Upregulated Expression of Fibronectin Receptors Underlines the Adhesive Capability of Thymocytes to Thymic Epithelial Cells During the Early Stages of Differentiation: Lessons From Sublethally Irradiated Mice

By Sergio R. Dalmau, Claudia S. Freitas, and Wilson Savino

A 250-Gy whole-body γ-radiation dose was used to induce thymus regression in mice, and to study the expression and function of extracellular matrix (ECM) receptors in distinct thymocyte subsets emerging during repopulation of the organ. The onset of regeneration was detected from day 2 to 3 postirradiation (P-Ir), when a remarkable increase in the absolute counts of CD3⁺CD25⁺CD44⁺ and CD3⁺CD25⁻CD44⁻ cells occurred. Enhanced expression of L-selectin, α4, and α5 integrin chains (L-selectin, α4β1, α5β1) was also exhibited by these cells. This pattern of expression was maintained until the CD4⁺CD8⁻ (DP) young stage was achieved. Afterward, there was a general downregulation of these ECM receptors in DP as well as in CD4⁺ or CD8⁺ single positive (SP) thymocytes (L-selectin, α4β1, α5β1). In some recently generated SP cells, α4 expression was downregulated before the α5 chain, and L-selectin was upregulated in half of more mature cells. The expression of the α6 integrin chain was downregulated only in maturing CD4⁺ cells. Importantly, the increased expression of L-selectin and α4 and α5 chains in thymocytes was strongly correlated with their adhesiveness to thymic epithelial cells (TEC) in vitro. Blocking experiments with monoclonal antibody or peptides showed the following: (1) that the LDV rather than the REDV cell attachment motif in the IIIC segment of fibronectin is targeted by the α4 integrin during thymocyte/TEC adhesion; (2) that the RGD motif of the 120-kD fragment of fibronectin, a target for α5 integrin, has a secondary role in this adhesion; and (3) that the YIGSR cell attachment motif of the β1 chain of laminin/merosin recognized by a nonintegrin receptor is not used for thymocyte adherence. In conclusion, our results show that an upregulated set of receptors endows CD25⁺ precursors and cells up to the young DP stage with a high capability of interacting with thymic ECM components.

© 1999 by The American Society of Hematology.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1999 by The American Society of Hematology.

0006-4971/99/9/303-0035$3.00/0

MATERIALS AND METHODS

Animals. Male and female C57Bl/6 mice ages 6 to 8 weeks were obtained from the animal care facilities of the Brazilian National Cancer Institute, Rio de Janeiro, and kept on a 12-hour (6:00 AM to 6:00 PM) light regimen with food and water ad libitum. After irradiation, animals...
were housed at a maximum of six to a cage. In some experiments 15- to 17-day fetuses were used.

Antibodies and chemicals. The following monoclonal (MoAb) and conventional antibodies were used: phycoerythrin (PE)-conjugated anti-CD4 (clone GK1.5) and fluorescein isothiocyanate (FITC)- or biotin-conjugated anti-CD8ε (clone 53.6.7) MoAbs were purchased from Becton Dickinson (Mountain View, CA); the FITC-conjugated anti-CD3ε (clone 145-2C11) was from Boehringer Mannheim (Mannheim, Germany), and the biotin-conjugated anti-CD3ε MoAb (clone 99B) was from GIBCO-BRL. Life Technologies (Gaithersburg, MD). Unlabeled (no azide/low endotoxin) or PE-conjugated anti-α4 integrin chain (clone R1-2) and anti-α5 integrin chain (clone 5H10-27) MoAbs, as well as PE-conjugated anti-CD117 (clone 2B8), anti-L-selectin (clone MEL-14) MoAbs were obtained from Pharmingen (San Diego, CA); the anti-α6 integrin chain MoAb (clone GoH3) was from Immunotech (Marseille, France), and the FITC-bound anti-CD25 (clone AM.13), the biotinylated anti-phosphotyrosine (clone PT-66), the quantum red AMT.13, the biotinylated anti-phosphotyrosine (clone PT-66), the anti-α6 chain MoAb), dual or triple labelings were done in three steps: the first using the relevant (or irrelevant) antibody, the second with the fluorochrome-coupled anti-Ig antibody, and the third with the other antigen-directed fluorochrome-coupled antibody (es). At the end of each incubation step, 1 mL of MEM/3-FCS was added and the cells were spun down at 1,000 g for 1.5 minutes. Cell pellets were washed twice and then suspended in either 100 to 200 µL (for the next labeling step) or 1 mL of this medium (for flow cytometric analysis). The DNA-specific fluorochrome, PI, was finally added at a final concentration of 2 µg/mL to exclude dead cells (which are permeable to propidium iodide) during analysis.

Labeling of intracellular phosphotyrosine (PTyr). After surface immunostaining, cells were washed twice with phosphate-buffered saline (PBS) and the cell pellet was suspended in 1.0 mL of a freshly prepared solution of 1.0% paraformaldehyde plus 0.01% Tween 20 in PBS, pH 7.2. The suspension was kept protected from light in a refrigerator for 24 to 48 hours to allow full fixation and permeabilization of the specimens. Cells were washed three times with PBS-FCS and incubated with standardized amounts of conjugated anti-PTyr MoAb in 200 µL PBS at room temperature in the dark for 1 hour. Cells were finally washed two times with PBS-FCS and suspended in the same solution for the flowcytometric readings.

Flow cytometry. Flow cytometry was performed in a FACScan II apparatus (Becton Dickinson) equipped with an air-cooled 488 nm argon ion laser of 15 mW. The green fluorescence emission of FITC was detected after passage through a 530 nm band pass filter, and red emission of tricolor or quantum red after passage through a long band pass filter above 650 nm. Dynamic adjustment of electronic compensation among these reading channels was performed to remove overlap of spectral emissions. Data were obtained with the LYSYS II software program (Becton Dickinson Immunocytometry Systems) and stored in a Hewlett-Packard computer (model HP9000/300). Twenty thousand to 50,000 thymocytes (or nuclei) were acquired in each reading by the initial criteria of conventional size (forward light scatter) and granularity (side light scatter).

