HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY

Direct Evidence of Endothelial Injury in Acute Myocardial Infarction and Unstable Angina by Demonstration of Circulating Endothelial Cells

By Murielle Mutin, Isabelle Canavy, Andrew Blann, Michel Bory, José Sampol, and Françoise Dignat-George

Circulating endothelial cells (CECs) have been detected in association with endothelial injury and therefore represent proof of serious damage to the vascular tree. Our aim was to investigate, using the technique of immunomagnetic separation, whether the pathological events in unstable angina (UA) or acute myocardial infarction (AMI) could cause desquamation of endothelial cells in circulating blood compared with effort angina (EA) and noncoronary chest pain. A high CEC count was found in AMI (median, 7.5 cells/mL; interquartile range, 4.1 to 43.5, P<.01 analysis of variance [ANOVA]) and UA (4.5; 0.75 to 13.25 cells/mL, P<.01) within 12 hours after chest pain as compared with controls (0; 0 to 0 cells/mL) and stable angina (0; 0 to 0 cells/mL). CEC levels in serial samples peaked at 15.5 (2.7 to 39) cells/mL 18 to 24 hours after AMI (P<.05 repeated measures ANOVA), but fell steadily after UA. Regardless of acute coronary events, the isolated cells displayed morphologic and immunologic features of vascular endothelium. The CECs were predominantly of macrovascular origin. They did not express the activation markers intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin, although some were positive for tissue factor. CECs failed to exhibit characteristics of apoptosis (TUNEL assay) excluding this event as a possible mechanism of cell detachment. The presence of CECs provides direct evidence of endothelial injury in AMI and UA, but not in stable angina, confirming that these diseases have different etiopathogenic mechanisms.

© 1999 by The American Society of Hematology.

MATERIALS AND METHODS

Patient selection and diagnosis. Subjects were recruited from among those admitted to the coronary care unit at CHU Timone (Marseille, France). Local ethical committee approval was obtained according to the Declaration of Helsinki, and written informed consent was obtained from each subject. They were categorized into four groups: the target groups AMI and UA and the two control groups of EA and patients presenting with noncoronary chest pain. Characteristics and risk factors of patients are listed in Table 1. All of the patients selected for the study did not undergo catheterization and percutaneous angioplasty before and during the time of the study. For each patient included, standard coronary angiography was performed after the completion of the study, 8 days after admission for AMI, 5 days after for UA and controls, and 24 hours after for EA. Coronary artery aspect was analyzed according to the classification of Ambrose et al. Diagnosis and coronary angiography characteristics of patients are summarized in Tables 2 and 3.

From the Laboratoire d’Hématologie et d’Immunologie, U.F.R. de Pharmacie, Marseille Cedex; Laboratoire d’Hématologie, Hôpital de la Conception, Marseille Cedex; Service de cardiologie A, centre hospitalier et universitaire de la Timone, Marseille Cedex, France; and Haemostasis, Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK.

Submitted June 15, 1998; accepted December 18, 1998.

Supported in part by Hoechst Laboratories.

Address reprint requests to Françoise Dignat-George, PhD, Laboratoire d’Hématologie et d’Immunologie, U.F.R. de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; e-mail: hematin@pharmacie.univ-mrs.fr.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1999 by The American Society of Hematology.

0006-4971/99/9309-0004$3.00/0

Blood, Vol 93, No 9 (May 1), 1999: pp 2951-2958

2951
Diagnosis of AMI was made within 24 hours after the onset of symptoms according to established criteria of the World Health Organization. At least two of the three following criteria were present: typical sustained chest pain, electrocardiogram (ECG) Q wave, and raised peak creatinine kinase (CPK). All patients showed raised CPK (peak median, 639 IU/mL; interquartile range [IQR], 307 to 988; 12 to 18 hours after admission) and coronary stenoses. Diagnosis of UA was made within 12 hours after the onset of symptoms with electrocardiographic changes on ST segment during angina pectoris crisis. All patients presented creatinine kinase levels within normal range and subsequently showed coronary stenoses. Diagnosis of EA was performed by exercise testing with a bicycle ergometer according to the protocol (30 W each for 3 minutes). Exercise was stopped when angina pectoris or ST segment depression appeared.

