 1 for the relation between Phosphorimager values and differential display estimates.
Striking differences were evident in patterns of cDNA display between control neutrophils and neutrophils exposed to bacteria (Figure 2, right). A total of 1887 bands were sequenced (Table 3). Of these, approximately 19% did not give good sequence. A portion of these sequences still gave high probability matches to known sequences so that the bands could be identified. Any single prominent band is unlikely to represent more than a few percent of total mRNAs. This implies that bands corresponding to one mRNA molecule per cell are visible, except where obscured by darker bands. Redundancy in analyses occasionally occurred, particularly for some of the most prominent RNAs. Multiple bands representing the same transcript could arise by buckling out of nucleotides during oligo-dT priming, but often resulted from alternate sites of polyA addition in mRNAs.

In total, 350 known genes and 292 EST or anonymous sequences were found to change substantially in expression level by 2 hours after activation with bacteria. The anonymous cDNA could be derived from unrecognized alternate polyadenylation sites in genes represented elsewhere in the database, cDNA primed from A-rich internal sequences in mRNA or heterogeneous nuclear RNA, or genes not yet represented in the EST databases or GenBank. Five of the bands represented perfect copies of EST sequences derived from repetitive sequences. The perfect match in these cases suggests that the genomic template has been identified.

We obtained 48 nonrepetitive sequences that had no match in the gene databases. About half of these had a perfect polyA signal or a hexanucleotide that differed by a single base from the consensus AAUAAA sequence. Such deviation is commonly seen in mRNAs for known genes, so it is likely a large fraction of these represent polyadenylated RNA. Approximately 8% of the sequences corresponded to repetitive sequence, and most of them did not precisely match anything in the database. These frequently lacked even an approximate polyA addition signal. However, 4 different specific repetitive sequences were strongly induced in the neutrophils by exposure to bacteria. Increased transcription of

![Figure 2. Representative segments of display gels of cDNA fragments: left, neutrophils and monocytes exposed to E coli for 2 hours; right, neutrophils exposed to various bacteria for 2 hours.](image)

Changes in gene expression profile in neutrophils exposed to bacteria

We undertook an extensive comparison of the cDNAs generated from control neutrophils and neutrophils treated for 2 hours with one of 3 bacteria: E coli K12, Y pestis strain KIM5, or Y pestis strain KIM6. A total of 17 different restriction enzymes were used for these displays, and fragments from each enzyme digest were displayed with each of the 12 possible dinucleotide extensions on its 3'-end, as previously described. Ec indicates E coli K12; Yp (KIM5), Y pestis KIM5 (pCD1'); Yp (KIM6), Y pestis KIM6 (pCD1'); N, neutrophil; and M, monocyte. Gene symbols are the same as those described in Tables 4-6, except for the following: PAI2, plasminogen activator inhibitor, type II (arginine-serpin) (GenBank Accession no. Y90630); RPL3, ribosomal protein L3 (X73460); and RPS4X, ribosomal protein S4, X-linked (MS8458).

Table 3. Distribution of gene categories

<table>
<thead>
<tr>
<th>Gene categories</th>
<th>Gene clusters, (%)</th>
<th>DNA fragments, no. bands (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known genes</td>
<td>350* (51.5)</td>
<td>910 (48.4)</td>
</tr>
<tr>
<td>ESTs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In UniGene</td>
<td>186 (27.4)</td>
<td>268 (14.3)</td>
</tr>
<tr>
<td>Not in UniGene</td>
<td>58 (8.5)</td>
<td>79 (4.2)</td>
</tr>
<tr>
<td>No match</td>
<td>292 (43.0)</td>
<td></td>
</tr>
<tr>
<td>Acceptable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequences</td>
<td>48 (7.1)</td>
<td>50 (2.7)</td>
</tr>
<tr>
<td>Dubious sequences</td>
<td></td>
<td>362 (18.8)</td>
</tr>
<tr>
<td>Repetitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequences</td>
<td>5 (0.7)</td>
<td>5 (0.2)</td>
</tr>
<tr>
<td>No exact match</td>
<td></td>
<td>150 (8.2)</td>
</tr>
<tr>
<td>Genomic sequences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(nonribonucleoc)</td>
<td>28 (4.1)</td>
<td>32 (1.7)</td>
</tr>
<tr>
<td>Ribosomal RNA</td>
<td>2 (0.3)</td>
<td>26 (1.4)</td>
</tr>
<tr>
<td>Other mitochondrial sequences</td>
<td>2 (0.3)</td>
<td>5 (0.3)</td>
</tr>
<tr>
<td>Total no.</td>
<td>679</td>
<td>1887</td>
</tr>
</tbody>
</table>

DNA fragment sequences of bands from the gel display of 3'-end restriction fragments were clustered by using LocusLink, Unigene, and similarity as described in “Materials and methods.” DNA fragments represent the number of bands on differential display gels from which DNA sequencing was performed.