Thymocyte adhesion assay. A thymic epithelial cell line 2BH4 derived from C57Bl/6 mice was used for the thymocyte adhesion assays. These cells secrete, among other ECM components, FN and LN, as assessed by immunostaining in our laboratories. Cells in exponential growth were detached by trypsinization and seeded in 25-cm² Falcon tissue culture flasks (5 × 10⁵ viable cells per flask) in 5 mL of RPMI 1640 medium plus 10% FCS. Twenty-four hours later, the culture medium was removed and the nonconfluent 2BH4 monolayers were washed four times with warm FCS-free medium. A total of 1.5 to 2.5 × 10⁶ thymocytes, suspended in 1 mL medium without serum, were then added to the monolayers and the bottles left to stand for 1 hour at 37°C in an incubator. After incubation, loose thymocytes were aspirated and the bottles gently washed with three changes of 5.0 mL warm medium to remove the remaining nonadherent thymocytes. Adherent thymocytes were recovered in 1.5 mL cold medium with 10% FCS after beating the bottles horizontally followed by pipette flushing under microscope observation. When testing for antibody or peptide blocking activity, thymocytes were preincubated in their presence for 30 minutes in an ice
bath before the addition to 2BH4 monolayers (see Table 2 for concentrations of each antibody or peptide).

RESULTS

Thymus cellularity after a 250-cGy exposure. As depicted in Fig 1A, the percentage of cells recovered from thymuses after a 250-cGy whole-body radiation dose rapidly decreased, so that on days 2 and 3 P-Ir, only 1% to 2% of the control values were recovered. This accounted for a reduction of more than 80% (from 64.6 ± 15.3 mg to 11.1 ± 2.0 mg) in thymus weight on these days. This thymocyte death occurred by apoptosis because the typical DNA ladder in agarose gel electrophoresis was strongly enhanced between 2 and 12 hours P-Ir (data not shown). Thymus cellularity remained essentially unchanged by days 2-3 P-Ir, after which repopulation started. The onset of repopulation was characterized by a tremendous increase in the number of cycling cells (Fig 1B).

Evolution of thymocyte subpopulations after irradiation. Absolute thymocyte counts showed that the first subpopulations starting recovery 2 days P-Ir comprised the DN, the CD8$^+$, and, to a lesser extent, CD4$^+$ phenotypes, all in the CD3$^{--}$ stage (Fig 2). Then, by day 3 P-Ir, CD3$^{-hi}$DP, CD3$^{im/hi}$DN, and CD3$^{in/hi}$DP cells started to increase. More radioresistant, the CD3$^{in/hi}$CD4$^+$ or CD3$^{in/hi}$CD8$^+$ subsets, which progressively decreased in number until day 5 P-Ir, probably because of their exit to the periphery, started to show an increase after this day (for the CD4$^+$) or after day 7 P-Ir (for the CD8$^+$). Taken together, these results confirm previous reports showing that in the C57Bl/6 mouse strain the DN\rightarrowDP transition occurs preferentially by the acquisition of the CD8 antigen, with more time being expended for the generation of CD8$^+$ than for CD4$^+$ mature cells.

CD25, CD44, and CD117 (c-kit) expression on thymocytes. The surface expression of CD25 and/or CD44 has been shown to define distinct stages within early differentiating CD3$^-$ thymocytes. As expected from the literature, in control C57Bl/6 mice, less than 2% of CD25$^+$ (ie, CD25hi) cells and less than 3% of CD44$^+$ (ie, CD44$^{in/hi}$) cells were found among CD3$^{--}$ thymocytes (Fig 3). Maximal relative increases in CD44$^+$ and CD25$^+$ cells were attained on days 2 and 3 P-Ir, respectively. On day 3 P-Ir, when CD3$^{-hi}$ thymocytes were seen mostly in DN and CD8$^+$ subsets, CD25hi plus CD25in cells represented 70% of all CD3$^{--}$ thymocytes.

An increase of CD25$^+$ cells at the onset of P-Ir thymocyte recovery has been previously reported. Our data (Fig 4) show that CD25$^+$CD4$^+$ and CD25$^+$CD4$^-$ cells, both restricted to the CD3$^-$ stage, are the first to start recovery from day 2 to day 3 P-Ir. CD25$^+$CD4$^+$ cells exhibited a higher expansion rate (ie, slope) between days 2 and 3 P-Ir, an early decrease after this expansion (day 4 v day 7 P-Ir), and a 10-fold lower number throughout the recovery period, compared with CD25$^+$CD4$^-$ cells. This indicates that CD25$^+$CD4$^+$ cells are precursors of CD25$^+$CD4$^-$ cells. In turn, CD25$^+$CD4$^-$ cells started their increase later, on day 4 P-Ir, when the first DP cells emerged (as seen in Fig 2). Because they were present among both CD3$^-$ and CD3hi cells, a more advanced maturation status can be ascribed to them when compared with the subsets mentioned earlier.