Diagnosis of control group was made within 12 hours after noncoronary chest pain. Creatinine kinase was normal. Coronary angiography showed no stenosis. All patients from AMI, UA, and control groups received the same medical treatment: unfragmented heparin (choay: 5,000 IU as a bolus and 1,000 IU/h during 8 days adaptable in function of activated partial thromboplastin time [aPTT]), aspirin (160 mg/d), and 1,000 IU/h during 8 days adaptable in function of activated partial thromboplastin time (aPTT)).

Blood collection. For CEC quantitation, the first 2 mL of blood drawn were discarded to avoid contamination by endothelial cells from the punctured vessel wall. A total of 5 mL of blood was then collected into EDTA. For the AMI, UA, and control groups, a first blood sample was collected before undertaking the exercise tolerance test, just after the chest pain, and again 4 hours later. For the EA group, one sample was collected every 6 hours, for up to 42 hours. For the EA group, one sample was collected before undertaking the exercise tolerance test, just after the chest pain, and again 4 hours later.

Antibodies. For immunocapture of CECs from whole blood, S-Endo 1 (Biocytex, Marseille, France), a MoAb raised against human umbilical vein endothelial cells (HUVEC) in our laboratory,11 was used. This MoAb was selected because of its strong reactivity for endothelial cells from all vascular beds and its negative reaction with hematopoietic...
cells, mesothelial cells, or fibroblasts. This antibody also reacts moderately with smooth muscle cells. For the immunological characterization of the cells, we used the following antibodies: a rabbit polyclonal antibody against human von Willebrand factor (vWF, a kind gift from Y. Sultan, Laboratoire d'Hematologie, Hopital de la Milertrie, Poitiers, France), a murine MoAb against smooth muscle α-actin (IgG2a, clone 1A4; Sigma, St Quentin-Fallavier, France); MoAbs against the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) (IgG1, clone F431C2/B7; Biocytex, Marseille, France), vascular cell adhesion molecule-1 (VCAM-1) (IgG1, clone 1G11; Immunotech, Marseille, France), and E-Selectin (IgG1, clone 1B26; Immunotech). Fluorescein isothiocyanate (FITC) conjugated MoAb against tissue factor (TF) (IgG1, clone TF9; Ortho Diagnostic System, Cambridge, UK). Biotinylated nucleotides were incorporated into the apopically generated DNA ends using TdT. The covalently bound biotinylated nucleotides were detected using a streptavidin-fluorescein conjugate. Nuclei were counterstained with a solution of 1 µg/mL propidium iodide during 5 minutes. Cell preparations were analyzed with a Leica confocal microscope.

Detection of apoptotic cells. Apoptotic cells were identified by the detection of DNA strand breaks using the technique of in situ terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) using a commercial kit: the TdT in situ apoptosis detection kit-fluorescein (Genzyme Diagnostics, Cambridge, UK). Biotinylated nucleotides were incorporated into the apopically generated DNA ends using TdT. The covalently bound biotinylated nucleotides were detected using a streptavidin-fluorescein conjugate. Nuclei were counterstained with a solution of 1 µg/mL propidium iodide during 5 minutes. Cell preparations were analyzed with a Leica confocal microscope.

Statistical analysis. The sign test was used to show that the distribution of the CEC data was nonnormal and is therefore presented as median and interquartile range (IQR). Data from the four groups of subjects (AMI, UA, EA, and controls) was analyzed by the Kruskal-Wallis test with three degrees of freedom. It was then log transformed to allow Tukey’s post hoc test to be applied. Serial data were analyzed by repeated measures (Friedman’s two-way) analysis of variance on Minitab 10 extra.

RESULTS

Cross-sectional estimation of CECs. The levels of CECs were determined on blood samples obtained within 12 hours of the development of symptoms (Fig 1). Median CEC count was

anti-rabbit for vWF antibody, FITC-goat anti-mouse for the unconjugated MoAbs, or PBS-milk for FITC-conjugated first MoAbs during 2 hours. The slides were then washed with PBS incubated 5 minutes with 1 µg/mL propidium iodide (Sigma), washed, and mounted in Moeviol. Cell preparations were analyzed with a Leica confocal microscope (Lyon, France).