*From 350 genes, we grouped 224 genes whose expression patterns were reproducibly and prominently modified by bacteria (E coli K12 or Y pestis substrains KIM5 or KIM6) in 2 hours as described in Tables 4, 5, and 6.
expression patterns of neutrophils, LHLH (upper) and HLHL (lower) correspond to those described in Table 4. Each set of 4 bands (control, E.coli K12 and KIM5 and KIM6 strains of Y pestis; Figure 2, right panel) in adjacent lanes with the same electrophoretic mobility in a differential display gel was quantified by its intensity and normalized so that the average of 4 bands equals zero, and the variance of 4 bands equals one. Each line on these graphs corresponds to one dot in Figure 4 and represents one gene in Table 4.

To show the affinity between genes classified to the same cluster, principal components analysis (PCA) was performed. Genes tend to coalesce in homogeneous clusters determined by their similarity to an ideal expression pattern (Figure 4). Thus, our criterion for classifying genes according to their similarity to predetermined idealized expression patterns allows us to recognize well-separated clusters. We note that this is equivalent to the first iteration of the standard k-means clustering technique.34 There are 2 differences from k-means: (1) our clustering method does not require reassignment of new centers for all clusters, as is done at each k-means iteration step, and (2) the centers are predetermined by the idealized expression profiles as opposed to a random centers’ initialization, which is the first step of the k-means algorithm.

Genes differently expressed in neutrophils exposed to Y pestis

We also compared the effects of 2 strains of Y pestis, the causative agent of plague, on neutrophils. The high virulence of this pathogen is in part due to its ability to prevent the accumulation of neutrophils at foci of infection early in the course of disease.5,35,36 An important contribution of the type III secretion system to suppressing neutrophil accumulation is the inhibition of cytokine production.37,38 The most common pattern of mRNA change was a substantial increase in response to E.coli or KIM6, but there was no change in response to KIM5 (Table 4, LHLH). Most of the cytokines we identified showed this pattern. A second common pattern is that mRNAs present in the control and KIM5-treated cells were depressed in the cells treated with E.coli and KIM6 (Table 4, HLHL). This pattern also confirms that most of the cells received a stimulus as a result of exposure to the bacteria. A smaller number of mRNAs were induced or substantially up-regulated only by KIM5 (Table 4, LLHL). Overall the effects of nonpathogens on genes listed in Table 4 were quite parallel, presumably because the bacteria present common stimuli.
The expression of a smaller number of mRNAs appeared to be influenced by *Y. pestis*, regardless of pCD1 but not by *E. coli* (Table 5, LLHH and HHLL). Some genes were affected only by *E. coli* (LHH and LLHL), and a number were regulated alike by all 3 bacteria (LHHH and HHLL). Many of the changes in the levels of mRNA could be interpreted in terms of the known behavior of neutrophils. Activation of neutrophils by the nonpathogenic gram-negative bacteria induced expression of a variety of cytokines and receptors. Several known cytokines have not been previously associated with neutrophils or were first described in this context (Table 2).

Table 4. Genes expressed by neutrophils differently regulated by KIM5 (pCD1⁺) and KIM6 (pCD1⁺) strains of *Y. pestis*

<table>
<thead>
<tr>
<th>Gene expression pattern</th>
<th>KIM5-responsive</th>
<th>KIM6-responsive</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli K12</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>KIM5</td>
<td>Up-regulated</td>
<td>Down-regulated</td>
</tr>
<tr>
<td>KIM6</td>
<td>NC</td>
<td>Up-regulated</td>
</tr>
<tr>
<td>Cytokines</td>
<td>GRO1</td>
<td>—</td>
</tr>
<tr>
<td>Receptors</td>
<td>IFNγ</td>
<td>—</td>
</tr>
<tr>
<td>Transcription modulators</td>
<td>CROC4</td>
<td>—</td>
</tr>
<tr>
<td>Apoptosis regulators</td>
<td>CFLAR</td>
<td>—</td>
</tr>
<tr>
<td>Proteases</td>
<td>PP1G</td>
<td>—</td>
</tr>
<tr>
<td>Protein kinases</td>
<td>CAMKK2</td>
<td>—</td>
</tr>
<tr>
<td>Other signal transducers</td>
<td>TP52K</td>
<td>—</td>
</tr>
<tr>
<td>Membrane trafficking</td>
<td>ATP6L</td>
<td>—</td>
</tr>
<tr>
<td>Oxidases</td>
<td>BR3 HLA-C</td>
<td>—</td>
</tr>
<tr>
<td>Others</td>
<td>BR3 HLA-C</td>
<td>ADAM8</td>
</tr>
</tbody>
</table>

The mRNA encoding certain subunits of the vacuolar adenosine 5’-triphosphate (ATP)-dependent H⁺ pump, another potential downstream antiapoptotic factor, were also up-regulated. KIM5 had little effect on most of the above genes.