Considering that CD44 expression is shared by other leukocyte types, the CD3$^-$CD25$^+$CD44$^+$ cells seen in Figs 3 and 4...
could putatively represent macrophages, dendritic cells, B lymphocytes, and granulocytes, also discretely present in the thymus. CD117, a stem cell factor receptor (c-kit), has been shown to be expressed only in hematopoietic progenitors and its levels decrease during thymocyte differentiation as early as in the CD3⁺CD4⁺CD8⁻ triple negative (TN) stage. Control and day 2 P-Ir thymocytes showed over 20% and 45% CD117⁺ cells among CD44⁻CD3⁺ thymocytes, respectively (Fig 5). Importantly, the labeling intensity for CD117 was higher in CD44⁻ than in CD44⁺ cells, supporting the notion that the former were in a more primitive stage of differentiation than the latter. Taken together, these results support the phenotypic maturation sequence CD25⁻CD44⁻CD117⁻ = CD25⁻CD44⁻CD117⁻ = CD25⁻CD44⁻CD117⁻ among CD3⁻ cells, as observed during ontogeny or as suggested by defective or genetically manipulated mice.

Expression of L-selectin and integrin α4 or α5 chains at different CD3-defined thymocyte differentiation stages. L-selectin (CD62L), a C-type lectin, recognizes sialil Lewis-x or sialil Lewis-a sugar moieties properly anchored on sialomucins. In control mice, most thymocytes exhibited a positive level of staining, arbitrarily defined by us as intermediary (L-sel⁺), since a significant percentage of thymocytes with a high level of L-selectin expression (L-sel^{hi}) were also present (data not shown). The latter were found in all CD3 stages, but their frequency was higher among CD3⁺ cells (Fig 6). These L-sel^{hi} thymocytes further increased among CD3⁺ cells until day 3 P-Ir.

Among CD3⁻ thymocytes from control mice, about 20% were L-sel^{hi}. In contrast, on day 3 P-Ir more than 50% of CD3⁻ thymocytes showed an L-sel^{hi} profile. This was still seen on day 4 P-Ir, but on day 5 P-Ir and thereafter thymocytes

Fig 2. Absolute values of thymocyte subpopulations, as defined by CD3/CD4/CD8 triple-labeling, found in control or irradiated mice. For simplification, CD4/CD8-defined thymocyte subsets were divided into lo or hi according to their level of CD3 expression. For examples for this arbitrary CD3 division, see Figs 12 and 13. Values were obtained with the labeling of pooled thymocytes from at least three animals per point.

Fig 3. CD25 and CD44 expression in CD3⁻ and CD3⁺ thymocytes in control or irradiated mice. Major quadrants: upper left, CD25⁻CD44⁻ cells; upper right, CD25⁺CD44⁻ cells; lower left, CD25⁻CD44⁺ (middle gate) cells; lower right, CD25⁺CD44⁺ cells. Numbers represent the percentage of thymocytes in each quadrant or the gate. Values were obtained with the labeling of pooled thymocytes from at least three animals per point.
(except most CD3hi cells) regained a predominant L-selhi pattern, similar to control mice.

Analysis of integrins that bind to FN showed that 20\% to 30\% of bulk control mouse thymocytes exhibited a high labeling density for \(\alpha_4\) or \(\alpha_5\) integrin chains, respectively (not shown). In contrast to L-selhi cells, the frequency of \(\alpha_4hi\) and \(\alpha_5hi\) cells did not increase among CD3hi thymocytes during the first days after irradiation (Figs 7 and 8). However, the relative numbers of \(\alpha_4hi\) and \(\alpha_5hi\) cells in CD3–lo thymocytes exceeded 65\% from day 2 to 3 P-Ir. Cells bearing the \(\alpha_4hi\) and \(\alpha_5hi\) phenotypes only reached a majority among CD3hi thymocytes on day 4 P-Ir. After day 5 P-Ir, the intermediary intensity of \(\alpha_4\) or \(\alpha_5\) labeling (\(\alpha_4lo\) or \(\alpha_5lo\)), predominant in CD3–hi thymocytes from control mice, was seen again. Also noteworthy was the high proportion of \(\alpha_5lo\)CD3hi cells in control or day 10 P-Ir mice in contrast to \(\alpha_4hi\)CD3hi cells, indicating that \(\alpha_5hi\) expression is preserved for a longer time than \(\alpha_4hi\) expression during thymocyte maturation.

High expression of \(\alpha_4\) and \(\alpha_5\) chains is acquired at the CD3–CD25lo stage in adult mice and during normal ontogeny. The above results established temporal and numeric relationships between the emergence of CD25hi cells and the increase of L-selhi, \(\alpha_4hi\), or \(\alpha_5hi\) cells among CD3–lo thymocytes at the beginning of reconstitution. Triple-labeling experiments with day 3 P-Ir thymocytes confirmed that the vast majority of CD3–lo and CD25lo thymocytes have \(\alpha_4lo\) or \(\alpha_5lo\) phenotypes (Fig 9, R2). Interestingly, most CD25hi cells exhibited a L-sello phenotype whereas most CD25–lo cells exhibited an L-selhi phenotype.

Figure 10 shows that thymic CD25lo cells from 17-day fetuses are present in a good number, and most thymocytes have reached or are acquiring the DP phenotype. Note the high expression of \(\alpha_4\) or \(\alpha_5\) chains as a hallmark of CD25lo thymocytes. Integrin chain expression started to decrease after CD25 downregulation and when the highest level of CD8 expression (ie, DP phenotype) was reached. Similarly to that observed on day 3 P-Ir, the L-selhi phenotype is predominantly expressed by CD25lo rather than CD25hi cells.

High expression of L-selectin and integrin \(\alpha_4\) and \(\alpha_5\) chains in different CD4/CD8-defined thymocyte subsets. In control mice, L-selhi, \(\alpha_4hi\), and \(\alpha_5hi\) cells represented 45\%, 70\%, and 50\% of DN thymocytes, respectively. After a general decrease
on day 1 P-Ir they further increased, reaching 60%, 90%, and 70% on day 3 P-Ir, respectively. The levels of α_4^{hi} or α_5^{hi} DN cells were then roughly maintained at least until day 7 P-Ir, whereas the levels of DN L-selhi cells decreased from day 4 to day 5 P-Ir and to levels close to those found in control mice thereafter (Fig 11).