Detection of apoptotic cells. Apoptotic cells were identified by the detection of DNA strand breaks using the technique of in situ terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) using a commercial kit: the TdT in situ apoptosis detection kit-fluorescein (Genzyme Diagnostics, Cambridge, UK). Biotinylated nucleotides were incorporated into the apopically generated DNA ends using TdT. The covalently bound biotinylated nucleotides were detected using a streptavidin-fluorescein conjugate. Nuclei were counterstained with a solution of 1 µg/mL propidium iodide during 5 minutes. Cell preparations were analyzed with a Leica confocal microscope.

Statistical analysis. The sign test was used to show that the distribution of the CEC data was nonnormal and is therefore presented as median and interquartile range (IQR). Data from the four groups of subjects (AMI, UA, EA, and controls) was analyzed by the Kruskal-Wallis test with three degrees of freedom. It was then log transformed to allow Tukey’s post hoc test to be applied. Serial data were analyzed by repeated measures (Friedman’s two-way) analysis of variance on Minitab 10 extra.
7.5 cells/mL (IQR, 1.5 to 43.5 cells/mL) in the AMI group and
4.5 cells/mL (IQR, 0.75 to 13.25) in UA. In both the EA (before
test exercise) and control groups, no CECs were detected
(median, both 0; IQR, both 0 to 0). Log transformation of these
data followed by Tukey’s test showed levels to be higher in AMI
than in both EA and controls (both \(P < .01 \)). Levels in UA were
higher than in both EA and controls (both \(P < .05 \)). Levels
between AMI and UA and between EA and controls were not
significantly different. Our data does not support the hypothesis
that pharmacologic treatment and the release of endothelial
cells are linked because the four groups received the same
medication, but only AMI and UA patients presented CECs
(Table 4). It is noteworthy that among the four patients treated
by thrombolysis, two presented high levels of CECs (100 and
550 cells/mL), while the remainder presented low levels (0 and
7 cells/mL within the first 12 hours).

Serial estimation of CECs. Five serial blood samples were
obtained from 26 patients suffering from an AMI, four samples
from 20 patients in UA, and three samples from 13 patients
undergoing the treadmill exercise test (Table 4). Data were
analyzed by Friedman’s two-way repeated measures of analysis
of variance (ANOVA). For the AMI, there was a significant
peak in CECs at 18 to 24 hours (\(P = .009 \) overall repeated
measures ANOVA, \(P < .05 \) peak \(\nu < 12 \) hours sample and \(\nu 30 \)
to 42 hours sample). There was no change in levels of CECs in
UA (\(P = .451 \)) or in EA, despite the immediate peak postexer-
cise due to exercise testing (\(P = .417 \)).

Morphologic aspects. After immunomagnetic separation
and cell observation in the hemocytometer, the same morpho-
logic features were noticed between cells harvested from AMI
and from UA. In both cases, different cytological patterns were
observed after staining with the fluorescent probe acridine
orange or with May-Grünwald-Giemsa: a majority of cells were
observed after staining with the fluorescent probe acridin
and from UA. In both cases, different cytological patterns were
accounted for cell desquamation, we investigated nuclear DNA
fragmentation of CECs from four patients with AMI and four
patients with UA displaying the highest levels of CECs. In each
sample examined, less than 10% of cells was found to be
positive. The majority, including the endothelial sheets, were
devoid of green staining showing the lack of DNA breaks, but
showed a uniform nuclear staining with propidium iodide
(Fig 4).

Immunofluorescence staining. To confirm the endothelial
origin of the circulating cells and exclude contamination by
smooth muscle cells, double immunological stainings for vWF
and smooth muscle-specific \(\alpha \)-actin were performed on the
recovered cells. On all cell types examined, vWF was detected
as granular structures uniformly distributed in cytoplasm (Fig
3A through C), whereas antismooth muscle-specific \(\alpha \)-actin
labeling was negative. Cell staining was compared with control
slides of mixed human umbilical vein endothelial cells (HUVEC)
(vWF positive) and smooth muscle cells (\(\alpha \)-actin positive) (Fig 3D).