Changes in neutrophil gene expression were asynchronous

The changes in mRNA expression patterns at short time intervals following the addition of *E. coli* K12 were also analyzed. Many of the striking increases in mRNA levels seen at 2 hours after exposure to bacteria were not reflected by changes in levels of the corresponding mRNA within the first 60 minutes, although the levels of some mRNAs progressively increased beginning within 30 minutes (Table 6, LHL and LLH). Display of *Bgl*II-cut cDNAs prepared 3 and 4 hours after exposure to *E. coli* showed a pattern that was for the most part similar to the 2-hour pattern (data not shown).
Table 5. Genes similarly regulated by both KIM5 (pCD1\(^1\)) and KIM6 (pCD1\(^2\)) strains of Y pestis

<table>
<thead>
<tr>
<th>E coli nonresponsive</th>
<th>Y pestis responsive</th>
<th>E coli responsive</th>
<th>Y pestis nonresponsive</th>
<th>Y pestis responsive</th>
</tr>
</thead>
<tbody>
<tr>
<td>E coli K12</td>
<td>NC</td>
<td>Up-regulated</td>
<td>NC</td>
<td>Up-regulated</td>
</tr>
<tr>
<td>KIM5</td>
<td>Up-regulated</td>
<td>Down-regulated</td>
<td>NC</td>
<td>Up-regulated</td>
</tr>
<tr>
<td>KIM6</td>
<td>Up-regulated</td>
<td>Down-regulated</td>
<td>NC</td>
<td>Up-regulated</td>
</tr>
<tr>
<td>Receptors</td>
<td>ITGB2</td>
<td>—</td>
<td>FCAR</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FCER1G</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TNFAIP6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FCGR3A</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IL8RA</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PTPRC</td>
<td>—</td>
</tr>
<tr>
<td>Chaperones</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HSPCB</td>
<td>—</td>
</tr>
<tr>
<td>Transcription</td>
<td>—</td>
<td>—</td>
<td>ETS2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>NACA</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>MND2</td>
<td>—</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>GADD45B</td>
<td>—</td>
</tr>
<tr>
<td>Proteases</td>
<td>CTSD</td>
<td>—</td>
<td>TIMP1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>CPD</td>
<td>—</td>
</tr>
<tr>
<td>Protein kinases</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Other signal</td>
<td>RALGDS</td>
<td>—</td>
<td>EHD1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>RG52</td>
<td>—</td>
<td>PTPN6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>MACS</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>HPCAL1</td>
<td>—</td>
</tr>
<tr>
<td>Membrane</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>PDF7</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>RAB7 VATD</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>ATP6S1</td>
<td>—</td>
</tr>
<tr>
<td>Oxidases</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Others</td>
<td>RPL18A ULK1</td>
<td>—</td>
<td>EMD</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>HMOX1 H1F2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>KIAA1100</td>
<td>—</td>
</tr>
<tr>
<td>Gene expression</td>
<td>LLHH</td>
<td>HHLL</td>
<td>LHLH</td>
<td>LLHH</td>
</tr>
<tr>
<td>pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For abbreviations, see Table 4 and Appendix 1.

Table 6. Time-course profile and functional classification of genes expressed by E coli K12–stimulated neutrophils