Similar profiles were found for α_4^{hi} or α_5^{hi} CD81 cells. These cells decreased from 30% to 40% (control mice) to less than 20% up to day 2 P-Ir, then exhibiting a recovery to 50% to 70% up to day 4 P-Ir. After another transient decrease on day 5 P-Ir, they remained roughly in this range until day 10 P-Ir. Nonetheless, L-selhi CD8$^+$ cells (40% to 50% in control mice) did not exhibit a decrease after irradiation, increasing to close to 80% on day 4 P-Ir, and behaving like α_4^{hi} and α_5^{hi} CD8$^+$ cells thereafter.

In control mice, α_4^{hi} cells represented only 5% of DP thymocytes, while L-selhi or α_5^{hi} cells represented roughly 10%. On day 1 P-Ir, these percentages increased, exceeding 50% on days 3 and 4 P-Ir (when DP begins repopulation, as seen in Fig 2), and suddenly decreased on day 5 P-Ir and to values close to those found in control mice thereafter.

Finally, α_4^{hi} CD4$^+$ cells were very poorly represented in

Fig 6. L-selectin expression as a function of CD3 surface level in thymocytes obtained from control or irradiated mice. Numbers represent the percentages found for L-sel$^-$ (left region), L-sello (middle region), and L-selin (right region) thymocytes. The area tagged with "irrl" shows the labeling of control thymocytes with an irrelevant antibody. Values were obtained with the labeling of pooled thymocytes from at least three animals per point.
control mice (around 5%), with their percentages not varying significantly after irradiation; only a mild increase was noted between days 4 and 7 P-Ir. In turn, \(\alpha^5 \) CD4+ cells were slightly better represented in control mice (about 15%). After irradiation, they decreased to 5% at day 2 P-Ir and increased to values close to 25% from day 5 to day 7 P-Ir, a percentage still present on day 10 P-Ir. L-selhi CD4+ thymocytes exhibited a continuous increase in relative values from 25% in control mice to more than 50% on day 4 P-Ir. In contrast to L-selhi CD8+ thymocytes, L-selhi CD4+ cells later exhibited a gradual decrease that peaked on day 7 P-Ir. Both the increase in \(\alpha^5 \) CD4+ cells and the major decrease in L-selhi CD4+ cells seen on day 7 P-Ir coincided with the new generation of CD4+ CD3hi cells (as seen in Fig 2). Importantly, more than 95% of CD4+ or CD8+ cells contributing to the increase of L-selhi until day 3 or 2 P-Ir, respectively, were CD3hi. Thereafter the relative increase of L-selhi among these subsets was due to CD3-80 thymocytes, mainly CD8+ ones (Table 1).

Fig 7. Integrin \(\alpha^4 \) chain expression as a function of CD3 surface level in thymocytes obtained from control or irradiated mice. Numbers represent the percentages found for \(\alpha^4 \) (left region), \(\alpha^{4\text{in}} \) (middle region), and \(\alpha^4 \text{hi} \) (right region) thymocytes. The area tagged with "irrl" shows the labeling of control thymocytes with an irrelevant antibody. Values were obtained with the labeling of pooled thymocytes from at least three animals per point.
In summary, the above results indicate that the high expression of L-selectin and α4 and α5 integrin chains underlines the DN → DP transition.

Expression of integrin α6 chain within CD3- or CD4/CD8-defined thymocyte subsets. Immunolabeling of the α6 integrin chain allows the assessment of a laminin receptor expression on thymocytes. As shown in Fig 12, thymocytes from control mice exhibited a progressive decrease in α6 labeling, from the immature CD3lo cells to the more mature CD3hi cells (arbitrarily defined as α6hi to α6lo). This difference in α6 expression in the CD3lo → CD3hi transition was sharper on day 3 P-Ir or even on day 4 P-Ir (data not shown). In keeping with this is the analysis of CD4/CD8 subsets (Fig 13). When DN cells were represented mainly by CD3lo cells, as in control or day 4 and 6 P-Ir mice (Table 1), they exhibited a predominant α6hi profile. By contrast, when CD3lo cells increased in number within them, as on day 2 P-Ir (40%), they shifted to an α6lo labeling profile. In control or day 2, 4, or 6 P-Ir mice, the vast majority of DP
thymocytes maintained an α6^{hi} profile (Fig 13). Regardless of the maturation status, a predominant α6^{hi} profile was also kept in CD8⁺ cells; on day 2 P-Ir, when more than 98% of CD8⁺ cells were found to be CD3^{in/hi}, or conversely on days 4 or 6 P-Ir, when 80% of them were found to be CD3^{2/lo}, most exhibited α6^{hi} labeling.

Differing from other subsets, CD4⁺ cells exhibited less rigid α6 staining profiles. In control mice they were predominantly α6^{2/lo}, a tendency that was emphasized until day 4 P-Ir. However, on day 6 P-Ir (ie, at the beginning of CD3^{in/hi} CD4⁺ cell expansion), they were seen predominantly as α6^{hi} cells. Moreover, when CD4⁺ cells were arbitrarily split into two...
of pooled thymocytes from at least three animals per point. CD4/CD8 thymocyte subsets. Values were obtained with the labeling of CD8 and different day P-Ir mice (not shown). A similar split for more distant from the CD4 axis (less mature), both in control a decay in

24 Therefore, we analyzed the levels of intracellular PTyr in human thymocytes with antibodies against a chain has been shown to induce protein tyrosine phosphorylation. Upregulation of fibronectin receptors is associated with an intracellular increase of phosphotyrosine levels. Treatment of human thymocytes with antibodies against b1 or a5 integrin chains has been shown to induce protein tyrosine phosphorylation. Therefore, we analyzed the levels of intracellular PTyr in thymocytes between days 2 and 3 P-Ir, the period when most CD3

2 cells between days 2 and 3 P-Ir, the period when most CD3 cells with a high a4, a5, or L-sel surface expression started to accumulate. In control mice, most of the CD3

2 cells exhibited a PTyr

1 profile. Thus, at first glance, elevation of intracellular PTyr content seems to be correlated with thymocyte maturation. However, in these animals 15% of CD3

2 cells shifted to a PTyr

1 profile. Figure 14 shows that most CD3

2 cells having acquired an a4

1 status also acquired PTyr

1 labeling. Similar results were obtained for a5

1 acquisition related to PTyr

1 levels (not shown). Surprisingly, at day 2/2 P-Ir, the majority of CD3

2 PTyr

1 cells still exhibited L-sel

1 labeling (Fig 15), thus suggesting that the increase in intracellular PTyr was not time-associated with L-sel upregulation in these cells.

