RAPID COMMUNICATION

Clinical-Grade Functional Dendritic Cells From Patients With Multiple Myeloma Are Not Infected With Kaposi’s Sarcoma-Associated Herpesvirus

By Karin Tarte, Sonja J. Olsen, Zhao Yang Lu, Eric Legouffe, Jean-François Rossi, Yuan Chang, and Bernard Klein

Bone marrow dendritic cells (DC) from patients with multiple myeloma (MM) were recently reported to be infected with Kaposi’s sarcoma-associated herpesvirus (KSHV). Because immunotherapy strategies using DC are very promising in this disease, we looked for KSHV DNA in clinical-grade DC generated in vitro from MM patients. Adherent apheresis cells from MM patients were maintained for 7 days in clinical-grade X-VIVO 15 culture medium supplemented with granulocyte-macrophage colony-stimulating factor, interleukin-4, or interleukin-13. Tumor necrosis factor α was added for the last 2 days. We obtained a cell population with a DC phenotype able to endocytose fluorescein isothiocyanate (FITC)-dextran and efficiently activate resting allogenic T lymphocytes. To detect KSHV DNA, we used polymerase chain reaction (PCR) followed by Southern blotting of PCR product with a sensitivity detecting a few copies of viral DNA. All the PCR were repeated in a blinded fashion three times, on 1 µg and 0.2 µg of genomic DNA, in two different laboratories. Clinical-grade DC from 10 (91%) of 11 patients were not infected with KSHV. The apheresis cells and the purified CD34+ cells from the same patients were also negative. A very weak PCR band was detected with DC from one patient, but the initial apheresis cells were negative. The detection of KSHV infection in 1 (9%) of 11 MM patients probably represents background seroprevalence. It seems likely that functional and clinical-grade DC from MM patients can safely be used in clinical trials.

© 1998 by The American Society of Hematology.

Bone marrow dendritic cells (DC) from patients with multiple myeloma (MM) were recently reported to be infected with Kaposi’s sarcoma-associated herpesvirus (KSHV) in contrast to those from non-MM patients. Additionally, these cells were reported to express viral interleukin-6 (vIL-6), which is known to share functional homology with human IL-6.2-4 vIL-6 supports the proliferation of B9 murine hybridoma cells, activates human gp130 independently of binding to IL-6Rα,5 and promotes the survival and proliferation of myeloma cells (unpublished results). The ability of KSHV to code for vIL-6 and other potential oncogenic proteins6-10 suggests that KSHV, which is involved in the pathogenesis of Kaposi’s sarcoma, a subset of Castleman disease and body-cavity based lymphoma,11-13 could also be associated with MM, an IL-6–related disease.14

Several studies have demonstrated that DC efficiently induce antigen-specific antitumoral immunity in vitro and in vivo.15-18 As recently described, clinical trials with DC pulsed with monoclonal Ig gave promising results in MM.19 DC from MM patients infected with KSHV is a major impediment to the future clinical use of these cells.

Bone marrow dendritic cells (DC) from patients with multiple myeloma (MM) were recently reported to be infected with Kaposi’s sarcoma-associated herpesvirus (KSHV) in contrast to those from non-MM patients. Additionally, these cells were reported to express viral interleukin-6 (vIL-6), which is known to share functional homology with human IL-6.2-4 vIL-6 supports the proliferation of B9 murine hybridoma cells, activates human gp130 independently of binding to IL-6Rα,5 and promotes the survival and proliferation of myeloma cells (unpublished results). The ability of KSHV to code for vIL-6 and other potential oncogenic proteins6-10 suggests that KSHV, which is involved in the pathogenesis of Kaposi’s sarcoma, a subset of Castleman disease and body-cavity based lymphoma,11-13 could also be associated with MM, an IL-6–related disease.14

Several studies have demonstrated that DC efficiently induce antigen-specific antitumoral immunity in vitro and in vivo.15-18 As recently described, clinical trials with DC pulsed with monoclonal Ig gave promising results in MM.19 DC from MM patients infected with KSHV is a major impediment to the future clinical use of these cells.

Bone marrow dendritic cells (DC) from patients with multiple myeloma (MM) were recently reported to be infected with Kaposi’s sarcoma-associated herpesvirus (KSHV). Because immunotherapy strategies using DC are very promising in this disease, we looked for KSHV DNA in clinical-grade DC generated in vitro from MM patients. Adherent apheresis cells from MM patients were maintained for 7 days in clinical-grade X-VIVO 15 culture medium supplemented with granulocyte-macrophage colony-stimulating factor, interleukin-4, or interleukin-13. Tumor necrosis factor α was added for the last 2 days. We obtained a cell population with a DC phenotype able to endocytose fluorescein isothiocyanate (FITC)-dextran and efficiently activate resting allogenic T lymphocytes. To detect KSHV DNA, we used polymerase chain reaction (PCR) followed by Southern blotting of PCR product with a sensitivity detecting a few copies of viral DNA. All the PCR were repeated in a blinded fashion three times, on 1 µg and 0.2 µg of genomic DNA, in two different laboratories. Clinical-grade DC from 10 (91%) of 11 patients were not infected with KSHV. The apheresis cells and the purified CD34+ cells from the same patients were also negative. A very weak PCR band was detected with DC from one patient, but the initial apheresis cells were negative. The detection of KSHV infection in 1 (9%) of 11 MM patients probably represents background seroprevalence. It seems likely that functional and clinical-grade DC from MM patients can safely be used in clinical trials.

© 1998 by The American Society of Hematology.

Bone marrow dendritic cells (DC) from patients with multiple myeloma (MM) were recently reported to be infected with Kaposi’s sarcoma-associated herpesvirus (KSHV). Because immunotherapy strategies using DC are very promising in this disease, we looked for KSHV DNA in clinical-grade DC generated in vitro from MM patients. Adherent apheresis cells from MM patients were maintained for 7 days in clinical-grade X-VIVO 15 culture medium supplemented with granulocyte-macrophage colony-stimulating factor, interleukin-4, or interleukin-13. Tumor necrosis factor α was added for the last 2 days. We obtained a cell population with a DC phenotype able to endocytose fluorescein isothiocyanate (FITC)-dextran and efficiently activate resting allogenic T lymphocytes. To detect KSHV DNA, we used polymerase chain reaction (PCR) followed by Southern blotting of PCR product with a sensitivity detecting a few copies of viral DNA. All the PCR were repeated in a blinded fashion three times, on 1 µg and 0.2 µg of genomic DNA, in two different laboratories. Clinical-grade DC from 10 (91%) of 11 patients were not infected with KSHV. The apheresis cells and the purified CD34+ cells from the same patients were also negative. A very weak PCR band was detected with DC from one patient, but the initial apheresis cells were negative. The detection of KSHV infection in 1 (9%) of 11 MM patients probably represents background seroprevalence. It seems likely that functional and clinical-grade DC from MM patients can safely be used in clinical trials.

© 1998 by The American Society of Hematology.
were grown in RPMI 1640 supplemented with 2 mmol/L of L-glutamine and 10% fetal calf serum (FCS) or in X-VIVO 15 serum-free medium from Biowittaker (Walkersville, MD) (ie, clinical-grade DC). After 2 hours, nonadherent cells were discarded and adherent cells were cultured in the same media with 100 ng/mL of GM-CSF (LEUCO-MAX; Sandoz, Basel, Switzerland) and 25 ng/mL of IL-4 (Genzyme, Cambridge, MA) or IL-13 (Sanofi, Labe`ge, France). After 5 days of culture, TNFα (R&D Systems, Minneapolis, MN) was added at 20 ng/mL. The same phenotypic and functional analyses were performed on DC obtained in RPMI-FCS and X-VIVO 15 media. On day 5 of culture, before TNFα addition, we studied the capacity of these cells for endocytosis through the mannose receptor using lysine-fixable fluorescein isothiocyanate (FITC)-dextran, molecular weight equal to 40,000. For sensitivity assay, with 1 µg of DNA (corresponding to approximately 150,000 cells) detected in all the DNA samples (data not shown). For sensitivity assay, the 268-bp sized b8-globin fragment could be amplified by PCR. A total of 40 cycles of PCR amplification was used and PCR products (10 µL) were electrophoresed on a 3% agarose gel impregnated with ethidium bromide. They were then blotted onto a positive nylon membrane and hybridized, as described, with the 25-bp internal probe, labeled with 32P using the T4 polynucleotide kinase (GIBCO BRL, Paisley, UK). Autoradiographs were developed after 2 and 6 hours of exposure; the membranes were also exposed for 24 hours to PhosphorImager to exclude the presence of weak bands. The same procedure was performed on 0.2 µg of DNA in the laboratory of Dr Chang.

vIII-6 immunohistochemistry. Expression of KSHV vIII-6 was evaluated in two DC cultures (patients no. 1 and 10) using a polyclonal rabbit antisera raised against vIII-6 peptides that does not cross-react with human IL-6. DC were harvested and embedded in 1% agarose plugs that were formalin-fixed and then processed in paraffin. Four-micrometer sections were cut on coated slides and immunostaining was performed with the avidin-biotin complex (ABC) method using a previously published protocol.5 BCP-1 (KSHV-infected) and P3HR-1 (EBV-infected) cell lines prepared in the same way were used as positive and negative controls, respectively.

RESULTS

Generation of clinical-grade DC from apheresis from MM patients. Adherent AC from patients with MM were cultured with RPMI 1640 and 10% FCS or with clinical-grade X-VIVO 15 culture medium with GM-CSF and IL-4 or GM-CSF and IL-13 for 5 days. TNFα was added on day 5 for 2 additional days. In agreement with our previous report,20 the various culture conditions resulted in the generation of cells with phenotypic characteristics of DC (Table 1). In particular, these cells were always CD14+ and HLA DR+. Cells cultured with X-VIVO 15 medium expressed less CD1a and CD4 than those cultured with RPMI and 10% FCS. A complete phenotypic picture of clinical-grade DC cultured with GM-CSF and IL-13 is shown in Fig 1. It was similar to the phenotype of DC cultured in X-VIVO 15 medium with GM-CSF and IL-4 which we previously reported.20 Despite these phenotypic differences, cells generated in X-VIVO 15 medium have the same ability to endocytose FITC-dextran as those obtained in RPMI-FCS (Fig 2). Again, no difference was found for DC generated with GM-CSF and IL-4 or GM-CSF and IL-13 (Fig 2). Furthermore, these cells efficiently present antigens to resting allogenic T cells (Fig 3).

In conclusion, clinical-grade culture medium allowed the generation of functional DC from patients with MM. In

<p>| Table 1. Phenotypic Comparison of DC Obtained From MM Patients in Different Culture Conditions |</p>
<table>
<thead>
<tr>
<th>Cell Surface Expression (% of MFI)</th>
<th>RPMI 1640-10% FCS</th>
<th>X-VIVO 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture Conditions</td>
<td>IL-4</td>
<td>IL-13</td>
</tr>
<tr>
<td>CD14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLA DR</td>
<td>100 (773)</td>
<td>100 (661)</td>
</tr>
<tr>
<td>CD1a</td>
<td>92 (704)</td>
<td>90 (589)</td>
</tr>
</tbody>
</table>

Apheresis cells from 11 MM patients were maintained according to the four culture conditions described in Patients, Materials, and Methods and harvested at day 7. Data represent the mean percentage of positive cells (%) and, in parentheses, the mean intensity of fluorescence (MFI) determined by flow cytometry.

using the primers described by Chang et al11 that amplify a 233-bp DNA fragment. For personal use only.on September 14, 2017. By guest From www.bloodjournal.org by guest on September 14, 2017. For personal use only.
addition, IL-13 was as efficient as IL-4 in these culture conditions.

Lack of KSHV DNA in clinical-grade DC from patients with MM. We investigated whether DC generated from MM patients in X-VIVO 15 supplemented with GM-CSF and IL-4 contained KSHV DNA. Using 40 cycles of PCR with KSHV 330 primers, Southern blotting, and hybridization with an internal radiolabeled probe, we were able to detect the presence of KSHV DNA in 1 pg of genomic DNA of the KSHV-infected BCBL-1 cell line diluted in 1 µg of genomic DNA of the KSHV-negative XG-1 myeloma cell line (Fig 4). Because every BCBL-1 cell contained an average of 30 copies of the KSHV genome, 1 pg of BCBL-1 DNA corresponded to about 5 KSHV copies. This was in agreement with the previously reported high sensitivity of this PCR. We failed to detect KSHV DNA in 1 µg of DNA (ie, 150,000 cells) from MM patients’ clinical-grade DC in 10 (91%) of 11 cases (Fig 5A and B). For patient no. 8, a weak band could be detected, indicating that few KSHV copies were present. All PCR were repeated with identical results 3 times in Montpellier on 1 µg of DNA and in New York using 0.2 µg of DNA. We obtained exactly the same PCR data when starting from DNA of DC obtained in RPMI-10% FCS (data not shown). In addition, none of the 11 patients’ apheresis cells was positive for KSHV DNA (Fig 5D).

DISCUSSION

We have previously reported the generation of DC by culturing apheresis cells from patients with MM with GM-CSF and IL-4 for 7 days. These cells had the phenotype of DC (CD11c+, CD4+, CD14−, HLA DR+, CD80+, CD86−), were able to endocytose FITC-dextran, and were able to present soluble antigens to naïve T cells. We used RPMI 1640 culture medium and FCS and presented preliminary data showing that clinical-grade serum-free culture medium could be used.20

In the present study, we reinforce these data and show that pure and functional DC could be generated with clinical-grade serum-free culture medium. Adherent apheresis cells were collected and cultured with X-VIVO 15 culture medium for 7 days with GM-CSF and IL-4. The replacement of IL-4 with IL-13 yielded similar results. These cells had a DC phenotype with slight differences suggestive of a less mature phenotype when compared with those generated with RPMI 1640 and 10% of FCS. However, their endocytic capacity was similar. We previously reported that addition of TNFα for the last 2 days of culture was necessary to get an efficient antigen-presenting ability,20 and this was confirmed in this study (data not shown). Thus, we show here that fully functional DC can be generated from MM patients.

To address the recent concern that bone marrow DC are infected with KSHV and express vIL-6 gene,1 we investigated whether DC generated from apheresis cells in our culture conditions might be infected with KSHV. Using a very sensitive
PCR and Southern blotting, it is possible to amplify KSHV DNA in 1 pg of DNA from KSHV-infected BCBL-1 cells. We failed to detect any KSHV amplification in 1 µg of DNA from clinical-grade DC from 10 patients with MM. PCR was performed blindly in two independent laboratories using KS330233 primers. Furthermore, we failed to find expression of vIL-6 by immunostaining with anti–vIL-6 antibody in two patients with negative PCR results (data not shown). The initial apheresis cells (n = 11) as well as pure CD34+ cells (n = 8) from which the DC precursors originated were also negative. For one patient, we found a weak PCR amplification that was seen only after Southern blotting, suggesting less than 5 KSHV copies in 1 µg of DNA. No PCR amplification was seen using 100 ng of DC DNA (data not shown). These data indicate that only a few cells of 150,000 cells were infected with KSHV. The detection of KSHV in 1 (9%) of 11 patients is within the range of one or two copies per cell.
It is of note that total AC and CD34$^+$ purified cells from this patient were negative for KSHV PCR. It is possible that the rare cells infected with KSHV were retained by the adherence step used to generate DC from total AC, resulting in sufficient enrichment for the presence of KSHV DNA and detection with our very sensitive method. It has been recently suggested that monocytes were productively infected by KSHV in Kapo\'s sarcoma lesions and KSHV was detected by PCR in the adherent monocytic cell population obtained after 8 days of culture of peripheral blood mononuclear cells of acquired immunodeficiency syndrome-associated Kapo\'s sarcoma patients.\(^\text{40}\)

We do not use the culture conditions described by Rettig et al\(^\text{1}\) because nobody has yet shown that such a method is successful to obtain DC. Moreover, Rettig et al\(^\text{1}\) presented no evidence that their infected cells were really DC in terms of endocytosis, expression of costimulatory molecules, antigen presentation, and activation of T lymphocytes. Thus, the present study may ascertain that fully characterized DC from most MM patients are not infected with KSHV. In addition, when we cultured stromal cells according to the protocol described by Rettig et al,\(^\text{1}\) we obtained a mixed population of fibroblastic and monocytic cells that were not infected with KSHV (unpublished results). However, one cannot exclude the possibility that a rare bone marrow cell that can be expanded under very specific conditions could be infected by KSHV in MM patients. We may only note that two groups failed to find KSHV seropositivity in patients with MM\(^\text{41,42}\) in agreement with the results of Dr Chang (unpublished results). Our data, along with the lack of KSHV detection in tumoral samples\(^\text{43}\), do not favor a causal role of KSHV in MM. In conclusion, this study shows that clinical-grade DC from most patients with MM are not infected with KSHV.

ACKNOWLEDGMENT

The authors appreciate the generous gift of rhIL-13 from A. Minty (Sanofi, Labège, France). We thank G. Cathala for expert technical advice, thank G. Fiol and M-C. Delteil for their help in generating DC samples, and acknowledge L. Milligan for her assistance in the preparation of the manuscript.

REFERENCES

Clinical-Grade Functional Dendritic Cells From Patients With Multiple Myeloma Are Not Infected With Kaposi’s Sarcoma-Associated Herpesvirus

Karin Tarte, Sonja J. Olsen, Zhao Yang Lu, Eric Legouffe, Jean-François Rossi, Yuan Chang and Bernard Klein