<table>
<thead>
<tr>
<th>Early</th>
<th>Transient</th>
<th>Sustained</th>
<th>Late</th>
<th>Early</th>
<th>Down-regulated</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokines</td>
<td>GRN</td>
<td>—</td>
<td>OSM IL1RN</td>
<td>SCYA4 IL8 SCYA20</td>
<td>S100A9</td>
<td>S100A8</td>
</tr>
<tr>
<td>Receptors</td>
<td>—</td>
<td>PLAUR HS1-2</td>
<td>—</td>
<td>CCLR2 ADORA2A</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Membrane trafficking</td>
<td>—</td>
<td>CLIC1 ATP5E FLOT1</td>
<td>—</td>
<td>ATP6J RAB1 ATPB1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Apoptosis regulators</td>
<td>—</td>
<td>TNFAIP3 GADD34 MCL1</td>
<td>—</td>
<td>PP1F BCL2A1 GSTTLP28</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Transcription modulators</td>
<td>FOS ZFP36</td>
<td>ETR101 NFKBIA</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Others</td>
<td>WBP2 GOS2</td>
<td>TNAFIP2</td>
<td>—</td>
<td>SGK MAPK3 CPD EHD1</td>
<td>GCL ARPC1B</td>
<td>EVI2B AMPD2</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>PTGS2</td>
<td>—</td>
<td>PLEK CD48 DUSP6 FTH1</td>
<td>LOC5169</td>
<td>DIFF48 CLN2</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>HSFA10</td>
<td>—</td>
<td>MACS PFN1 RTN4</td>
<td>TALDO1</td>
<td>MKN1</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>ICAM1 NPM1</td>
<td>—</td>
<td>CDK1A LINK2 PRG1</td>
<td>ERV1 MYO1</td>
<td>KIAA0370</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>HLA-A SAT</td>
<td>—</td>
<td>SH3BP5 ACTG1 ANPEP</td>
<td>KIAA0446</td>
<td>ARHGIDB</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>EIF4A1</td>
<td>—</td>
<td>HEF1 HRRC NS1-BP</td>
<td>IFITM1</td>
<td>VDUP1</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>HSPCA SUI1</td>
<td>—</td>
<td>LCP2 MAP3K8 NDUFV2</td>
<td>ICB-1</td>
<td>NCF4</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>IRAK1</td>
<td>—</td>
<td>KIAA0370</td>
<td>S100A11</td>
<td>MCP</td>
</tr>
</tbody>
</table>

For abbreviations, see Table 4 and Appendix 1.
Some genes were transiently up-regulated, peaking at 30-60 minutes, but returning to baseline levels by 2 hours after treatment. Among the earliest response mRNAs for known genes was that for the dual-specificity protein kinase DYRK1A. This is the human homolog of Drosophila minibrain and potentially a homolog of the \textit{S. cerevisiae} gene \textit{YAK1}, a possible negative regulator of growth and cell cycle progression. By 60 minutes after activation, the pattern changed with down-regulation of some mRNAs and strong up-regulation of others, among which was the mRNA for ETR101, a proline-rich cytoplasmic protein known as a sometimes unstable early activation protein in other systems.

Discussion

The current study demonstrates that neutrophils are capable of extensive, rapid, and complex changes in gene expression. The changes in mRNA levels include both genes that are expressed and regulated in many cell types and genes that are expressed in a limited range of cells. Few of the regulated genes were strictly neutrophil-specific.

Activation of neutrophils by bacteria is a complex process that delivers multiple types of exogenous and endogenous signals to the cell. The bacterial lipopolysaccharide itself interacts with a specific receptor on the cell surface, and bacterially derived formyl peptides interact with the FMLP receptor (FPR1). Immunoglobulins and complement components associated with the bacteria stimulate an array of receptors present on neutrophils. An early consequence of neutrophil activation is the production of reactive oxygen species, and these in turn elicit a stress response from the cells. Neutrophil production of IL-1 or granulocyte-macrophage colony-stimulating factor (GM-CSF) presumably activates the corresponding receptors on the cell surface. The relative kinetics of induction of IL-8 and down-regulation of its receptors offer another potential for feedback effects on neutrophil activation.

In our study many known genes were induced on neutrophil activation including \textit{GOS2}, \textit{ZFP36} (TTP/GOS24), \textit{PBEB} (GOS9), \textit{ETR101}, \textit{COPEB}, \textit{FOSB} (GOS3), \textit{FOS} (GOS7), and the uridine kinase \textit{PLAUR}. These corresponded to mRNA appearing in many other cell types during the transition from G-0 to S-phase of the cell cycle or after other modes of activation. Other genes for widely used stress-response proteins, such as the heat shock proteins (HSPA10, HSPCA, HSPCB, and HSPF1) and the protein kinase MAP2K3, were also activated.

Two groups recently reported array analysis of changes in gene expression in fibroblasts in response to PDGF receptor or serum kinase MAP2K3, were also activated. Products (HSPA10, HSPCA, HSPCB, and HSPF1) and the protein widely used stress-response proteins, such as the heat shock proteins, are up-regulated in neutrophils, and 7 of 8 genes classified as inflammation-related were also up-regulated in neutrophils. Itoh et al. analyzed the 3’-end sequences of 1142 cDNA clones from neutrophils that were not intentionally activated and obtained sequences for 748 independent species. They listed 46 named genes for which they recovered 3 or more clones. In the present study we found that 90% of these genes were up-regulated on neutrophil activation.