CD25+ cells are the most adherent to ECM; adhesion is lost as CD3 expression is upregulated; enhanced ECM adhesion hallmarks cells in the DN stage or transiting to the DP stage. Taking into account the modulation of ECM receptors on thymocytes at different stages of differentiation, as shown during the thymic regression/reconstitution process after irradiation, and the simultaneous increase in the intracellular phosphotyrosine levels and FN receptors, we searched for the phenotypes of ECM interacting thymocytes. For this purpose, the major histocompatibility complex (MHC)-compatible 2BH4 thymic epithelial cell (TEC) line was used as a source of ECM. Figure 16 shows the phenotypes of adherent thymocytes recovered when control, day 3, or day 4 P-Ir thymocytes were allowed to bind to a subconfluent monolayer of 2BH4 cells. Adherent cells were enriched for CD3

2/CD25

1 cells and depleted for CD3

2 cells. CD4/CD8 profiles showed a simultaneous enrichment of DN cells among these thymocytes. It was noteworthy that, despite no marked changes in the percentages of CD8 cells between total and adherent cells, the amounts of CD8 cells closer to the axis (enclosed in circles in Fig 16) were reduced. This indicates that ECM adherent thymocytes were also enriched for cells transiting to the DP stage.

a4 Integrin rather than a5 integrin intervenes in the adhesion of day 3 P-Ir thymocytes to thymic epithelial cells. The above experiments showed that an increase in the expression of ECM receptors on thymocytes was related to their adhesiveness to ECM components. However, they did not prove that the ECM receptors studied were responsible for this adhesiveness. To address this issue, anti-a4 or anti-a5 chain MoAbs reported to block integrin binding to FN or peptides that mimic FN and interfere with integrin binding to FN were assayed for their capability to inhibit adhesion of day 3 P-Ir thymocytes to 2BH4 monolayers (Table 2). Adhesion was strongly blocked by anti-a4 chain MoAb (60% inhibition) and the FN 1-25 IIICS peptide which contains the critical LDV motif recognized by a4b1 integrin (70% inhibition). A FN 90-109 IIICS segment, which contains a critical REDV motif also recognized by a4b1 integrin, exhibited a poor inhibitory effect (21%). Anti-a5 chain MoAb or FN GRGDS peptide which contains the critical RGD motif recognized by a5b1 integrin exhibited no or poor (18%) anti-adhesive action, respectively.

Previous results from our laboratory have shown that the a6 integrin chain mediates thymocyte adhesion to TEC. To determine if the nonintegrin 67-kD cell receptor for LN was

| Table 1. Percentages of CD3

2 and CD3

1 Cells Among CD4/CD8 Subpopulations at Different Days P-Ir |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| CD3 | CD4

1 | DP | DN | CD8

1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>61.1</td>
<td>93.9</td>
<td>88.6</td>
<td>11.4</td>
<td>81.8</td>
<td>18.2</td>
<td>46.9</td>
<td>53.1</td>
</tr>
<tr>
<td>Day 1 P-ir</td>
<td>3.2</td>
<td>96.8</td>
<td>65.7</td>
<td>34.3</td>
<td>59.7</td>
<td>40.3</td>
<td>3.9</td>
<td>96.1</td>
</tr>
<tr>
<td>Day 2 P-ir</td>
<td>1.1</td>
<td>98.9</td>
<td>65.4</td>
<td>34.6</td>
<td>61.9</td>
<td>38.1</td>
<td>1.7</td>
<td>98.3</td>
</tr>
<tr>
<td>Day 3 P-ir</td>
<td>4.1</td>
<td>95.9</td>
<td>74.4</td>
<td>25.6</td>
<td>85.3</td>
<td>14.7</td>
<td>47.6</td>
<td>52.4</td>
</tr>
<tr>
<td>Day 4 P-ir</td>
<td>33.7</td>
<td>66.3</td>
<td>94.9</td>
<td>5.1</td>
<td>86.1</td>
<td>13.9</td>
<td>71.0</td>
<td>29.0</td>
</tr>
<tr>
<td>Day 5 P-ir</td>
<td>36.3</td>
<td>63.7</td>
<td>94.9</td>
<td>5.1</td>
<td>86.1</td>
<td>13.9</td>
<td>71.0</td>
<td>29.0</td>
</tr>
<tr>
<td>Day 7 P-ir</td>
<td>28.6</td>
<td>71.4</td>
<td>91.6</td>
<td>8.4</td>
<td>84.9</td>
<td>15.1</td>
<td>82.9</td>
<td>17.1</td>
</tr>
<tr>
<td>Day 10 P-ir</td>
<td>10.7</td>
<td>89.3</td>
<td>87.0</td>
<td>13.0</td>
<td>70.6</td>
<td>29.4</td>
<td>57.8</td>
<td>42.2</td>
</tr>
</tbody>
</table>

*Data obtained with thymocyte pools from 3 to 9 mice.
Fig 12. Integrin α6 chain expression as a function of CD3 surface level in thymocytes obtained from control or day 3 P-Ir mice. Numbers represent the percentages found for α6^low (left region), α6^int (middle region), and α6^high (right region) thymocytes. The area tagged with "irrl" shows the labeling of control thymocytes with an irrelevant antibody. Values were obtained with the labeling of pooled thymocytes from at least three animals per point.

