Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1low mice)

Alessandro Maria Vannucchi, Lucia Bianchi, Cristina Cellai, Francesco Paololetti, Valentina Carrai, Anna Calzolari, Lucia Centurione, Rodolfo Lorenzini, Claudio Carta, Elena Alfani, Massimo Sanchez, Giovanni Migliaccio, and Anna Rita Migliaccio

The response of mice genetically unable to up-regulate GATA-1 expression (GATA-1low mice) to acute (phenylhydrazine [PHZ]–induced anemia) and chronic (in vivo treatment for 5 days with 10 U erythropoietin [EPO] per mouse) erythroid stimuli was investigated. Adult GATA-1low mice are profoundly thrombocytopenic (platelet counts \(\times 10^{5}/L\) 82.0 ± 26.0 vs 840 ± 170.0 of their control littermates, \(P < .001\)) but have a normal hematocrit (Hct) (approximately .47 proportion of 1.0 (47%)). The spleens of these mutants are 2.5-fold larger than normal and contain 5-fold more megakaryocytic (4A5+), erythroid (TER-119+), and bipotent (erythroid/megakaryocytic, TER-119+/4A5+) precursor cells. Both the marrow and the spleen of these animals contain higher frequencies of burst-forming units–erythroid (BFU-E)– and colony-forming units–erythroid (CFU-E)–derived colonies (2-fold and 6-fold, respectively) than their normal littermates. The GATA-1low mice recover 2 days faster from the PHZ-induced anemia than their normal littermates (\(P < .01\)). In response to EPO, the Hct of the GATA-1low mice raised to .68 proportion of 1.0 (68%) vs the .55 proportion of 1.0 (55%) reached by the controls (\(P < .01\)). Both the GATA-1low and the normal mice respond to PHZ and EPO with similar (2- to 3-fold) increases in size and cellularity of the spleen (increases are limited mostly to cells, both progenitor and precursor, of the erythroid lineage). However, in spite of the similar relative cellular increases, the increases of all these cell populations are significantly higher, in absolute cell numbers, in the mutant than in the wild-type mice. In conclusion, the GATA-1low mutation increases the magnitude of the response to erythroid stimuli as a consequence of the expansion of the erythroid progenitor cells in their spleen.

Introduction

GATA-1 is a member of a highly conserved family of transcription factors whose expression is restricted to the Sertoli cells in the testis and to hemopoietic cells.1 In the hemopoietic system, expression of GATA-1 is activated at the level of multilineage progenitor cells and is maintained in cells maturing toward all the myeloid lineages.1,2 In most of those lineages, GATA-1 expression decreases with maturation, with the exception of the erythroid lineage, in which its expression actually increases with progression toward differentiation.1 The important role of GATA-1 in the regulation of erythroid differentiation is strongly suggested by the fact that GATA-1 cognate sequences are present in the regulatory regions of all the erythroid genes identified to date,1 including the erythropoietin receptor (EpoR)1,4 and GATA-1 itself.1,5,6 Furthermore, mice whose expression of either GATA-1,7 or its partner, Friend of GATA (Fog),8 has been impaired by gene disruption, die pretentally owing to severe anemia.

How GATA-1 specifically regulates erythroid differentiation has been the subject of intensive investigation and is still unclear. Some evidence has suggested that the levels of GATA-1 expression are responsible for the establishment of this differentiation program. In fact, avian myelomonocytic cell lines that have been transfected with GATA-1 differentiate into hemopoietic cells whose phenotype is linked to the levels of GATA-1 ectopic expression. Only those cell lines that express the highest levels are erythroid.9 Similarly, when murine stem cells are transfected with a GATA-1–containing retrovirus and used to reconstitute hemopoiesis in sublethally irradiated mice, the mice engrafted with those cells express lower white blood cell counts and higher red blood cell counts than animals reconstituted with normal stem cells.10 Furthermore, the GATA-1–transduced stem cell recipients are partially resistant to induction of anemia by phlebotomy and, when they finally become anemic, recover faster than controls.10

To directly prove that the levels of GATA-1 expression determine erythroid differentiation, genetically modified mice lacking upstream regions have been generated by homologous recombination.11 The mutants lacking the first enhancer (DNA hypersensitive site I) and the distal promoter are born both thrombocytopenic12 and anemic.13 In the case of one of these mutants, the GATA-1low (neo6HS) mouse, in which the DNA hypersensitive site I has been disrupted with a neo cassette, the few animals (fewer than 5%) that survive recover from their anemia at 3 to 4 weeks of age.13 The apparent lack of an erythroid phenotype in the few surviving adults is intriguing but could be the result of trivial reasons, eg, that only animals whose red cell precursors express, by in vivo selection,
higher GATA-1 (or GATA-2) levels and/or whose erythroid progenitors are more sensitive to erythropoietin (EPO) survive until adulthood.