Our data indicate that activated neutrophils are a source of physiologically significant trans-cellular signaling molecules. Measurements of IL-8 protein accumulation have shown that neutrophils produce IL-8 at about 1 ng per million cells per hour after exposure to \textit{E. coli} (J.D.G. and Y.V.B.K.S., unpublished results, February 1994). This corresponds to approximately 10^5 molecules of IL-8 per cell per hour. In vitro, the cellular activating effects of IL-8 reach half-saturation levels at a concentration range of 0.5-1.0 nM. In vivo, human neutrophil counts commonly rise above 10 million cells per mL blood, enough to raise the concentration of IL-8 to physiologically effective levels within 1-2 hours.

At sites of infection, tissue neutrophils are considerably more concentrated. Therefore, the levels of IL-8 production by neutrophils are physiologically very significant.

The levels of induced mRNA for a number of intracellular proteins are comparable to those for the more abundant cytokine mRNAs. This strongly suggests that the intracellular molecules are produced at levels that are physiologically significant, although the possibility of concomitant negative control of translation rate of specific mRNAs has not been investigated. More caution is necessary in interpretation of down-regulation of mRNA. The down-regulation will only correspond to changes in protein level if the protein normally has a short half-life or is specifically degraded following activation of the neutrophils. Some of the down-regulation is undoubtedly due to stopping transcription of relatively short-lived mRNAs. This change would not produce synchronous effects on all mRNA both because they have differing half-lives and because transcription may not be down-regulated simultaneously on different genes. Some mRNAs that are stable in cells treated with 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) disappear rapidly after exposure to bacteria (data not shown).

Studies with actinomycin D indicate that the mRNA for certain chemokine receptors is destabilized on LPS activation of cells, and this destabilization is blocked by simultaneous, but not delayed, addition of the transcription inhibitor. In any case, the events leading to destabilization are heterogeneous.

CC-chemokines, such as SCYA3, SCYA4, and SCYA20, were up-regulated. CXC chemokines, such as IL-8, GRO1, and GRO2, were also up-regulated. Although GRO1 and GRO2 share 90% identity at the deduced amino acid level, and both have melanoma growth-stimulating activity, their expression patterns were different. GRO1 was induced by KIM5 more strongly than by nonpathogenic bacteria, but the induction of GRO2 seen with KIM6 did not occur with KIM5.

Although both CXCR1 (IL-8RA) and CXCR2 (IL-8RB) are receptors that are specifically for IL-8 and CXCR251 (IL-8RB, a receptor activated by other CXC chemokines including GRO1) were down-regulated, KIM5 fully inhibited gene expression of CXCR1, but not CXCR2. CXCR1 and CXCR2 are regulated in different modes by CXC chemokines and play diverse roles in mediating the inflammatory process. The putative G protein–coupled receptors CCR2 (HCR) and HM74 were prominently up-regulated. HCR was previously identified in public databases as CCR6 (a receptor for SCYA20/ LARC/MIP3A), but recently it has been described as a distinctive receptor, CCR2. The sequence of CCR2 in GenBank Accession no. U95626 is identified as CCR6, but differs from the sequence of U68030 CCR6 mRNA, so it remains uncertain whether CCR2 is...
the receptor of SCYA20/LARC/MIP3A. The presence of both SCYA20/LARC/MIP3A and its receptor on the same cells would imply an autocrine loop. The strong induction of HM74 in human neutrophils suggests its utility as a clinical parameter and/or a drug target in inflammatory disorders. Overall, the responses to some stimuli were down-regulated, and new response pathways could be established. Whether these maintain or modulate the active state or have other functions remain to be determined, but they probably play important roles in the early evolution of the inflammatory process. A suggestion to explain the virulence of KIM5 is that the loss of production of the primary activating and chemo-attractant cytokine IL-8 would decrease the possibility that neutrophils which have ingested bacteria would attract additional neutrophils to sites of inflammation. The net effects of up-regulation of IL-1 and its receptor antagonist IL-1RN are uncertain, but they could provide an additional measure of feedback.

The balance between apoptotic and necrotic cell death in neutrophils plays an important role in the control of inflammation. Neutrophils accumulate in large numbers at sites of inflammation, forming tissue infiltrates and pus. Necrotic death of these cells releases toxic granule contents, such as elastase and collagenase, whereas removal of apoptotic neutrophils by macrophages protects surrounding tissues from such damage.53,54 However, inhibition of neutrophil apoptosis may augment host defense against infection by prolongation of functional longevity of the cells.55 When cultured in vitro, neutrophils rapidly undergo apoptosis, which is preceded by intracellular acidification.56 G-CSF and a variety of inflammatory mediators delay programmed cell death, in part by up-regulation of expression of Bcl-XL, but not other Bcl-2 family members. The current data suggest that other proteins, such as BCL2A1, MCL1, PPIF, TNFAIP3, and perhaps spermidine/spermine N1-acetyltransferase (SAT), may be important for the regulation of neutrophil apoptosis in response to infection.

Increases in mRNA for genes regulating transcription or translation were observed 2 hours after activation. These include the

c0P3B3D gene, which is reported to stimulate expression of genes lacking a TATA box. In cells exposed to KIM5, 12 of 14 responses at the level of mRNA production.

Changes in the levels of intracellular signaling molecules imply that neutrophils are important effectors of the progression of the cellular inflammatory response. Interruption of these changes by pathogens, such as Y pestis KIM5, could be, at least in part, responsible for the failure to contain the infectious process.

Supplementary information is available on our Web site.67

Acknowledgments

We thank Andrea M. Neuman, Carolyn Padden, Angela Plette, Anne-Marie Quinn, and Connie Whitney for technical assistance and Dov Greenbaum for Web site set-up.

References

9. DAF, so that the cells may become desensitized to DAF.

10. Overall, the patterns of induction or disappearance of mRNAs for genes of known function can largely be rationalized in terms of the biologic role of neutrophils. Several different antiapoptotic mechanisms are set in play in an asynchronous fashion. This response would allow neutrophils that ingested nonpathogenic material to survive longer, potentially migrating to restricted tissue areas and also degrading ingested material. Additional defensive changes in the neutrophils include production of DAF. The cells change their own cytokine responsiveness and begin producing a range of new cytokines. These would not only transmit inflammatory signals and recruit unstimulated neutrophils, but they would also further stimulate activated neutrophils, contributing to the congregation of activated neutrophils and hence to abscess formation. Changes in the levels of intracellular signaling molecules might well change the responses to stimulation of pre-existing receptors. Membrane trafficking is accelerated perhaps related to ingestion of bacteria and discharge of preformed granules. There is also a previously unappreciated transition from early to delayed responses at the level of mRNA production.

In summary, nonpathogenic gram-negative bacteria induce a marked change in the patterns of gene expression in neutrophils, indicating massive changes in cytokine output and prolongation of cell survival. These changes imply that neutrophils are important effectors of the progression of the cellular inflammatory response. Interruption of these changes by pathogens, such as Y pestis KIM5, could be, at least in part, responsible for the failure to contain the infectious process.
porphic nuclear leukocytes. Blood. 1999;93:1413 -
1421.

10. Kasama T, Strieter RM, Lukacs NW, Lincoln PM,
Burdick MD, Kunelk SL. Interferon gamma modu-
lates the expression of neutrophil-derived chemo-

11. Hachicha M, Rathanaswami P, Naccache PH,
McColl SR. Regulation of chemokine gene ex-
pression in human peripheral blood neutrophils

12. Ota TM, Kasama T, Hanyuda M, et al. Interleu-
kin-13 down-regulates the expression of neutro-
phil-derived macrophage inflammatory protein-1

13. Prashar Y, Weisssman SM. Analysis of differential
den gene expression by display of 3’ end restriction
fragments of CDNAS. Proc Natl Acad Sci U S A.

14. Goguen JD, Yother J, Straley SC. Genetic analy-
sis of the low calcium response in Yersinia pestis

15. Une T, Brubaker RR. Roles of V antigen in pro-
moting virulence and immunity in yersiniae. J Im-
munol. 1984;133:2226-2230.

16. Fetherston JD, Schuetze P, Perry RD. Loss of the
plasmid YopJ from Yersinia pestis is due to the spontaneous deletion of 102 kb of chromo-
somal DNA which is flanked by a repetitive ele-

17. Forsberg A, Rosqvist R, Wolf-Watz H. Regulation
of the colony-stimulating factor 1 (CSF-1) receptor
c-fms proto-oncogene product and its ligand.

18. Perry RD, Fetherston JD. Yersinia pestis — etio-
10:35-66.

19. Cornelis GR, Boland A, Boyd AP, et al. The viru-
gle plasmid of Yersinia , an antihost genome. J

20. Perry RD, Straley SC, Fetherston JD, Rose DJ,
Burdick MD, Kunkel SL. Interferon gamma modu-
lates the expression of neutrophil and tumor necrosis factor al

21. Subrahmanyam YVBK, Yamaga S, Newburger
P. Munc13-1 down-regulates the expression of neutro-

22. Becker W, Jost HG. Structural and functional charac-
teristics of Dyrk, a novel subfamily of protein
kinas with dual specificity. Prog Nucleic

23. Kasars S, Meluhsil T, Amran RS, et al. Saccharo-
myces cerevisiae yak protein kinase autophos-
phorylates on tyrosine residues and phosphory-

of a novel immediate early gene during 12-O-tet-
radecanoylphorbol-13-acetate-induced macro-
phagic differentiation of mouse peritoneal

25. Fambrough D, McClure K, Kazlauskas A, Lander
ES. Differential signaling pathways activated by
growth factor receptors induce broadly overlapping,

26. Iyer VR, Eise MB, Ross DT, et al. The transcrip-
tional program in the response of human fibro-

27. Itoh K, Okubo K, Utsuya H, Hirano T, Yoshii J,
Matsubara K. Expression profile of active genes in

28. Xu L, Rahimpour R, Ran L, et al. Regulation of
CCR2 recombiner mRNA stability. J Leu-

29. Murphy PM. Neutrophil receptors for interleukin-6
and related CXC chemokines. Semin Hematol.
1997;34:311-318.

30. Feniger-Barish R, Ran M, Zaslave A, Ben-Ba-
ruch R. Differential modes of regulation of cxc
chemokine-induced internalization and recycling
of human CXCR1 and CXCR2. Cytokine. 1999;
11:996-1009.

31. Haslett C. Granulocyte apoptosis and inflamma-

32. Iyer VR, Inflammation: YopJ contains a

33. Perera LP, Waidmann TA. Activation of human
monocytes induces differential resistance to apo-
oposis with rapid down regulation of caspase-8/
FLICE. Proc Natl Acad Sci U S A. 1998;95:14308-
14313.

34. Lin EY, Orlofsky A, Wang HG, Reed JC, Prystow-
er BM. Cell acidification in apoptosis: granulo-
cyte colony-stimulating factor regulates prol-
celled death in neutrophils by upregulating the

35. Gottlieb RA, Giesing HA, Zhu JY, Engler RL, Ba-
bior BM. Cell acidification in apoptosis: granulo-
cyte colony-stimulating factor delays pro-
cessed cell death in neutrophils by up-
regulating the vacuolar H+ ATPase. Proc Natl

role of oncogene products in neutrophil apopto-

and Bax-mediated regulation of apoptosis of human
neutrophils via caspase-3. Blood. 1999;93:3106-
3115.

38. Huxford T, Huang DB, Malek S, Ghosh T. The
crystal structure of the kappabAlpha/NF-kappab
complex reveals mechanisms of NF-kappab in-

1999;93:1464-1474.

40. Yamaga S, Okamura S, Otsuka T, Niho Y. Effect of
granulocyte-macrophage colony-stimulating
factor on chemiluminescence of human neutro-

41. Seya T, Hirano A, Matsumoto M, Nomura U,
Ueda S. Human membrane cofactor protein
(MCP, CD46): multiple isoforms and functions. J

42. Qian YM, Haino M, Kelly K, Song WC. Structural
characterization of mouse CD97 and study of its
pecific interaction with the death domain-deco-

timating factor (DAF, CD55). Immunology. 1999;
98:303-311.

43. Johnston RF, Pickert SC, Barker DL. Autoradiog-
raphy using storage phosphor technology. Elec-

44. National Center for Biotechnology Information
(NCBI), National Library of Medicine (NLM),
U
nlm.nih.gov/LocusLink/. Accessed November 5,
2000.

45. National Center for Biotechnology Information,
Available at: http://www.ncbi.nlm.nih.gov/

46. The Department of Molecular Biophysics and Bio-
chemistry, Yale University, and the Department of
Genetics, Yale University School of Medicine.
Available after April 15, 2001 at: http://bioinfo.
mbb.yale.edu/expression/neutrophil/.
Appendix 1: gene symbols for Tables 4, 5, and 6