Fig 13. Integrin α6 chain expression in CD4/CD8-defined thymocyte subsets in control or day 2, 4, and 6 P-Ir. Numbers represent the percentages found for α6^low (left region), α6^int (middle region), and α6^high (right region) thymocytes. Values were obtained with the labeling of pooled thymocytes from at least three animals per point. Note: in this typical experiment, fluorescence intensities exhibited by subpopulations should be compared only for each day because thymocyte labelings were done on different days. Labeling with irrelevant antibody were done each day (not shown) and defined the negative region (left region) in the histograms.
also involved in thymocyte/TEC adhesion we assayed the 925-933 amino acid sequence of the LN-b1 chain that contains the critical YIGSR motif targeted by this receptor.26 As shown in Table 2, this peptide failed to block TEC/thymocyte adhesion.

DISCUSSION

In this report we used P-Ir thymocyte reconstitution to study ECM receptor expression and function during thymocyte differentiation. With the 250-cGy dose the onset of repopulation was hastened by 2 to 3 days when compared with doses of 600 or 750 cGy used in most, if not all, previous reports dealing with this subject.20,27,28 Even though the dose used by us seems to spare more thymic resident precursors, as suggested by a 5- to 10-fold higher cellular input after repopulation, the CD3/CD4/CD8-defined subpopulation profiles obtained during the regression/reconstitution process were found to be similar to those reported with higher radiation doses.

Previous reports have shown that α4hi cells are better represented within DN and CD8α cells than within CD4+ thymocyte subsets.1,6 It was also demonstrated that CD25+ thymocytes were the main representative α4hi cells among DN cells.6 Our results confirm and expand these findings. Here we show that, in addition to the α4 chain, L-selectin and the α5 integrin chain are also upregulated in CD25+ cells. The upregulation of these ECM receptors is maintained up to the complete loss of CD25 expression, along with the onset of P-Ir reconstitution in adult mice or during ontogeny. The expression of these receptors is suddenly downregulated after the DP phenotype has been reached (days 4 and 5 P-Ir). This downregulation still occurs in the CD3in/lo stage since on days 4 and 5 P-Ir more than 90% of the DP cells bear this phenotype. However, a small fraction of α4hi and/or α5hi cells reach the SP CD3in/hi phenotypes (as suggested by their permanence on day 2 P-Ir) when CD3in/hi cells account for more than 98% of SP thymocytes. The higher percentage of α5hi than α4hi cells among CD4+ thymocytes in control mice or after day 5 P-Ir (when CD3in/hi CD4+ cells reappear) suggests that α5 expression is preserved for a longer time than α4hi expression, at least during the beginning of maturation of some cells of this subset. The increase in L-sel hi CD4+ cells until day 3 P-Ir, or of L-sel hi CD8+ cells until day 2 P-Ir (when CD3in/hi CD4+ cells reappear) is in accordance with the literature, which points to an increase in L-sel expression as an indicator of terminal maturation for a fraction of thymic lymphocytes.29

Discrete numbers of L-sel-, α4-, or α5- cells were present in control mice. Some exhibited a CD3+ CD4+ phenotype (data not shown) and increased until day 2 P-Ir, most likely representing cells of other leukocyte series. Others exhibited a CD4+ CD3+ TcRαβ CD25- CD45RC+ CD45RB+ CD45RC- CD69+ phenotype (data not shown). These cells represented 1% to 3% of control mouse thymocytes and
increased relatively more than fivefold in day 2 or 3 P-Ir mice (30% to 50% of CD3\(^+\) thymocytes). On the basis of their phenotype, these cells appear to be IL-2R\(^{b+}\) and/or NK1.1\(^+\) thymocytes.\(^{30,31}\) With regard to the expression of the LN receptor in thymocytes, our results show that an \(\alpha_6^{hi}\) labeling profile is seen until the early CD4\(^+\) or late CD8\(^+\) stages of thymocyte differentiation. Maintenance of an \(\alpha_6^{hi}\) expression in more mature staged CD8\(^+\) cells could be involved in their preferential medullary localization because the medulla exhibits a higher density of LN (data not shown), and class I antigens than the cortex.\(^{32}\) Alternatively, the \(\alpha_6^{hi}\) profile of these cells could be involved in the maturational delay of CD8\(^+\) cells as compared with CD4\(^+\) cells.\(^{18}\) In summary, our analysis of ECM receptor expression during murine thymocyte development supports the scheme proposed in Fig 17.

Analysis of human thymocytes showed that cells with high expression of \(\alpha_4\) and \(\alpha_5\) integrin chains are preferentially distributed among DN, DP, and CD4\(^+\) cells.\(^{8}\) This suggests that in the human thymus the increased expression of these chains is also primordially linked to the transit of DN cells to the DP stage because in this species this transit occurs by the preferential acquisition of the CD4 antigen.\(^{33,34}\) Three other features of human thymocyte differentiation also seem to be shared by murine thymocyte differentiation: (1) the high expression of L-selectin, not only in mature, but also in very immature CD34\(^+\) cells;\(^{35}\) (2) a longer \(\alpha_5^{hi}\) expression compared with \(\alpha_4^{hi}\) expression during thymocyte maturation;\(^{35}\) and (3) the presence of \(\alpha_4^-\) or \(\alpha_5^-\) cells exhibiting a non-T series CD3\(^-\)CD4\(^-\)CD7\(^-\)CD8\(^-\) phenotype.\(^{35}\)

Our functional adhesion assays using thymocytes from control and day 3 or 4 P-Ir mice showed an enrichment of CD25\(^+\) cells, DN cells, and CD8\(^+\) cells transiting to the DP phenotype. This increase paralleled a decrease in the adhesion of more mature CD4\(^+\) and CD8\(^+\) cells and a depletion of CD3\(^{hi}\) cells among adherent thymocytes. Therefore, the upregulation of ECM receptors on thymocyte subsets is closely correlated with their capability to bind to epithelial cells or their ECM secretion products. This is in agreement with previous data showing that DN cells are the most adhesive, while SP cells are the least adhesive thymocytes to TEC monolayers or FN-coated surfaces.\(^{1,6}\)

It is important to stress that, in our adhesion assays, control or day 3-4 P-Ir thymocytes furnished adhesion yields of 2% or 4% to 8%, respectively. A second adhesion attempt with the same thymocyte samples (day 3 P-Ir) showed only 1/3 of the cells adhered in the first assay, although a large amount of cells expressing a high density of ECM receptors still remained in the supernatant after the first adhesion assay (not shown). This indicates that ECM binding sites on TEC monolayers were not overloaded with an excess of thymocytes and that not all thymocytes (despite their high density of ECM receptors) are simultaneously prone to interact with ECM components. This behavior could exist in vivo, for instance, to allow locomotion...
or opportune alternative signals, or may be a consequence of loss of activation by in vitro manipulation.

The efficiency of both the anti-α4 chain MoAb and the peptide with the LDV cell attachment motif, recognized by the α4 chain, in blocking adhesion of thymocytes to epithelial cells, shows that the interaction of this integrin with the IIIC segment of FN is critical for this attachment. Other FN cell attachment motifs, such as the REDV present in the IIIC segment, also recognized by the α4 chain, or the RGD motif present in the 120-kD segment and recognized by the α5 chain, seem to play a secondary role in this adhesion. This mandatory role of the α4 chain as compared with the α5 chain in mediating thymocyte/epithelial adhesion has been also reported using another thymic cell line.1,6 Interestingly, adherent thymocytes (day 3 P-Ir) recovered from control or anti-α4 MoAb or LDV motif peptide–treated cultures revealed no major differences in the percentages of CD25/CD4/CD8-defined subpopulations recovered (not shown).

The LN receptors seem to be involved in some aspects of thymus physiology. In vitro, the binding of murine pre-T cells to thymic endothelial cells can be blocked by anti-α6 integrin MoAb in an LN-independent way.36 A previous report from our laboratory has shown that addition of an anti-α6 integrin MoAb inhibits thymocyte adhesion to TEC and their exit from isolated thymic nurse cells.11 Our blocking experiments (Table 2) failed to reveal the participation of the YIGSR motif of the LN-β1 chain, recognized by the nonintegrin receptor of 67 kD, in thymocyte binding to 2BH4 cells. Therefore, integrins seem to be the main LN receptors involved in thymocyte/TEC interaction.

CD44 is an ECM receptor of the proteoglycan family able to bind to hyaluronic acid, and to a lesser extent to FN and collagen.21 Recently, using reaggregated thymus organ cultures, it has been shown that both epithelial cells and fibroblasts are necessary to generate DP cells from CD25⁺CD44⁺ precursors, whereas the more advanced staged CD25⁺CD44⁻ precursors required only the former to do so. Interestingly, addition of anti-CD44 or anti-α4 antibodies to these cultures affected the CD25⁺CD44⁺ → DP transition but not the CD25⁺CD44⁻ → DP transition. A role for ECM, rather than cell contact, in delivering such signals was also indicated by data showing that addition of anti-VCAM-1 antibodies failed to block the
Table 2. Adhesion of Day 3 P-Ir Thymocytes to Thymic Epithelial Cell Monolayers in the Presence of MoAb Directed to FN Receptors or Peptides Mimicking FN or LN Moieties

<table>
<thead>
<tr>
<th>Addition</th>
<th>Amount</th>
<th>Concentration (mmol/L)</th>
<th>Relative Binding Relative Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>—</td>
<td>—</td>
<td>Exp 1</td>
</tr>
<tr>
<td>Rat Ig</td>
<td>20 µg/mL</td>
<td>1 mg/mL</td>
<td>100.0*</td>
</tr>
<tr>
<td>Anti-α4 chain antibody</td>
<td>20 µg/mL</td>
<td>1 mg/mL</td>
<td>99.6</td>
</tr>
<tr>
<td>Anti-α5 chain antibody</td>
<td>20 µg/mL</td>
<td>1 mg/mL</td>
<td>43.7</td>
</tr>
<tr>
<td>FN 1-25 IIICS (LDV)</td>
<td>1 mg/mL</td>
<td>0.37</td>
<td>23.5</td>
</tr>
<tr>
<td>FN 90-109 IIICS (REDV)</td>
<td>1 mg/mL</td>
<td>0.42</td>
<td>77.8</td>
</tr>
<tr>
<td>FN GGRD5$</td>
<td>1 mg/mL</td>
<td>2.04</td>
<td>81.9</td>
</tr>
<tr>
<td>LN 925-933 (YIGSR)</td>
<td>1 mg/mL</td>
<td>1.03</td>
<td>102.4</td>
</tr>
</tbody>
</table>

Thymocytes (1.5 × 10^6 in 1 mL FCS-free medium) were preincubated in the presence of MoAb or peptides for 30 minutes on ice bath and then added to 2B4H4 monolayers. After an additional incubation of 1 hour at 37°C, nonadherent thymocytes were removed by aspiration followed by three washes with warm medium. Adherent thymocytes were recovered in cold medium with FCS after beating the culture flasks and pipette flushing.

