Table 1. Detection of Antibodies to Fasciola and Anisakis in Patients
With DLBL

<table>
<thead>
<tr>
<th></th>
<th>AIVL</th>
<th>DLBL Other Than AIVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean)</td>
<td>44-75 (65 yr)</td>
<td>49-78 (60 yr)</td>
</tr>
<tr>
<td>Male/female</td>
<td>3:2</td>
<td>10:9</td>
</tr>
<tr>
<td>Anti-Fasciola IgG</td>
<td>4/5*</td>
<td>1/19*</td>
</tr>
<tr>
<td>Anti-Anisakis IgE</td>
<td>3/5*</td>
<td>7/19*</td>
</tr>
<tr>
<td>P</td>
<td>.0021</td>
<td>NS</td>
</tr>
</tbody>
</table>

Abbreviations: AIVL, Asian variant of intravascular lymphomatosis; DLBL, diffuse large B-cell lymphoma; NS, statistically not significant.

*Patients with positive results (3.0 SD or more for anti-Fasciola IgG, and 0.70 kU/L or more for anti-Anisakis IgE)/total number of patients.

†According to the continuously adjusted χ^2 test and $P = .0195$ according to Fisher’s exact test (two-tailed).

Anisakis, known as the sushi worm, is a tissue-penetrating nematode that causes acute zoonoses and may be a cofactor of gastric cancer. It is noted that the geographical distribution of these helminth infections covers Asia. Further investigation of the association of AIVL with the infections of *Fasciola*, *Schistosoma*, or *Anisakis* may contribute to elucidation of the pathogenesis of AIVL.

ACKNOWLEDGMENT

We thank Prof Moriyasu Tsuji (Kyorin University, Tokyo, Japan) for helpful comments.

Takuhei Murase
Department of Hematology
Kazuhiro Tashiro
Department of Pathology

REFERENCES

To the Editor:

The role of interferon maintenance treatment in patients with multiple myeloma (MM) is still debated. In 1990, the Italian Multiple Myeloma Study Group published the results of the first randomized study on the role of interferon α-2b (IFN) as maintenance treatment in patients responding to induction therapy. One hundred one MM patients were randomized to receive or not receive interferon (n = 50) or not receive (n = 51) IFN maintenance. Patients were recruited from a group of 202 symptomatic MM patients observed in the three university institutions of Rome, Bari, and Turin, Italy. The results originally demonstrated that a maintenance treatment with IFN prolonged response and survival duration in patients with MM who have responded to conventional induction therapy.

After this experience, five large randomized studies were published comparing IFN maintenance versus untreated control: two of them did not demonstrate any advantage as for response and survival duration; one showed a clear advantage in response duration but not in survival duration; and two demonstrated a significant improvement both in response duration and in survival duration.

The updated results of the Italian study 9 years after the randomization of the last patient confirm a significant prolongation of response duration in IFN maintained patients: the median response duration (from time of randomization to maintenance treatment) is 24 months in patients receiving IFN and 13 months in untreated patients (P = .0016). The results in terms of prolongation of survival are less significant: the median overall survival is of 50 and 39 months, respectively (P = .21); among patients who had an objective response to induction chemotherapy (>50% reduction in M protein), the median survival was 50 and 35 months, respectively (P = .07; Fig 1). However, 9 patients are still alive and in response in the IFN-maintained group versus 2 in the unmaintained group.

In conclusion, the majority of randomized studies on IFN maintenance in MM as well as our results demonstrate that IFN maintenance significantly prolongs the response duration phase in MM patients responsive to previous induction therapy, whereas the efficacy on survival

REFERENCES

Difficulties in Determining Prophylactic Transfusion Thresholds of Platelets in Leukemia Patients

Wolfram Springer, Alexander von Ruecker and Roswitha Dickerhoff