The gene symbols given in Tables 4, 5, and 6 are listed in alphabetical order. ACTB indicates actin, beta; ACTG1, actin, gamma 1; ADAM8, a disintegrin and metalloprotease domain 8 (CD156); ADOARA2, adenosine A2a receptor; AMPD2, adenosine monophosphate deaminase 2 (isoform L); ANPEP, alanine (membrane) aminopeptidase (CD13); APOQ, apolipoprotein 9; ARHGDIB, rho GDP dissociation inhibitor (GD1) beta; ARFPC1B, actin-related protein 2/3 complex, subunit 1A (41 kd); ATP4, activating transcription factor 4 (tax-responsive enhancer element B); ATP2A3, ATPase, Ca++-transporting, ubiquitous; ATP2B1, ATPase, Ca++-transporting, plasma membrane 1; ATP5E, ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit; ATP6V, ATPase, H+ transporting, lysosomal (vacuolar proton pump) 16 kDa; ATP6V1E, ATPase, H+ transporting, lysosomal (vacuolar proton pump) member 3; ATP6V1L3, ATPase, H+ transporting, lysosomal (vacuolar proton pump) 16 kDa; ATP6V1S1, ATPase, H+ transporting, lysosomal (vacuolar proton pump), subunit 1; B2M, beta-2-microglobulin; BB1, malignant cell expression–gene unknown progression–enhanced gene (human, UM-UC-9 bladder carcinoma cell line, mRNA, 1897 nt); BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobulin; BCL2A1, BCL-2-related protein A1; BRF2, butyrate response factor 2 (EGF response factor 2) (TIS11D); BRI3, brain protein I3; BRM1, beta-2-microglobulin; B2M, beta-2-microglobulin; BRM1, beta-2-microglobu
(G0S8); RGS14, regulator of G-protein signaling 14; RPL18A, ribosomal protein L18a; RPN2, ribophorin II; RPS6KA1, ribosomal protein S6 kinase, 90 kd, polypeptide 1; RTN4, reticulon 4; S100A8, S100 calcium-binding protein A8 (calgranulin A); S100A9, S100 calcium-binding protein A9 (calgranulin B); S100A11, S100 calcium-binding protein A11 (calgizzarin); S100P, S100 calcium-binding protein P; SAT, spermidine/spermine N1-acetyltransferase; SCYA3, small inducible cytokine A3 (G0S19–1, LD78, MIP1A); SCYA4, small inducible cytokine A4 (LAG1, MIP1B); SCYA20, small inducible cytokine subfamily A (C-C), member 20 (LARC, MIP3A); SECTM1, secreted and trans-membrane 1; SEL, selectin L (lymphocyte adhesion molecule 1) (CD62L); SGK, serum/glucocorticoid-regulated kinase; SH3BP5, SH3-domain binding protein 5 (BTK-associated); SLC7A5, solute carrier family 7 (cationic amino acid transporter, y+ system), member 5 (CD98); SLC11A2, solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (NRAMP2); SLC16A3, solute carrier family 16 (monocarboxylic acid transporters), member 3 (MCT3); SOD2, superoxide dismutase 2, mitochondrial; SSR2, signal sequence receptor, beta (translocon-associated protein beta) (TRAPB); SUI1, putative translation initiation factor (EIF1–A121); TALDO1, transaldolase 1; TIMP1, tissue inhibitor of metalloproteinase 1 (EPA); TMSB4X, thymosin, beta 4, X chromosome; TNFAIP2, TNF-alpha–induced protein 2; TNFAIP3, TNF-alpha–induced protein 3; TNFAIP6, TNF-alpha–induced protein 6; TNFRSF1A, TNF receptor superfamily, member 1A (CD120A); TNFRSF10B, TNF receptor superfamily, member 10b (DR5); TOM1, target of myb1 (chicken) homolog; TPD52L2, tumor protein D52-like 2; TPM3, tropomyosin 3 (nonmuscle); TPT1, tumor protein, translationally controlled 1 (IgE-dependent histamine-releasing factor); TRIP8, thyroid hormone receptor interactor 8; TYROBP, TYRO protein tyrosine kinase binding protein; UBE2B, ubiquitin-conjugating enzyme E2B (RAD6 homolog); ULK1, unc-51 (C elegans)–like kinase 1; VATD, vacuolar proton pump delta polypeptide; VDUP1, up-regulated by 1,25-dihydroxyvitamin D-3 (HH-CPA78); VPS35, vacuolar sorting protein 35 (yeast homolog); WBP2, WW domain binding protein 2; WBSCR1, Williams-Beuren syndrome chromosome region 1 (EIF4H); XIP, hepatitis B virus x-interacting protein (9.6 kd); ZFP36, zinc finger protein homologous to Zfp-36 in mouse (G0S24, TIS11, TTP); ZNF148, zinc finger protein 148 (pHZ-52); and ZNF220, zinc finger protein 220 (MOZ).
RNA expression patterns change dramatically in human neutrophils exposed to bacteria