*100% represents 7.7% and 4.3% of total thymocytes used in Exp 1 and Exp 2, respectively.
†IIICS means the alternatively spliced type III connecting segment from FN.
‡In bold are shown the amino acid sequences critical for integrin binding (LDV or REDV for α4β1, RGD for α5β1, and YIGSR for the 67-kD LN receptor).

CD25^+CD44^+ → DP transition and metabolically inactive fixed fibroblasts kept their differentiation-promoting capability on CD25^+ CD44^+ cells, but lost it after hyaluronidase treatment. Therefore, downregulation of CD44 expression seems to map the end of ECM fibroblast dependence (or dependence on other mesenchimal cell types) in T-cell development. Additionally, evidence has been obtained indicating that contact at the CD25^+ CD44^+ early stage is critical for bidirectional signaling to occur, leading to the development of both the lymphoid and cortical epithelial compartments during thymus ontogeny. We recently described an “epidermal growth factor (EGF)-like” molecule restricted to the surface of DN thymocytes which may represent one of the mediators of this contact, considering that epithelial cells bear EGF receptors and the addition of soluble EGF to fetal organ cultures blocks thymocyte differentiation at the CD44^hiCD25^null stage.

It has been observed that the maximal repopulating rate of 750-cGy irradiated murine thymuses is reached with intrathymic injection of approximately 200 bone marrow cells. This indicates the existence of a differentiation control window for early precursor in the adult thymus, either due to a certain number of available microenvironmental niches or to an unknown negative feedback mechanism. If the niche theory is correct, the availability of such niches would depend to some extent on stroma density. Therefore, we could expect that in normal nonregressed thymuses it would be more difficult for precursors to contact such niches, while in the regressed ones this would be easier to do. In other words, as thymocyte cellularity increases, the rate of differentiating precursors would decrease due to niche disruption and/or dilution. Decreased contact with the microenvironment would also reduce the survival of differentiating thymocytes, as recently observed to occur with germinal center B lymphocytes.

Finally, interaction of mature lymphocytes with ECM components has been shown to promote the phosphorylation of tyrosine residues in various proteins. Within this context, the fact that SCF has been shown to increase the avidity of α4β1 and α5β1 integrins for FN in hematopoietic cell lines is noteworthy. If CD25^CD44^-(c-kit^+) precursors also exhibit such upregulated set of counter-receptors or if this pattern is acquired after a closer contact with stroma remains unknown. Also, treatment of human thymocytes with antibodies against β1 or α5 integrin chains induces tyrosine phosphorylation in some still unidentified proteins. Our results of intracellular PTyr labeling of CD3^-^ thymocytes from day 2½, rich in CD25^+ cells, also suggest that interaction with thymic ECM, namely FN, may contribute to bringing these thymocytes to a high status of activation. At this particular moment of early thymocyte differentiation, the increase of intracellular PTyr was temporarily correlated with the increase of α4 or α5 chain expression in CD3^-^ cells, but not with the increase in L-selectin expression (Figs 12 and 13). Indeed, the shape of the integrin

Fig 17. Schematic representation of ECM receptor expression and adhesive function throughout thymocyte differentiation. A high expression of the ECM adhesion receptors, in special FN receptors, and an increased adhesiveness to TEC cells hallmarks the early steps of thymocyte differentiation. Recently generated DP thymocytes keep an upregulated expression of L-selectin, α4, and α5 integrin chains, while DP thymocytes emerging later during thymus reconstitution exhibit a downregulated profile of these ECM receptors. During SP cell maturation the α4 chain is downregulated before the α5 chain, and L-selectin is upregulated in a fraction of fully mature thymocytes, while a more marked downregulation of the α6 chain is observed in CD4^+ cells than in CD8^+ cells. The dashed line splits thymocyte subsets according to their high or low TEC adhesion capacities. The arrow tagged with a question mark shows a CD3^-CD45RC^- subset that is enriched after irradiation and most likely represents IL-2R^+ and/or NK1.1^- thymocytes of still undefined origin in C57Bl/6 mouse thymus, according to the literature.
plots suggests that the increase in integrin expression precedes the PTyr₆₈ condition.

In conclusion, our data reinforce the concept that high levels of ECM receptors prepare thymocytes to interact with ECM components. Physiologically, this interaction is crucial for T-cell development. It could guide thymocytes to a more intimate contact with stromal cells, thus permitting the reception of survival signals provided by the latter, such as membrane cytokines. It could serve to increase the sensitivity to antigens thus cooperating with the processes of positive and/or negative selection, as already observed with mature T cell. Additionally, fine-tuned variations in the density or the activation status of diverse ECM receptors, some with distinct membrane placement, may dictate the ordered events of adhesion and de-adhesion (ie, migration) necessary for an adequate progress through the steps of thymocyte differentiation.

ACKNOWLEDGMENT

We thank the staff of the animal care facilities and of the Radiotherapy Center of the Brazilian National Cancer Institute, especially Tereza de Jesus dos Santos Pereira and Dr Joel Francisco Gonçalves, respectively. We also express our gratitude to Dr Amarante-Mendes (University of São Paulo, Brazil) for providing the thymic epithelial cell line.

REFERENCES

46. Kovach NL, Lin N, Yednock T, Harlan JM, Broudy VC: Stem cell factor modulates avidity of α4β1 and α5β1 integrins expressed on hematopoietic cell lines. Blood 85:159, 1995
Upregulated Expression of Fibronectin Receptors Underlines the Adhesive Capability of Thymocytes to Thymic Epithelial Cells During the Early Stages of Differentiation: Lessons From Sublethally Irradiated Mice

Sergio R. Dalmau, Claudia S. Freitas and Wilson Savino

Updated information and services can be found at:
http://www.bloodjournal.org/content/93/3/974.full.html

Articles on similar topics can be found in the following Blood collections
 Immunobiology and Immunotherapy (5509 articles)

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml