Recipient Tumor Necrosis Factor-α and Interleukin-10 Gene Polymorphisms Associate With Early Mortality and Acute Graft-Versus-Host Disease Severity in HLA-Matched Sibling Bone Marrow Transplants

By James Cavet, Peter G. Middleton, Miriam Segall, Harriet Noren, Stella M. Davies, and Anne M. Dickinson

Abstract

The proinflammatory cytokine tumor necrosis factor-α (TNF-α) is strongly implicated in graft-versus-host disease (GVHD) and other acute bone marrow transplant (BMT) complications. The antiinflammatory interleukin-10 (IL-10) antagonizes TNF-α and reduces GVHD. We previously showed association of recipient TNF (TNFd) and IL-10 (IL-10-1064) gene polymorphisms with acute GVHD severity in matched sibling BMT using cyclosporin A monotherapy. The current study tested association of GVHD with TNFd and IL-10-1064/-1082 polymorphisms in a large cohort (144 matched sibling donor/recipient pairs) given both cyclosporine A (CyA) and methotrexate (MTX) prophylaxis. Genotype results were correlated with acute and chronic GVHD and mortality. Patients homozygous for the TNFd microsatellite allele 3 had higher early mortality: 23.7% of TNFd3/d3 homozygotes died before day 30, compared with 6.80% of non-d3/d3 recipients (P = .013). Recipients possessing longer IL-10-1064 microsatellite alleles developed more severe acute GVHD: 22.3% of recipients possessing alleles 12 to 15 developed grade III to IV GVHD, versus 3.92% of those with smaller alleles (P < .01). Other recipient or donor genotypes tested did not significantly affect GVHD or mortality. We conclude that recipient TNFd and IL-10-1064 polymorphisms associate with early mortality and severe acute GVHD in matched sibling BMT with dual prophylaxis. This supports the hypothesis of genetic predisposition towards GVHD and other BMT complications other than histocompatibility antigen disparity.

**From the University Department of Haematology, School of Clinical and Laboratory Sciences, The Medical School, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK; and the Department of Bone Marrow Transplantation and Clinical Research, University of Minnesota, Minneapolis, MN.

Submitted April 6, 1999; accepted July 20, 1999.

Supported by grants from the Leukaemia Research Fund (to J.C.) and the Tyneside Leukaemia Research Association (to A.M.D.).

Address reprint requests to James Cavet, MBBS, MRCP, Department of Haematology, Royal Victoria Infirmary, Victoria Rd, Newcastle Upon Tyne, NE1 4LP, UK.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1999 by The American Society of Hematology.

0006-4971/99/9411-0012$3.00/0
leukemia; AA, aplastic anemia; MM, multiple myeloma.

2

and chronic GVHD with TNFd and IL-10

2

by cyclophosphamide (60 mg/kg twice daily on the fourth day (total 1,375 cGy), and 4 pediatric patients except for 2 patients who received 125 cGy 3 times daily for 3 days and by fractionated TBI (165 cGy twice daily for 4 days; total 1,320 cGy); Conditioning comprised of cyclophosphamide (60 mg/kg 2). All grafts were non–T-cell depleted and GVHD prophylaxis consisted of CyA from day 15 mg/m 2

2

approved by the University of Minnesota Institutional Review Board. Outcomes (Table 1). All patients or their guardians signed consent forms the University of Minnesota were genotyped, while blinded to clinical

antigens; by high resolution molecular typing for HLA-DRB1) BMT at

determining the severity of transplant complications. In this

study, we strengthen that hypothesis, showing that recipient genetic factors are important in determining the severity of transplant complications. In this

we used to ensure accuracy. As TNFd is within the MHC complex, TNFd genotype acted as a control for donor/recipient pair matching.

IL-10 haplotypes were determined in an IL-10-1064 allele-specific PCR including the IL-10-1064 microsatellite in the product, thereby ascertainment the IL-10-1064 allele together with its associated IL-10-1082 G or A allele. Primers were 5'-AGCAACACTCCTCGTCGCAAC-3' (JW-F) with 5'-CCTACCTTACTTCCC-3' (B1) or 5'-CCTATCCTACTTCCCTC T3' (B2). Reactions contained 20 μmol/L of each primer, 0.5 U Taq polymerase (Bioline, London, UK) and 200 μmol/L deoxyribonucleoside triphosphates (dNTP) mixture with 1.5 mmol/L MgCl2 in 1x NH4 Buffer (Bioline) in addition to test DNA, to a final volume of 25 μL. Amplification was performed on Perkin-Elmer thermal-cycler (Norwalk, CT) with 30 cycles of: 94°C for 30 seconds; 60°C for 60 seconds; 72°C for 60 seconds; followed by a final extension of 72°C for 7 minutes.

Statistical analysis. Data were analyzed in contingency tables by Fisher’s exact test (other than Kaplan-Meier survival-curve comparison by χ2), using GraphPad Prism 2 software (GraphPad Software Inc, San Diego, CA), with P values (all 2-sided) less than .05 regarded as statistically significant.

RESULTS

TNFd polymorphism frequencies. A total of 562 TNFd alleles was analyzed; 8 samples could not be typed. Allele frequency distribution did not differ significantly from previous reports,16,19,20 with homozygote frequencies comparable to those predicted by the Hardy-Weinberg equilibrium (eg, TNFd3/d3: predicted = 72 pairs; observed = 76). One pair exhibited a single TNFd mismatch (donor genotype d3d4; recipient d4d5).

IL-10 polymorphism haplotypes. A total of 574 IL-10-1064 alleles was ascertainable; allele frequency distribution did not differ significantly from previous reports,20,29,30 with comparable homozygote frequencies to those predicted (eg, IL-10-1064 i9i9: predicted = 45 pairs, observed = 51). The IL-10-1082 (G/A)-polymorphism was ascertained for 430 alleles, with comparable frequencies to previous reports (Table 2).16,19,31 Haplotype analysis showed IL-10-1064 alleles possessing greater numbers of dinucleotide repeats, referred to as i(12-16), to be preferentially associated with IL-10-1082 A. One hundred sixty-three of 276 IL-10-1064 i(7-11) alleles were associated with a G allele at IL-10-1082, and 101 of 154 IL-10-1064 i(2-16) alleles associated with IL-10-1082 A (P < .001). This is consistent with findings from both normal subjects and the previously analyzed Northern UK BMT cohort (P.G.M., unpublished observation, February 1999).

Clinical outcomes. Of the 144 patients, 16 died before day 30, hence 128 were evaluable for aGVHD grade. Twelve of these 16 had sepsis (6 fungal), 6 diffuse alveolar/pulmonary hemorrhage, 3 multisystem organ failure (MSOF), 2 hyperammonemia, 1 acute respiratory distress syndrome, and 1 VOD. Eighty-eight patients developed aGVHD (grading according to Glucksberg et al13).: 26 grade I, 43 grade II, 17 grade III, and 2 grade IV aGVHD. A further 18 patients died before day 100, leaving 110 evaluable for cGVHD grade. Presence of aGVHD showed a trend toward correlation with cGVHD risk: 11 of 32 patients without aGVHD surviving >100 days developed de

Table 2. IL-10-1064-1082 Haplotypes

<table>
<thead>
<tr>
<th>IL-10-1064 i(a)</th>
<th>IL-10-1082 G</th>
<th>IL-10-1082 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>i(7-11)</td>
<td>163</td>
<td>113</td>
</tr>
<tr>
<td>i(12-16)</td>
<td>53</td>
<td>101</td>
</tr>
</tbody>
</table>

Abbreviations: CML, chronic myeloid leukemia; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; NHL, non-Hodgkin’s lymphoma; ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; AA, aplastic anemia; MM, multiple myeloma.

MATERIALS AND METHODS

BMT patient characteristics. A total of 144 sibling donor/recipient pairs who had undergone HLA-matched (serologically for HLA-A/B antigens; by high resolution molecular typing for HLA-DRB1) BMT at the University of Minnesota were genotyped, while blinded to clinical outcomes (Table 1). All patients or their guardians signed consent forms approved by the University of Minnesota Institutional Review Board. Conditioning comprised of cyclophosphamide (60 mg/kg × 2) followed by fractionated TBI (165 cGy twice daily for 4 days; total 1,320 cGy); except for 2 patients who received 125 cGy 3 times daily for 3 days and twice daily on the fourth day (total 1,375 cGy), and 4 pediatric patients who received 200 cGy twice daily for 3 days (total 1,200 cGy), followed by cyclophosphamide (60 mg/kg × 2). All grafts were non–T-cell depleted and GVHD prophylaxis consisted of CyA from day 3 (maintaining levels between 200 to 400 ng/mL assayed by high-performance liquid chromatography) and short course MTX (15 mg/m2 day 1 and 10 mg/m2 days 2, 3, 6, 11).

TNFa and IL-10 genotypes. Donor/recipient genotypes for the TNFa and IL-10-1064-1082 polymorphisms were determined as pre-
novocGvHD, while 44 of 78 with grade I to IV aGVHD went on to develop cGVHD (P = .058). Of the 55 patients developing cGVHD, 4 had limited and 51 had extensive disease (grading according to Atkinson et al[34]).

Median follow-up duration was 869 days. Overall survival was 47.2% (76 deaths) and showed significant correlation with presence of aGVHD: 62 of 109 (57.8%) patients with grade 0 to II aGVHD survived, compared with 6 of 19 (31.6%) with grade III to IV aGVHD (P = .049). cGVHD presence did not correlate with overall survival (P = 1.0). If the 6 patients who received nonstandard conditioning were excluded, the rates of mortality and GVHD were no different, as none of these patients died before day 30 nor did they develop severe aGVHD.

Early mortality. TNF3/d3 genotype (shared by donor and recipient) was significantly associated with early mortality: 23.7% (9 of 37) of TNF3/d3 homozygotes died before day 30, compared with 6.80% (7 of 96) of nond3/d3 recipients (P = .013) (Table 3). Possession of only 1 TNF3 allele was not associated with early death (P = .56). Early death was not associated with recipient status at either IL-10 or TNF3 polymorphism.

Acute GVHD. TNF3/d3 genotype was not associated with severe aGVHD (grade III to IV) in those surviving more than 30 days (P = .24) (Table 4). Recipient IL-10−1064 alleles with larger numbers of dinucleotide repeats were significantly associated with severe aGVHD: 22.3% (17 of 76) of recipients possessing 1 or more i(12-16) allele developed grade III to IV aGVHD, while 3.92% (2 of 51) of recipients with only i(7-11) alleles developed grade III to IV aGVHD (P = .0045). Recipient IL-10−1082 or donor IL-10 genotypes did not associate with aGVHD.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Alive >30 Days</th>
<th>Dead by Day 30</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF3/d3*</td>
<td>29</td>
<td>9</td>
<td>.013</td>
</tr>
<tr>
<td>Non-d3/d3†</td>
<td>96</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TNF3+i‡</td>
<td>91</td>
<td>13</td>
<td>.561</td>
</tr>
<tr>
<td>TNF3−§</td>
<td>34</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Donor IL-10−1064</td>
<td>i(7-11) only</td>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>Donor IL-10−1082</td>
<td>i(12-16) present</td>
<td>74</td>
<td>10</td>
</tr>
<tr>
<td>GG</td>
<td>17</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>A present</td>
<td>53</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>24</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>G present</td>
<td>46</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Recipient IL-10−1064</td>
<td>i(7-11) only</td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>Recipient IL-10−1082</td>
<td>i(12-16) present</td>
<td>76</td>
<td>9</td>
</tr>
<tr>
<td>GG</td>
<td>36</td>
<td>5</td>
<td>.529</td>
</tr>
<tr>
<td>A present</td>
<td>88</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>30</td>
<td>2</td>
<td>.732</td>
</tr>
<tr>
<td>G present</td>
<td>94</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

*TNF3/d3 homozygotes.
†TNF genotypes other than d3/d3.
‡Genotypes with 1 or more TNF3 allele.
§Genotypes without a TNF3 allele.

Chronic GVHD. Neither donor nor recipient TNF3 or IL-10 polymorphisms were associated with cGVHD (Table 5). Median TNF3/d3 homozygous recipient survival was 373 days compared with 467 days for non-d3/d3 recipients (Kaplan Meier x², P = .29). Recipient IL-10−1064 polymorphism length did not correlate with overall survival, despite association with aGVHD severity: 40 recipi-
homozygotes had increased severe aGVHD. In this current study given combined CyA/MTX prophylaxis, TNF3/d3 homozygotes who survived the initial month did not exhibit more severe aGVHD. The differences observed between the 2 studies may reflect increased prophylaxis (overall rate of grade III to IV aGVHD 22.4% in the monotherapy study compared with 14.8% in the current cohort given CyA/MTX). The addition of MTX may have reduced TNF-α’s influence on aGVHD without modulating that of IL-10, which is not mediated solely via TNF-α-antagonism; similar differential effects of MTX on cytokine release have been described in systemic lupus erythematosus.28 Alternatively, TNF3/d3 homozygotes who died early might otherwise have subsequently developed severe aGVHD. The previous study was not designed to assess early transplant outcomes, as only those recipients who had aGVHD grade ascertainable were analyzed.20

TNF3d3 homozygous recipients’ overall median survival was decreased, but not to a significant degree, despite a significantly increased early mortality. This may reflect the fact that other causes of death such as relapse make a large contribution to overall survival, and the fact that TNF3d3 homozygotes constitute only 25% of the population. Knowledge of a genetic predisposition to inflammatory TRC might aid pretransplant assessment and counselling. TNF3 genotyping may facilitate targeting of experimental TNF-α antagonists, such as anti–TNF-α antibodies11 or soluble-TNF-receptors,7 toward recipients with the high-risk TNF3/d3 genotype. Alternatively, recipients might benefit from alteration in conditioning; however, as only 6 patients differed from the routinely used TBI dose, it is not possible to determine if the association of TNF3d3 with TRC was dependent on the conditioning regimen.

Recipients possessing IL-10−1064 alleles with greater (CA)n repeat numbers had more severe aGVHD, in agreement with previous findings in recipients given CyA alone.20 The associations of TNF3 and IL-10−1064 genotype with grade III to IV aGVHD demonstrated in the CyA monotherapy BMT cohort could be combined to show cumulative risk of severe GVHD.20 However, in the current study, TNF3 homozygosity was associated with fatal early TRC and hence assessment of TNF3d3 in conjunction with IL-10−1064 genotype in relation to aGVHD was not possible. No association of either of the IL-10 polymorphisms tested with GVHD was found in donors.

Linkage of the IL-10 polymorphisms examined to neighboring genes is unlikely to account for the observed relationship, as no other genes currently implicated in GVHD map to chromosome 1q. In normal subjects, the IL-10−1064 genotype A allele associates with lower in vitro IL-10 production by concanavalin A–stimulated lymphocytes.31 IL-10 haplotyping (Table 2) indicates that longer IL-10−1064 alleles associate preferentially with the IL-10−1064 A allele. Similar allelic linkage has been observed in other populations (P.G. M., unpublished observation, February 1999). Hence, longer IL-10−1064 alleles may associate with lower in vitro lymphocyte IL-10 release. However, the IL-10−1064 allele 14 is reported to associate with higher in vitro IL-10 release from lipopolysaccharide-stimulated whole blood.29 Differences in composition of cell population and stimulating mitogens make extrapolation from such in vitro to in vivo data difficult.

cGVHD did not associate with either IL-10 polymorphism, despite cGVHD usually occurring after preceding aGVHD.37 Although cGVHD has been linked to reduced IL-10,27

Table 6. Overall Survival Correlation With Genotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Alive</th>
<th>Dead</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF3/d3*</td>
<td>16</td>
<td>22</td>
<td>.434</td>
</tr>
<tr>
<td>Non-d3/d3†</td>
<td>51</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>TNF3 + ‡</td>
<td>47</td>
<td>57</td>
<td>.444</td>
</tr>
<tr>
<td>TNF3 – §</td>
<td>20</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Donor IL-10−1064</td>
<td>2</td>
<td>2</td>
<td>.567</td>
</tr>
<tr>
<td>i(7-11) only</td>
<td>25</td>
<td>34</td>
<td>.398</td>
</tr>
<tr>
<td>i(12-16) present</td>
<td>42</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Donor IL-10−1062</td>
<td>2</td>
<td>2</td>
<td>.567</td>
</tr>
<tr>
<td>GG</td>
<td>11</td>
<td>7</td>
<td>.291</td>
</tr>
<tr>
<td>A present</td>
<td>27</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>13</td>
<td>13</td>
<td>1.0</td>
</tr>
<tr>
<td>G present</td>
<td>25</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Recipient IL-10−1064</td>
<td>40</td>
<td>45</td>
<td>.567</td>
</tr>
<tr>
<td>i(7-11) only</td>
<td>27</td>
<td>31</td>
<td>.10</td>
</tr>
<tr>
<td>i(12-16) present</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Recipient IL-10−1062</td>
<td>2</td>
<td>2</td>
<td>.567</td>
</tr>
<tr>
<td>GG</td>
<td>22</td>
<td>19</td>
<td>.457</td>
</tr>
<tr>
<td>A present</td>
<td>44</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>16</td>
<td>14</td>
<td>.567</td>
</tr>
<tr>
<td>G present</td>
<td>48</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

*TNF3d3 homozygotes.
†TNF genotypes other than d3/d3.
‡Genotypes with 1 or more TNF3d3 allele.
§Genotypes without a TNF3d3 allele.

DISCUSSION

Preliminary studies led us to hypothesize that recipient cytokine gene polymorphism was related to inflammatory complications of BMT, including GVHD; the results of this study are consistent with this hypothesis. Transplant recipients who were homozygous for the TNF3 allele had significantly higher early mortality, suggesting genetic susceptibility to fatal acute inflammatory TRC. Of the 9 TNF3 homozygotes dying within the first month, 3 had diffuse alveolar hemorrhage associated with sepsis, 2 developed MOF in association with severe sepsis, 2 succumbed to fungal infection, 1 to respiratory syncitial virus pneumonia, and 1 to Citrobacter septicemia. TNF-α release is implicated in pathogenesis of aGVHD, VOD, MOF, and septic shock.15 The association of fatal early TRC and TNF3 polymorphism is consistent with the hypothesis that recipient genetic variation in cytokines influences BMT outcome. The association between TNF3d3 genotype and inflammatory TRC including aGVHD probably reflects increased TNF-α release as demonstrated in cardiac allograft recipients.14 However, the TNF3 microsatellite lies within the neighboring LST-1 gene, the function of which is unknown, and another mechanism cannot currently be excluded. As the study was retrospective, no TNF-α levels were available.

In our previous study using CyA monotherapy, TNF3d3 homozygotes had increased severe aGVHD.20 In this current cohort given combined CyA/MTX prophylaxis, TNF3d3 homozygotes who survived the initial month did not exhibit more severe aGVHD. The differences observed between the 2
IL-10^1064/1082^ genotype is not informative with respect to cGVHD in this study.

Pretransplant IL-10^1064^ genotyping may allow more individually tailored prophylaxis, with increased immunosuppression administered only to patients with high aGVHD risk-associated genotypes. Typing recipients may aid decisions regarding those who could benefit most from experimental antiinflammatory cytokines such as recombinant IL-10. Reduced prophylaxis for recipients with low aGVHD risk-associated genotypes transplanted for malignancy might permit enhanced GV/L effect, hence reducing risk of relapse without adding to aGVHD morbidity and mortality.

A combination of established GVHD risk factors in HLA-matched siblings, such as skin explant analysis,^39^ minor histocompatibility antigen incompatibility, and herpes/cytomegalovirus status,^1^ with genotyping for TNF and IL-10 polymorphisms (and other potential genotypic risk factors) could allow the creation of a GVHD risk index. Such an index would facilitate accurate individual risk calculation, permitting adjustment of prophylaxis accordingly. Although IL-10 genotype's influence on aGVHD has been demonstrated in cohorts given differing prophylaxis, further studies of both TNF and IL-10 polymorphisms' role in modulating GVHD will be important in building such a risk index, together with investigation of other candidate immunogenetic polymorphisms.

Our findings support the hypothesis that recipient response during BMT conditioning is critical in subsequent outcome and that this involves a substantial genetic component. Recipient cytokine genotype could be used to guide more appropriate GVHD prophylaxis, both established and experimental, particularly in combination with other risk factors.

ACKNOWLEDGMENT

We acknowledge Gretchen Radloff (Department of Bone Marrow Transplantation, Minneapolis, MN) for assistance with samples and clinical data and Jane Worthington (School of Biological Sciences, University of Manchester) for the IL-10 JW-F primer.

REFERENCES

23. Matsuda M, Salazar F, Petersson M, Masucci G, Hansson J, Pisa...
Recipient Tumor Necrosis Factor-α and Interleukin-10 Gene Polymorphisms Associate With Early Mortality and Acute Graft-Versus-Host Disease Severity in HLA-Matched Sibling Bone Marrow Transplants

James Cavet, Peter G. Middleton, Miriam Segall, Harriet Noreen, Stella M. Davies and Anne M. Dickinson