Information regarding the origin of CECs was obtained by
staining with CD36, a marker that is present predominantly in
microvascular endothelium.\(^{24,26}\) By double-staining for CD36
and vWF, we showed that the cells isolated in samples from
patients with AMI (n = 6) or with UA (n = 6) did not express
CD36 and therefore were predominantly of macrovascular
origin. Negative and positive controls were provided by lympho-
cytes and granulocytes (CD36 negative) and monocytes and
platelets (CD36 positive) on blood smears. To assess whether
endothelial cells circulate in an activated state, we analyzed on
the same AMI and UA samples, the dual expression of vWF
with molecules that appear on activated endothelial cells,
namely ICAM-1, VCAM-1, E-selectin, and tissue factor. Only
tissue factor was expressed by 25% of the CECs examined. Cell
staining was compared with negative and positive control slides
of resting and TNF (10 ng/mL) activated HUVEC.

Detection of DNA degradation. To assess if apoptosis
accounted for cell desquamation, we investigated nuclear DNA
fragmentation of CECs from four patients with AMI and four
patients with UA displaying the highest levels of CECs. In each
sample examined, less than 10% of cells was found to be
positive. The majority, including the endothelial sheets, were
devoid of green staining showing the lack of DNA breaks, but
showed a uniform nuclear staining with propidium iodide
(Fig 4).

Table 4. Serial Changes in Levels of CECs After AMI, UA, and EA

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Time Point</th>
<th>Median CEC</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td><12 h</td>
<td>7.5</td>
<td>1.5-43.5</td>
</tr>
<tr>
<td></td>
<td>12-18 h</td>
<td>12.0</td>
<td>0.5-62.0</td>
</tr>
<tr>
<td></td>
<td>18-24 h</td>
<td>15.5</td>
<td>2.7-39.0</td>
</tr>
<tr>
<td></td>
<td>24-30 h</td>
<td>9.0</td>
<td>0.0-42.5</td>
</tr>
<tr>
<td></td>
<td>30-42 h</td>
<td>12.0</td>
<td>0.5-40.0</td>
</tr>
<tr>
<td>UA</td>
<td><12 h</td>
<td>4.5</td>
<td>0.75-13.25</td>
</tr>
<tr>
<td></td>
<td>12-18 h</td>
<td>3.0</td>
<td>0.0-10.0</td>
</tr>
<tr>
<td></td>
<td>18-24 h</td>
<td>3.0</td>
<td>0.0-12.0</td>
</tr>
<tr>
<td></td>
<td>24-36 h</td>
<td>2.0</td>
<td>0.38-20.75</td>
</tr>
<tr>
<td>Controls</td>
<td><12 h</td>
<td>0.0</td>
<td>0.0-0.0</td>
</tr>
<tr>
<td></td>
<td>12-18 h</td>
<td>0.0</td>
<td>0.0-2.0</td>
</tr>
<tr>
<td></td>
<td>18-24 h</td>
<td>0.0</td>
<td>0.0-0.25</td>
</tr>
<tr>
<td></td>
<td>24-36 h</td>
<td>0.0</td>
<td>0.0-0.0</td>
</tr>
<tr>
<td>EA</td>
<td>Before exercise</td>
<td>0.0</td>
<td>0.0-0.0</td>
</tr>
<tr>
<td></td>
<td>Immediately after exercise</td>
<td>2.0</td>
<td>0.0-3.0</td>
</tr>
<tr>
<td></td>
<td>4 h after exercise</td>
<td>0.0</td>
<td>0.0-1.0</td>
</tr>
</tbody>
</table>

DISCUSSION

To our knowledge, this is the first combined specific capture
and immunologic demonstration of CECs in AMI and UA.
Because CECs were not detected in the controls or in the EA
group, their presence in blood is indicative of endothelial cell
detachment in acute coronary syndromes with probable ath-
eroma plaque rupture. Therefore, our data supplements prelimi-
nary reports that suggested the presence of cells or cell
“carcasses” with endothelial morphological features in these
two pathologies without demonstrating their endothelial nature
and their viability.\(^{16,17}\)

In certain other vascular diseases, CECs have been reported
to be an “ex vivo” indicator of vascular injury. The level of
CECs varies according to the extent of the endothelial lesion. A
high endothelial cell count is found in widespread vascular
damage associated with rickettsial vasculitis (2 to 1,600 cells/
ml),\(^{10}\) sickle cell crisis (46 to 430 cells/mL),\(^{6,8}\) or cytomegalovirus
infection (0 to 50 endothelial cells per 2 \(\times 10^6 \) ficoll-
separated mononuclear cells).\(^{14,15}\) However, the number of
CECs found in localized vessel damage, such as after coronary
Fig 2. Cytological analysis of CECs isolated with magnetic beads coated with S-Endo 1 antibody. Each panel shows CECs isolated from donors with AMI or UA. Panels A, B, and C show CECs stained with acridin orange presenting a round shape, clear nuclei and nucleoli (arrows) (A and B) or a spindle shape (C). Panel D shows a cell sheet stained with May-Grünewald-Giemsa. Numerous beads (focus or out of focus) are evident in all panels (arrowheads); they have a diameter of 4.5 μm.

Fig 3. Immunofluorescence analysis of CECs. (A, B, and C) CECs isolated from donors with AMI or UA. Cells of (D) are mixed endothelial and smooth muscle cells of human umbilical vein for control. All are stained for both intracellular vWF (red) and smooth muscle-specific α-actin (green). Round- and spindle-shaped cells (A and B), cell sheets (C), and umbilical vein endothelial cells (D) show the same granular pattern of vWF expression. The presence of smooth muscle-specific α-actin is detected only in control smooth muscle cells (D). Nuclei are counterstained red with propidium iodide. The green halo around beads comes from anti-mouse FITC-secondary antibody bound on the S-endo 1-coated beads.
angioplasty, is just over the normal (mean values, approximately 5 to 10 cells/mL).11

In the present study, a large range of CEC counts was found in AMI as well as in UA, suggesting a wide variation of vessel injury associated with these events. Notably, some CECs were still observed in the blood in some patients up to 42 hours after the onset of chest pain. This may reflect the half-life of these cells, as already reported in patients undergoing coronary angioplasty (at least 24 hours),11 or it may reflect protracted vascular irritability or delayed endothelial cell detachment from the subendothelium of the vessel wall. No cells were found at rest in EA; this result was not significantly modified after exercise testing, suggesting that ischemia associated with stable angina does not induce significant endothelial cell desquamation. In addition, we can exclude the possibility that the level of CECs reflects drug treatment because controls (who suffered from a noncoronary chest pain) received the same medication as patients (including heparin therapy), but had no CECs. Furthermore, unpublished data of a group of patients not suffering an acute coronary disease and treated with various doses of unfractionated heparin (0.1 to 0.5 IU/mL) did not show any CECs.

The cytological heterogeneity of cells isolated both in AMI and UA is noteworthy. The majority of CECs presented classical endothelial morphologic features with rounded shapes. These cells showed the typical granular cytoplasmic distribution of vWF and the absence of smooth muscle-specific \(\alpha\) actin consistent with their endothelial nature. The same typical granular staining was found on spindle-shaped cells and endothelial sheets. Such circulating endothelial sheets were previously described in a dog model of myocardial infarction and were shown to come from endocardial endothelium.27 Because no specific immunologic marker for this type of endothelium is available, it was not possible to show that the CECs are indeed from cardiovascular origin. These cells tend to be predominantly of macrovascular origin as defined by the negativity of CD36 staining. We cannot be completely confident that CD36- CECs are not microvascular, as some CD36- endothelial cells have been identified in dermal microvessels.26 The majority of the isolated cells did not present a proadhesive phenotype, as evidenced by the absence of expression of three adhesion molecules ICAM-1, VCAM-1, and E-selectin. This observation can be linked to the recent demonstration that endothelial cells differentially express cell adhesion molecules depending on the size of blood vessels, with the most prominent expression of E-selectin and ICAM in microvessels.28 Alternatively, it is also possible that CEC activation state does not accurately reflect the phenotype of the endothelium remaining attached in situ. Compared with data published by Solovey et al.,7 all we can conclude is that the CECs recovered in acute coronary diseases and in sickle cell anemia are different in terms of origin and

Fig 4. Detection of apoptotic cells with TUNEL assay. (A and B) CECs isolated from donors with AMI or UA. (C) Control apoptotic HL60 cells. Nuclei of CECs are counterstained red with propidium iodide. A large majority of CECs including endothelial sheets are negative (A). Only rare cells show DNA breaks (B). The control apoptotic HL60 cells are positive (C).
activated phenotype. A small proportion of CECs expressed tissue factor, suggesting that circulating endothelium may have a procoagulant phenotype, although this hypothesis clearly demands confirmation. Recently, a circulating population of endothelial putative progenitor cells that expressed vascular endothelial growth factor receptor were identified from peripheral blood of healthy subjects by CD34 magnetic beads.29 These cells should differ from those recovered in this study, as the CECs isolated with S-Endo 1 beads are not detectable in healthy individuals.

To assess the potential mechanism of cell detachment, we investigated whether apoptosis was involved. However, 90% of the CECs showed a remarkably good cytoplasmic and nuclear morphologic preservation without the usual morphologic features of apoptosis. Because one of the biochemical hallmarks of apoptosis is fragmentation of chromatin, we analyzed these cells with a TUNEL assay. In the majority, including the endothelial sheets, the CECs showed a lack of DNA breakage indicating that they were not in apoptosis when they detached from the vessel wall. Moreover, it has been reported that in advanced atheromatous lesions or in coronary restenosis, apoptosis concerns mostly smooth muscle cells and monocytes/macrophages.30,31 In the present study, less than 10% of CECs analyzed showed DNA signs of apoptosis. It is possible that the apoptotic changes in these cells occurred after detachment when they were already in the blood, which may be a function of the lag time between detachment and blood collection.

Apart from apoptosis, several other possibilities can be considered for the mechanisms responsible for endothelial cell detachment. It might be due to (1) mechanical dislodgment of cells during plaque rupture (as supported by angiographic data); (2) proteolysis of subendothelial matrix proteins triggered by u-PA or t-PA–mediated plasminogen activation32,33; (3) prolonged ischemia of the heart muscle can lead to the detachment of the most sensitive endothelial cells such as endocardial endothelial cells; and (4) oxidative burst occurring after blood perfusion.34,36 Another possibility is that these cells represent cells released from the microcirculation during ischemia. The fact that CECs are CD36+ and probably not of microvascular origin does not favor this hypothesis.

In conclusion, the measurement of CECs represents a direct evidence of injury of the endothelial lining among patients with acute coronary disease. This information can be obtained by a simple, noninvasive test that may be useful for endothelial exploration and may yield new insights in the pathophysiology of endothelial injury. Further study will determine if this endothelial marker can be used as a diagnostic index, especially in UA. Furthermore, the fact that CECs are not apoptotic suggests potential use as autologous vectors for diagnosis of endothelial abnormalities and for vascular therapy.

ACKNOWLEDGMENT

The authors are grateful to Drs Victor Gurewich and Valentin Fuster for suggestions and comments on the manuscript and to Biocytex and Immunotech companies for providing antibodies. We thank Dr Serge Yvorra for his contribution in the early phase of this study. We also thank Robert Pistoressi and Michel Dehr for confocal microscope analyses, Annie Bottari and Andrie Boyer for secretarial work.
21. ESC Working Group on Exercise Physiology: Physiopathology and electrocardiography “guidelines for cardiac exercise testing.” Eur Heart J 14:969, 1993
Direct Evidence of Endothelial Injury in Acute Myocardial Infarction and Unstable Angina by Demonstration of Circulating Endothelial Cells

Murielle Mutin, Isabelle Canavy, Andrew Blann, Michel Bory, José Sampol and Françoise Dignat-George