To clarify the mechanism of erythroid compensation in the adult GATA-1low mice, we have characterized their hemopoiesis under steady-state conditions (anatomic site of cell production, size and growth factor sensitivity of the progenitor cells, levels of GATA-1 and GATA-2 expression, and apoptosis within the erythroid compartment, etc) and have measured their response to both acute (phenylhydrazine [PHZ]–induced anemia) and chronic (prolonged exposure to EPO) erythroid stimulation. The 2 stimuli operate through at least partially different mechanisms: the response to PHZ is mediated primarily by the glucocorticoid receptor,14 a nonspecific receptor involved in the response to stress that stimulates erythropoiesis by favoring proliferation over differentiation at the levels of late erythroid progenitors.15 On the other hand, EPO specifically induces production of red cells by promoting commitment, proliferation, and survival of erythroid cells of all types.16 The results presented indicate that the GATA-1low mice have a normal hematocrit thanks to a massive expansion of the early erythroid progenitors (colony-forming units–erythroid [CFU-E]) in the spleen that compensate for the increased apoptosis observed at the erythroblast level. Furthermore, because of such an expansion, they have an accelerated response to both acute and chronic erythroid stimuli, compared with their normal littermates.

Materials and methods

Mice

Two GATA-1low (neoOH) mice11 (one female and one male of mixed C57 Bl/6-SV 129 background) were kindly provided for this study by Dr S. Orkin. The mice were crossed with CD1 mice (Charles River, Calco, Italy) Bl/6-SV 129 background) were kindly provided for this study by Dr S. St Louis, MO) injected intraperitoneally for 2 consecutive days.17,18 On the day after the second PHZ injection, mice were killed by cervical dislocation, and their bones and spleen removed under sterile conditions for further analysis. Polycythemia was induced with human recombinant EPO (Pharmingen, San Diego, CA) or with an indirect peroxidase method (Sigma). Immunohistochemical staining was performed according to the commercial 3-step alkaline phosphatase developing system (APAAP) (Dako, Carpinteria, CA) or with an indirect peroxidase method (Sigma).

Flow cytometry analysis

Marrow and spleen cells were suspended in Ca2+– and Mg2+–free, Mg2+–free phosphate-buffered saline (PBS) with 1% (vol/vol) bovine serum albumin, 2 mM EDTA, and 0.1% NaN\textsubscript{3} and labeled with the erythroid-specific phycoerythrin (PE)–conjugated TER-119 (Ly-76) (Pharmingen, San Diego, CA) monoclonal antibody and the megakaryocytic-specific fluorescein isothiocyanate (FITC)–conjugated 4A5 (approximately 1 μg/106 cells) antibody for 30 minutes on ice. The cell fluorescence was determined manually. Reticulocyte counts were done on smears of blood that had been stained with methylene blue according to standard protocols. At least 1000 red blood cells were counted in each determination.

Hematological blood parameters

Blood was collected from the retro-orbital plexus into EDTA-coated microcapi-
laries (20 to 40 μL per sampling). Hematocrit (Hct) and platelet counts were determined manually. Reticulocyte counts were done on smears of blood that had been stained with methylene blue according to standard protocols. At least 1000 red blood cells were counted in each determination.

Immunohistochemical analysis

Samples of spleen and bone marrow were routinely fixed in phosphate-buffered formalin (10%, vol/vol), paraffin embedded, and sectioned (2.5 to 3 μm) for hematoxin-eosin staining and immunostaining with a GATA-1–specific antibody (N6) (Santa Cruz Biotechnology, CA). In some experiments, the spleens were quickly frozen in liquid nitrogen, and cryostated sections (3 μm) were labeled with 4A5 (a gift of Dr S. Burstein19) . Immunohistochemical staining was performed according to the commercial 3-step alkaline phosphatase developing system (APAAP) (Dako, Carpinteria, CA) or with an indirect peroxidase method (Sigma).

Flow cytometry analysis

Marrow and spleen cells were suspended in Ca2+–free, Mg2+–free phosphate-buffered saline (PBS) supplemented with 1% (vol/vol) bovine serum albumin, 2 mM EDTA, and 0.1% NaN\textsubscript{3} and labeled with the erythroid-specific phycoerythrin (PE)–conjugated TER-119 (Ly-76) (Pharmingen, San Diego, CA) monoclonal antibody and the megakaryocytic-specific fluorescein isothiocyanate (FITC)–conjugated 4A5 (approximately 1 μg/106 cells) antibody for 30 minutes on ice. The cell fluorescence was analyzed with the FACScan flow cytometer (Becton Dickinson, San Jose, CA). Cells incubated with appropriately labeled isotype controls (Pharmin- gen) were used to gate nonspecific fluorescence signal. Mature red cells

Table 1. Hematocrit and platelet and white cell counts in the blood of wild-type and GATA-1low mice along with the total cellularity of the femur and of the spleen

<table>
<thead>
<tr>
<th></th>
<th>Hct*</th>
<th>Platelet counts (\times1011/L)</th>
<th>White cells counts (\times109/L)</th>
<th>Total nucleated cells (\times106)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild-type</td>
<td>0.47</td>
<td>840.0±170.0 (12)</td>
<td>6.2±1.3 (6)</td>
<td>22.3±1.8 (10)</td>
</tr>
<tr>
<td>(0.465±3.2%)</td>
<td>(46.56±3.2%) (18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATA-1low</td>
<td>0.49</td>
<td>82.0±28.0 (10)</td>
<td>7.4±1.9 (6)</td>
<td>7.6±2.1 (6)</td>
</tr>
<tr>
<td>(0.489±4.4%)</td>
<td>(48.96±4.4%) (14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>>.05</td>
<td><.001</td>
<td>>.05</td>
<td><.01</td>
</tr>
</tbody>
</table>

The numbers in parenthesis (or, in the Hct column, the second set of parentheses) indicate the number of mice analyzed for each experimental point.

Hct indicates hematocrit.

*The numbers in the first set of parentheses indicate conventional units.
were depleted by hypotonic lysis (0.87% ammonium chloride for 15 minutes on ice), and dead cells were excluded by propidium iodide staining (5 \mu g/mL) (Sigma).

Progenitor cell counts
The frequency of progenitor cells in the light-density (fewer than 0.080) fractions (0.25 to 1.0 \times 10^5 cells per plate) of marrow, isolated from either normal or GATA-1^low mice as described,21 was determined in standard methylcellulose culture (0.9% wt/vol) in the presence of fetal bovine serum (30% vol/vol) (Sigma) and of a combination of recombinant growth factors, including rat stem cell factor (SCF) (100 ng/mL), mouse interleukin 3 (10 ng/mL) (both from Sigma), and either human EPO (2 U/mL) (Boehringer Mannheim, Germany) for burst-forming unit–erythroid (BFU-E) growth or mouse granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) (50 ng/mL each) for granulocyte-macrophage colony-forming unit (CFU-GM) growth (G-CSF and GM-CSF were purchased from Sigma).21 The growth of CFU-E–derived colonies was stimulated with EPO alone (2 U/mL).22 The cultures were incubated at 37°C in a humidified incubator containing 5% CO\textsubscript{2} in air and scored either 3 days (for CFU-E–derived colonies) or 7 days (for CFU-GM– and BFU-E–derived colonies) following initiation of culture.

RNA isolation and semiquantitative reverse transcriptase PCR analysis
Total RNA was prepared with a commercial guanidine thiocyanate/phenol method (Trizol) (Gibco BRL, Paisley, United Kingdom) as described by the manufacturer. Glycogen (20 \mu g) (Boehringer Mannheim) was added to each sample as a carrier. Total RNA (1 \mu g) was reverse transcribed at 37°C for 30 minutes in 20 \mu L of 10 mM Tris-HCl, pH 8.3, containing 5 mM MgCl\textsubscript{2}, 1 U RNAsin inhibitor, 2.5 U Moloney murine leukemia virus reverse-transcriptase, and 2.5 \mu M random hexamers (all from Perkin-Elmer, Norwalk, CT). The expression of \beta-globin and of the total, proximal, and distal GATA-1 transcripts was analyzed by amplifying reverse-transcribed complementary DNA (cDNA) (2.5 \mu L) in the presence of the specific sense and antisense primers (100 nM each) described elsewhere.23 The following primers were used for the amplification of GATA-2: sense 5’TGCAA-CACACCACCCGAT-
\begin{align*}
\text{ACC3}’; \text{antisense} 5’\text{CAATTTGCAACACACGCGCC3’}. \text{These primers generated an expected amplification fragment of 336 base pairs. The reaction was performed in 100 } \mu L \text{ of 10 mM Tris-HCl, pH 8.3, containing MgCl}_2 (2 \text{ mM}), dNTP (200 \mu M each), 0.1 \mu Ci [\alpha^{32}\text{P}]\text{-deoxycytidine triphosphate (specific activity 3000 Ci/mmol) (Amersham Italia, Cologno Monzese, Italy), and 2 U AmpliTaq DNA polymerase. Primers specific for } \beta_2-\text{microglobulin (50 nM each) were added to each amplification after the first 10 cycles as a control for the amount of cDNA used in the reaction.}23 \text{PCR conditions were as follows: 60 seconds at 95°C, 60 seconds at 60°C, and 60 seconds at 72°C. All of the reactions} }
\end{align*}

Table 2. Total number (\times 10^3) of progenitor and precursor cells in the marrow of wild-type and GATA-1^low mice

<table>
<thead>
<tr>
<th>Progenitor cells</th>
<th>Precursor cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFU-GM</td>
<td>BFU-E</td>
</tr>
<tr>
<td>CFU-E</td>
<td>TER-119^−/4A5^+</td>
</tr>
<tr>
<td>TER-119^−</td>
<td>TER-119^−</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CFU-GM</th>
<th>BFU-E</th>
<th>CFU-E</th>
<th>TER-119^−/4A5^+</th>
<th>TER-119^−</th>
<th>TER-119^−</th>
<th>4A5^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>310</td>
<td>410</td>
<td>280</td>
<td>1500</td>
<td>82 500</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>GATA-1^low</td>
<td>80</td>
<td>180</td>
<td>250</td>
<td>1500</td>
<td>27 500</td>
<td>1910</td>
<td></td>
</tr>
</tbody>
</table>

The values are calculated from those presented in Table 1 and Figure 5 and from the percentages of precursor cells calculated by fluorescence-activated cell sorting and summarized in the text; the calculations take into account that the bone marrow analyzed in our experiments corresponds to 10% of all the marrow of a mouse.27 CFU-GM indicates granulocyte-macrophage colony-forming units; BFU-E, burst-forming units–erythroid; and CFU-E, colony-forming units–erythroid.
were done by means of a GeneAmp 2400 Perkin-Elmer thermocycler and were analyzed in the linear range of amplification defined by preliminary experiments to be between 20 and 35 cycles for GATA-1 and GATA-2; 32 and 38 cycles for the distal and proximal GATA-1 transcripts; 18 and 24 cycles for β-globin; and 20 and 30 cycles for β2-microglobulin. Positive (RNA from adult marrow) and negative (mock cDNA) controls were included in each experiment. Aliquots (20 μL) were removed from the PCR mixture after amplification, and the amplified bands separated by electrophoresis on 4% polyacrylamide gel. Gels were dried by means of a Biorad (Hercules, CA) apparatus and exposed to Hyperfilm-MP (Amersham) for 2 hours at −270°C. All procedures were done according to standard protocols.24

Purification of erythroblast precursors and terminal deoxy transferase uridine triphosphate nick end labeling reaction

Erythroid precursors (TER-1191 cells) were purified from the spleens of wild-type and GATA-11low mice by immunoselection on magnetic beads (Miltenyi Biotec, Bologna, Italy) coated with the TER-119 antibody as described.26 The cells were either lysed in Trizol for gene expression analysis or cytocentrifuged for the detection of apoptotic cells by terminal deoxy transferase uridine triphosphate nick end-labeling (TUNEL). In this last case, the cytospin preparations were fixed with paraformaldehyde (4% vol/vol in PBS, pH = 7.4) for 30 minutes at room temperature and incubated in a permeabilizing solution (0.1% Triton, 0.1% sodium citrate) for 2 minutes on ice. The DNA strand breaks that are characteristic of apoptotic cells were identified by labeling the free 3′-OH nucleotide termini with fluorescein–deoxyuridine triphosphate with the In Situ Cell Death Detection Kit (Boehringer Mannheim) as described by the manufacturer. The cells were counterstained with propidium iodide, mounted in glycerol, and analyzed under a fluorescent microscope (Leica Microscopy System, Heidelberg, Germany).

Statistical analysis

Statistical analysis was performed by analysis of variance by means of Origin 3.5 software for Windows (Microcal Software, Northampton, MA).

Results

Comparative analysis of the erythroid compartments in adult GATA-11low and wild-type mice

The general hemopoietic features of adult (6 to 12 months of age) GATA-11low and wild-type mice are compared in Table 1 and Figure 1. As already reported,11,12 the blood of adult GATA-11low mice...
precursors and similar percentages of erythroid precursors.

The cellularity of the marrow and spleen from the GATA-1^{low} animals was profoundly different from that of the controls: the marrow from the mutants contained 3 times fewer cells, whereas their spleen contained 3 times more cells than the corresponding tissues from the normal littermates (Table 1). The abnormal size, weight, and cellularity of the spleen from the mutants are also evident from the data presented in Figure 1.

May-Grünwald staining of cytoplasmic marrow preparations showed that the tissue from the mutant mouse contained larger-than-normal red cells and cells with clear morphological signs of apoptosis (see the picnotic nuclei in the erythroblasts in Figure 2). The higher percentage of apoptotic cells in the GATA-1^{low} marrow preparations was confirmed by TUNEL staining (Figure 2C): TUNEL-positive cells are 3 times more frequent (18% vs 5% of the cells) than their normal counterparts. The purified cells were positively identified as erythroid in these sections because the lysis of immature erythroid cells (Figure 3A,B) that could not be labeled all the megakaryocytes present in the spleens of normal mice but only a portion (variable from specimen to specimen) of the megakaryocytes in the splenic sections from heterozygote females²⁵ (Figure 3D, insert).

The FACS analyses of the erythroid and megakaryocytic precursor cell content of the spleens from GATA-1^{low} and normal mice are compared in Figure 4. The spleens of the GATA-1^{low} mice contained significantly higher numbers (7- to 20-fold, P < .01) of megakaryocytic (single 4A5⁺), erythroid (single TER-119⁺), and bipotent (erythroid and megakaryocytic, 4A5⁻/TER-119⁺) precursors than the spleens from normal mice (Figure 4).

The higher erythroid cell content of the spleen from the GATA-1^{low} mice was also reflected by the levels of expression of the β-globin gene in this tissue (Figure 5). The β-globin transcripts were detectable after only 15 cycles of reverse transcriptase (RT) PCR by means of cDNA prepared from GATA-1^{low} spleen, while at least 18 cycles were necessary to begin the detection of these fragments by means of cDNA from normal spleen. In contrast, GATA-1 transcripts were amplified with comparable kinetics by means of cDNA prepared from the spleens of either one of these animals. The only cells expressing GATA-1 in the GATA-1^{low} spleens are the erythroid cells (Figure 3). Therefore, the fact that the spleens from the GATA-1^{low} mice, in spite of their higher erythroid cell content (by morphological, FACS, and β-globin gene expression analysis), expressed levels of GATA-1 similar to those expressed by the spleens from the wild-type animals, suggests that the GATA-1 expression per cell is lower in GATA-1^{low} erythroblasts than in the normal ones. To clarify this point, TER-119⁺ cells were purified (higher than 95% pure) by immunomagnetic selection from the spleens of the mutant and normal littermates (Figure 6A), and gene expression was analyzed by RT-PCR (Figure 6C).

The GATA-1^{low} TER-119⁺ cells expressed comparable levels of β-globin, GATA-2, and β₂-microglobulin, but lower levels of GATA-1 than their normal counterparts. The purified cells were also used to determine the percentages of apoptotic cells at the erythroblast level by TUNEL (Figure 6B), TUNEL-positive nuclei were very rare among normal TER-119⁺ cells (2% or lower) but represented greater than 60% of the cells purified from the GATA-1^{low} spleens.

The frequency of progenitor cells in the spleen and marrow

![Figure 4. Expression of TER-119 and 4A5 in the light-density cells of the spleen.](image)

![Figure 5. Semiquantitative RT-PCR analysis of the expression of β₂-microglobulin (as control), of β-globin, and of the total (GATA-1), proximal (GATA-1p), and distal (GATA-1d) GATA-1 transcripts in the spleens of untreated or day-1 PHZ-treated wild-type and GATA-1^{low} mice.](image)
The tissues of the GATA-1low mice displayed frequencies of myelomonocytic progenitors (CFU-GM) similar to those found in the corresponding tissues from their normal counterparts. In contrast, they contained 2-fold more early (BFU-E, $P < .05$) and 5- to 7-fold more late (CFU-E, $P < .001$) erythroid progenitor cells than the normal tissues. To clarify the reason for the higher erythroid progenitor cell content in the tissues from the GATA-1low mice, we compared the effect of increasing EPO concentrations on the growth of erythroid colonies from the mutant or normal marrow and spleen cells in semisolid cultures (Figure 7C). The EPO growth/response curves for BFU-E- and CFU-E-derived colonies obtained in cultures of GATA-1low and wild-type spleen cells were identical. In both cases, 50% of maximal colony growth was sustained by a concentration of 0.1 U/mL EPO, and maximal colony formation was observed with 0.4 EPO U/mL.

The red cell recovery after PHZ treatment of normal and GATA-1low animals is compared in Figure 8. At 5 days after the PHZ treatment, the Hct of GATA-1low mice had exceeded 50% (higher than the prebleeding level) while the wild-type mice had mostly, but not completely, recovered from their anemia (Figure 8A). Furthermore, at day 2 of recovery from the anemia, reticulocytes represented greater than 80% of the total red cells in the blood from the GATA-1low mice, as compared with fewer than 30% found in blood from the corresponding controls (Figure 8B). In the blood of the mutant mice, the percentages of reticulocytes remained significantly higher than in the blood of the controls until day 5 after PHZ treatment (Figure 8B).

Although the relative increases in size (by 2-fold) and cellularity (by 3.5-fold) of the spleens from the GATA-1low and wild-type
mice were similar; the spleens of the PHZ-treated mutants were significantly ($P < .01$) bigger and contained more cells than their PHZ-treated controls (Figure 1). At day 1 from the PHZ treatment, the spleens from both GATA-1low and wild-type animals were engulfed with erythroblasts expressing GATA-1 by immunostaining (Figure 7). The sinusoid spaces were markedly enlarged owing to the presence of red cells in the process of being lysed locally after having been damaged by PHZ (Figure 9). The presence of this massive red cell lysis was also evident by the dark red color of these spleens in gross morphological examination (Figure 1).

At day 1, the PHZ treatment increased the frequency of erythroid (TER-119$^+$), megakaryocytic (4A5$^+$), and bipotent (TER-119$^+$/4A5$^+$) precursors, not only in the spleens of the wild-type mice as reported, 26 but also in the spleens of the mutant animals (Figure 4). The spleens of the GATA-1 low mice contained 2 to 3 times ($P < .001$) more erythroid/megakaryocytic precursors than the spleens from the wild-type mice although, in comparison with the corresponding baseline levels, the increases observed in the spleens of the normal mice were 2- to 3-fold higher than those observed in the GATA-1 low mice (Figure 4).

The increases of the erythroid precursors in the spleens of PHZ-treated animals were paralleled by increases in the expression of β-globin and GATA-1, as determined by the kinetics of the RT-PCR amplification by means of cDNA prepared from the spleens of PHZ-treated GATA-1 low and wild-type animals (Figure 5).

At day 1 of PHZ treatment, the frequency of late erythroid (CFU-E) progenitor cells, but not those of early erythroid (BFU-E) or myelomonocytic (CFU-GM) progenitors, increased in the marrow and spleen from the mutants as well as from the wild-type mice (Figure 7A,B). Particularly high was the frequency reached by the CFU-E in the hemopoietic tissues of the GATA-1 low mice (greater than 600 and 1300 colonies per 10^5 marrow and spleen cells, respectively).

In vivo administration of EPO (10 U per mouse for 5 days) induced a statistically significant rise in the Hct of both the mutant and the normal mice (Figure 10A). The peak of the Hct increase was reached 6 days after the first EPO injection. In the case of the mutant mice, the Hct increased sooner (the first statistically different Hct value was observed at day 4 instead of day 6); more (up to .67 ± .05 proportion of 1.0 [67% ± 4.9%] as compared with .57 ± .03 proportion of 1.0 [56.5% ± 3.4%], $P < .001$); and for a longer period of time (until day 14 instead of day 12) than the Hct increases observed in their normal littermates (Figure 10A).

The changes in Hct values were reflected by symmetrical increases in the percentage of circulating reticulocytes that were also higher in the blood of the mutants than in the blood of normal mice. At day 6 of the EPO treatment, reticulocytes represented up to 40% of the circulating red cells in the GATA-1 low mice and only 20% of the red blood cells in the wild-type mice (Figure 10B).

The cellular compartments in the marrow and spleen of some of the animals treated with EPO were analyzed on day 6 of the treatment (ie, when the highest Hct and reticulocyte increases had been observed). The spleens of both the mutant and the normal mice became enormously enlarged after EPO treatment and reached a weight of $780 ± 50$ mg in the GATA-1 low mice and $365 ± 38$ mg in the wild-type animals (Figure 1). The total

Figure 7. Frequency of progenitor cells in the spleen and marrow from normal and GATA-1 low mice. (A) (B) Frequency of progenitor cells (BFU-E, dark bars; CFU-E, dotted bars; and CFU-GM, white bars) in the spleen (panel A) and the bone marrow (panel B) of untreated (steady-state), day-1 PHZ-treated, and day-6 EPO-treated wild-type and GATA-1 low mice. The results are presented as the mean (± SD) of 4 separate experiments. Four wild-type and 4 GATA-1 low mice were analyzed for each experimental point (4 untreated, 4 EPO-treated, and 4 PHZ-treated animals for a total of 12 wild-type and 12 GATA-1 low mice). (C) EPO concentration/response curve on the growth of CFU-E–derived (bottom) and BFU-E–derived (top) colonies in serum-deprived cultures of light-density spleen cells from wild-type (closed circles) and GATA-1 low (open triangles) mice. The results are presented as a percentage of the maximal colony growth and are the mean (± SD) of 4 separate experiments. Maximal colony efficiency (100%) was as follows: wild-type BFU-E = 68 ± 22; wild-type CFU-E = 110 ± 30; GATA-1 low BFU-E = 166 ± 30; GATA-1 low CFU-E = 750 ± 175. Identical EPO concentration/response curves were observed in cultures of marrow cells (not shown).
nucleated cells per organ increased accordingly, and up to 2.8 ± 0.3 × 10^6 cells were detected per spleen in the GATA-1^low mice. The immunohistochemistry revealed massive spleen infiltration of GATA-1^-erythroblasts at all stages of maturation that disrupted all the architecture of the organ both in the wild-type and in the GATA-1^low mice (Figure 9). After EPO treatment, the spleens of the GATA-1^low mice still contained a relatively high number of erythroblasts that stained positive for apoptosis was found to be higher than normal (60% vs 2%) (Figure 6B). That the frequency of early (BFU-E) erythroid progenitors increased after EPO stimulation but not after PHZ stimulation (Figure 7) while the percentage of bipotent (erythroid/megakaryocytic) precursor cells increased after PHZ stimulation but decreased after EPO stimulation (Figure 3) supports the notion that at least partially different mechanisms are responsible for the erythroid stimulation exerted by EPO and PHZ.

Discussion

We show that the phenotype of the GATA-1^low mutants that survive until adulthood involves not only, as reported, 12,23 accumulation of dysplastic megakaryocytes arrested at terminal stages of differentiation but also (1) massive expansion of erythroid progenitors (BFU-E and CFU-E) (Figure 7A,B) and bipotent (erythroid/megakaryocytic) precursors (Figure 4) and (2) the transition of the major hemopoietic site from the marrow to the spleen (Tables 2, 3). Because of their lower levels of GATA-1 expression, the GATA-1^low erythroblasts should have an increased apoptotic rate. 29 This suggests to us that the progenitor cell expansion is the reason the Hct levels in the adult mutants are normal and have an accelerated response to both acute (PHZ treatment) (Figure 8) and chronic (EPO administration) (Figure 10) erythroid stimulation. In fact, normal adult mice produce a constant number (64) of reticulocytes for every CFU-E, most of which (90%) egress and mature into red cells in the blood where they circulate with a half-life of 40 to 50 days. Since the Hct and the percentages of circulating reticulocytes in the GATA-1^low mice were normal (Table 1, Figures 8, 10) but their CFU-E and bipotent precursor cell compartments were expanded (Tables 2, 3), the number of their erythroblasts actually maturing into reticulocytes had to be lower than normal. In agreement with this conclusion, the proportion of GATA-1^low erythroblasts that stained positive for apoptosis was found to be higher than normal (60% vs 2%) (Figure 6B).

In apparent contrast with these data, Shivdasani et al.12 and McDevitt et al.13 had reported that the liver from the GATA-1^low fetuses (when the mutants are anemic) contained normal numbers of progenitor cells. Since these authors have not reported the number of progenitor cells in the adult tissues (when the mutants have a normal Hct), it is not possible to assess whether the different results obtained are due to the slightly different genetic background (mixed C57Bl/6-SV 129 vs mixed C57Bl/6-SV 129 plus CD 1) of the mice used in the 2 sets of studies or an ontogenetic switch in the control of the erythroid differentiation program.

The high perinatal mortality rate of the GATA-1^low mutants had suggested that the normal Hct in the adults was due to natural selection of those few animals whose erythroid cells either were more responsive to EPO30 or expressed higher levels of GATA-1 (or other members of the GATA family). In fact, in the case of targeted deletions of GATA-1,31 the GATA-1^null erythroblasts capable of differentiating in vitro from the embryonic stem cells express 50-fold higher-than-normal levels of GATA-2, a factor whose functions are at least partially redundant with GATA-1.1 Furthermore, ectopic expression of GATA-3 rescues the GATA-1^null mutation.32 However, the EPO concentration/response curves of the mutant BFU-E and CFU-E, both from the marrow (not shown) and the spleen (Figure 7C), were normal, and highly purified erythroblasts isolated from the GATA-1^low spleens expressed very low GATA-1 levels while their level of expression of
GATA-2 was comparable to that expressed by their counterpart isolated from normal spleens (Figure 6).

It is known that the physiological functions of certain genes are not always unveiled by ablation/overexpression studies in genetic mouse models because the phenotype could be masked by a homeostatic compensatory loop.33 This was the case, for example, of the Stat5a−/−Stat5b−/− mice.34,35 Since the Jak2/Stat5 pathway is the major EPO signaling pathway,36 Stat5 ablation should result, as in the case of Jak2 deletion,37,38 in fatal anemia. In contrast, Stat5a−/−Stat5b−/− mice are viable and have normal Hct levels.34 A careful analysis of their phenotype revealed, however, that, as is the case in the GATA-1low mice,13 the Stat5a−/−Stat5b−/− fetuses are anemic but the mice recover from the anemia after birth.39 In this case, normal levels of Hct were achieved by a 2-fold expansion of the size of the BFU-E compartment that compensated for the decreased CFU-E/erythroblast survival consequential to the Stat5 deletion, maintaining the CFU-E numbers within the normal range.34

The compensatory mechanism underlying the normal Hct of the GATA-1low mice was found to be very similar to that of the Stat5a−/−Stat5b−/− mice. In fact, the normal Hct observed in the adult GATA-1low mice was also associated with increased frequencies of early (BFU-E, 2-fold) and late (CFU-E, 7-fold) erythroid progenitors (Figure 7A,B) and of bipotent (greater than 20-fold) precursors (Figure 4) in their spleen. However, differences were observed between the compensatory mechanisms of the GATA-1low and the Stat5a−/−Stat5b−/− mutation in terms of types of cells involved and magnitude of expansion. In fact, in the Stat5a−/− Stat5b−/− mutants, 2-fold BFU-E expansion was sufficient to

Figure 9. Immunohistochemical analysis of spleens obtained from day-1 PHZ-treated (top panels) or day-6 EPO-treated (bottom panels) wild-type and GATA-1low mice, as indicated. Hematoxylin-eosin staining and anti-GATA-1–specific immunostaining are presented in the left and right panels, respectively (40 × magnification).
The first EPO injection was considered to be day 0. The results are presented as the mean ± SD of the values observed in 12 wild-type and 8 GATA-1low mice. Values are statistically different: *P < .05, §P < .01.

Figure 10. Hematocrit and reticulocyte counts in wild-type and GATA-1low mice during the EPO-induced polycythemia. (A) (B) Hematocrit (panel A) and reticulocyte counts (in percentage of total red cells) (panel B) in the blood of wild-type (closed circles) and GATA-1low (open triangles) mice. Polycythemia was induced with 5 consecutive EPO intraperitoneal injections, as indicated by the arrows. The day of the first EPO injection was considered to be day 0. The results are presented as the mean ± SD of the values observed in 12 wild-type and 8 GATA-1low mice. Values are statistically different: *P < .05, §P < .01.

sustain normal Hct while, in the GATA-1low mutants, the expansion required was higher (2- to 20-fold depending on the cell type) and involved mainly the CFU-E compartment. The lower magnitude of CFU-GM was, at least partially, compensated for by different mechanisms, restricted to the BFU-E compartment in one case and involving cells from BFU-E down to the bipotent cell precursor in the other.

That the GATA-1low mice have an accelerated response to both acute (Figure 8) and chronic (Figure 10) erythroid stimulation suggests that the mechanism that compensates for their erythroid defect does not saturate either the signaling pathway related to the response to stress (PHZ anemia) or the EPO pathway. It is unlikely, then, that it involves control elements extrinsic to the erythroid differentiation program, and it could be either extrinsic or intrinsic to the GATA-1 mutation itself.

One possible extrinsic mechanism could result from the fact that the chronic thrombocytopenia stimulates growth factor production in vivo. Although the serum from the GATA-1low mice contains normal levels of EPO and SCF (data not shown), thrombocytopenia stimulates thrombopoietin (TPO) production, which has been shown in vivo to increase the number of megakaryocytic as well as erythroid progenitor cells. However, the frequency of megakaryocytic progenitors was normal in the tissues of the mutant mice (32.5 ± 7.5 vs 26.0 ± 6.5 per 10⁵ cells). Furthermore, their marrow and spleen contained high numbers of immature megakaryocytes interspersed with the erythroid cells (Figure 2, 3; also results not shown). Since megakaryocytes are responsible for binding and degrading TPO in vivo, their high numbers make it unlikely that TPO could accumulate in the mutant tissues at levels above normal. Other growth factors, produced as a consequence of the thrombocytopenia, might prime erythroid cells to be more sensitive to EPO. However, as mentioned earlier, the EPO concentration/response curves of the mutant erythroid progenitors were normal (Figure 7C).

Alternatively, the compensatory mechanism of the GATA-1low mutation in adult mice could be intrinsic to the mutation itself. In fact, it has been shown that GATA-2 expression favors proliferation over differentiation in experimental models and is suppressed, either directly or indirectly, by GATA-1 itself. It has been, therefore, suggested that the ratio between the levels of GATA-2 and GATA-1 expression determines whether a progenitor cell will proliferate (high GATA-2) or differentiate (high GATA-1). According to this model, the lower-than-normal levels of GATA-1 expression in the GATA-1low mice would allow the erythroid progenitors to express GATA-2 for a longer period of time, favoring their proliferation over differentiation. Eventually, because of the long GATA-1 messenger RNA and protein half-life, progenitor cells would accumulate enough GATA-1 to suppress GATA-2 expression and to begin erythroid differentiation.

It remains to be explained why the phenotype of the adult mutants involves the transition of the major hemopoietic site from the marrow to the spleen. Similar increases in the percentage of erythroid cells were observed in the marrow and spleen from the GATA-1low mice (Figure 7 and results in the text). However, because the marrow from the mutants had poor cellularity (Table 1), it contained absolute numbers of erythroid progenitor and precursor cells similar to, if not lower than, normal (Table 2). It is possible that this transition is pleiotropic to the mutation itself and is linked to the different accessory cell populations present in the marrow and spleen and how they respond to growth factors released by the megakaryocytes. The marrow, but to a much lesser extent the spleen, contains fibroblasts, endothelial cells, and osteoblasts, all of which are exquisitely responsive to growth factors, such as platelet-derived growth factor, released by the megakaryocytes. Therefore, stromal cells within the GATA-1low marrow might be continuously stimulated, and their consequent proliferation might reduce, over time, the space available for the hemopoietic cells, forcing them to migrate in the spleen. In agreement with this hypothesis, marrow sections from adult GATA-1low mice show gross accumulation of collagen fibers and a
myelofibrosis-like morphology. We are currently investigating whether the phenotype of the adult GATA-1^{−/−} mutants involves development of myelofibrosis and how the mutation is eventually responsible for this disease.

The data presented here might have some clinical relevance; in fact, 2 GATA-1 mutations have been recently described in humans that result in partially defective protein function and thrombocytopenia associated with either dyserythropoietic anemia¹⁹ or thalassemia.²⁰ The fact that the GATA-1^{−/−} mice respond better than the normal mice to erythropoietic stimulation (Figures 8 and 10) suggests that treatment with EPO may correct, at least in part, the erythroid defect in some of these patients.

Acknowledgments

We thank Dr Stuart Orkin for providing the GATA-1^{−/−} mouse model, for continuous support, and for critical reading of the manuscript; Professor Giuliano D’Agnolo for encouragement; Luca Marsili for assistance with the breeding program; and Margaret Oppenheimer for editorial assistance.

References

Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1low mice)

Alessandro Maria Vannucchi, Lucia Bianchi, Cristina Cellai, Francesco Paoletti, Valentina Carrai, Anna Calzolari, Lucia Centurione, Rodolfo Lorenzini, Claudio Carta, Elena Alfani, Massimo Sanchez, Giovanni Migliaccio and Anna Rita Migliaccio

Updated information and services can be found at: http://www.bloodjournal.org/content/97/10/3040.full.html

Articles on similar topics can be found in the following Blood collections
- Hematopoiesis and Stem Cells (3450 articles)
- Red Cells (1159 articles)

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml