CORRESPONDENCE

Response

To our knowledge there are now reports on a total of 23 patients who have been studied for expression of the AML1/ETO transcript after allogeneic BMT. Of these patients, 15 have been found to have persistent expression, 7 were or became negative, and 1 was not evaluable. The discrepancy most likely reflects the lack of consensus on when to score a given sample as negative. Our data suggest that the sensitivity of each assay, the amount of starting material, or the source of the material (ie, BM or blood) might all contribute to some of the negative results obtained. For a patient to be considered negative at a given timepoint in our study, samples had to (1) be amplified in three independent experiments using 2.0 μg of total cellular RNA per reaction, (2) be successfully amplified for the β-actin in each reaction; (3) be performed simultaneously with an RT-PCR showing a sensitivity for detection of the AML1/ETO transcript of ≥1 x 10^3 in all three reactions, and (4) assays had to be performed on blood and BM. Taken together, these data suggest that, in the majority of patients, persistent expression of the AML1/ETO is compatible with continued clinical remission and, with the reported follow-up times of up to 10 years, even cure. Recently, similar results, although not after allogeneic BMT, were reported in childhood ALL.8

Jesper Jurlander
Department of Hematology
The Finsencenter
Rigshospitalet
Copenhagen, Denmark
Michael A. Caligiuri
Clara D. Bloomfield
The Arthur G. James Cancer Hospital and Research Institute
Ohio State University
Columbus, OH

REFERENCES

Which Are the Nonerythroid Cells That Constitutively Express the Duffy Antigen?

To the Editor:

The Duffy blood group antigen has generated great interest because it is the receptor for the human malarial parasite Plasmodium vivax, simian malarial parasite Plasmodium knowlesi, and a new class of chemokine receptor for several proinflammatory cytokines. The finding that nonerythroid organs produce Duffy mRNA motivated the identification of cells that constitutively produce the Duffy protein (gp-Fy). Immuno-histochemical studies were performed by Hadley et al, and by Chaudhuri et al. Endothelial cells (type-I) of pulmonary alveoli, in addition to the endothelial cells of large venules and epithelial cells (type-I) of pulmonary alveoli. In thyroid, only the endothelial cells of capillaries produced gp-Fy. In spleen, in addition to the endothelial cells of capillaries and sinusoids, which is consistent with the observations of Peiper et al, endothelial cells of high endothelial venule (HEV) also produced abundant gp-Fy according to Chaudhuri et al. Furthermore, ultrastructural studies performed with antibody 6615 showed that apical and basolateral plasma membrane domains, including caveolae, contained gp-Fy. This indicates that the Duffy antigen is not limited to the membrane domain lining the vessels.

Hadley and Peiper challenged these findings in a recently published and well-documented review article. They disputed the specificity of rabbit polyclonal antibody 6615. However, Chaudhuri et al identified the same cells; however, their studies showed gp-Fy in other cell types. Thus, in kidney, the endothelium of glomeruli, peritubular capillaries, vasa recta, and the principal cells (epithelial) of collecting ducts showed expression of gp-Fy. Duffy protein was also noticed in the endothelial cells of large venules and epithelial cells of the cerebellum are the only nonerythroid cells that constitutively express gp-Fy. Chaudhuri et al identified the same cells; however, their...
The Duffy blood group antigen is a 7-membrane spanning protein that binds chemotactic cytokines (chemokines) from both C-X-C and C-C families. Immunohistochemical studies from our laboratory using a monoclonal antibody, anti-Fy6, showed that the Duffy chemokine receptor is present on endothelial cells of postcapillary venules, sinusoids of spleen, and Purkinje neurons of the cerebellum, and endothelial cells of thyroid capillaries, post-capillary venules of some organs, and large pulmonary venules.

Søren Nielsen
Department of Cell Biology
University of Aarhus
Aarhus, Denmark
Asok Chaudhuri
A. Oscar Pogo
Laboratory of Cell Biology
Lindsey F. Kimball Research Institute of the New York Blood Center
New York, NY

REFERENCES

6. Hadley TJ, Lu Z, Wasiowska K, Martin AW, Peiper SC, Hesselgesser J, Horuk R: Postcapillary venule endothelial cells in kidney express a multispecific chemokine receptor that is structurally and functionally identical to the erythroid isoform, which is the Duffy blood group receptor. *J Clin Invest* 94:3985, 1994

Response

In summary, the immunohistochemical results reported by Chaudhuri et al. may indeed represent true expression of the Duffy chemokine receptor by the cells observed using antibody 6615. However, the possibility that the 21-kD 6615-reactive band represents a molecule other than a Duffy degradation product has not been formally excluded by the data presented. Both our studies and those of Chaudhuri et al. show that the Duffy chemokine receptor is expressed on vascular endothelial cells and other nonerythroid cells. The challenge now is to determine the function of this unique chemokine receptor. Insight into the function of the Duffy chemokine receptor will provide an important perspective from which to view the immunohistochemical data.

Terence J. Hadley
Stephen C. Peiper
Henry Vogt Cancer Research Institute
James Graham Brown Cancer Center
Louisville, KY

REFERENCES

Acquisition of Factor VIII Inhibitor After Acute Hepatitis C Virus Infection

To the Editor:

We report an unusual case of acquired serious factor VIII deficiency due to the development of human factor VIII inhibitor that occurred in an elderly female patient 2 months after having had an acute episode of hepatitis C virus (HCV). The case may suggest that the event could be a rare complication after HCV acute infection. An 84-year-old woman suffering from psoriasis, gastritis, and slight glucose intolerance was admitted to our division, in July 1996, because of jaundice and suspected acute hepatitis. The serum transaminase level was elevated (aspartate transaminase [AST] 923 U/L, alanine transaminase [ALT] 765 U/L), showing hepatic cytolsis, and the total bilirubin level was 13.9 mg%. An ultrasonographic examination of the liver showed the presence of a sclero-atrophic gallbladder, and biopsy of gastric mucosa, effectuated during gastroscopy, showed a chronic gastritis associated to Helicobacter pylori.

Abnormal ALT serum level (1,776 U/L) persisted during the first 2 weeks, subsiding thereafter gradually. The HCV antibody titer, which was determined by specific immune absorbent assays, increased from 0.55 to 1.57 optical density (OD) during her 3-week stay at the hospital, after which she was discharged with diagnosis of HCV acute hepatitis. The recombinant immuno blotting assay showed antibody positivity against C-33 antigen; antinuclear autoantibodies, lupus anticoagulant, and crio globulines were negative. No bleeding or other signs of coagulopathy were reported at admittance until discharge: prothrombin time (PT) was 81%, partial thromboplastin time (PTT) was 55 seconds, and platelet count was 195,000/μL. Afterwards, the patient was observed at the divisional day hospital without evidence of complications. Two months later, the patient was readmitted with a large, spontaneous left arm hematoma, hematuria, and evidence of poor coagulation. The platelet count was 232,000/μL; PTT was prolonged to 93 seconds, PT was 75%, and only factor VIII, among other prothrombin factors, was found decreased to a level of 0.013 IU/mL (normal range, 0.70 to 1.50 IU/mL). The human factor VIII specific inhibitor was found to be positive (37.7 Bethesda unit [BU]/mL), whereas porcine factor inhibitor was 1.6 BU/mL. To avoid autoimmune response against porcine factor VIII, the patient was treated on activated prothrombin complex concentrate at 75 U/kg and methylprednisolone at 40 mg daily for 3 weeks, reserving treatment with porcine factor VIII concentrate for more severe events or high-risk situations of hemorrhagia.

No bleedings occurred any further and the patient was referred to a center for coagulation of another hospital.

One month later, because of recurrence of hematuria, she underwent cystoscopic examination and a bladder benign papilloma was removed under coverage of preemptive treatment with porcine factor VIII (100 U/Kg) everyday for 2 days. A week later, the patient was discharged.

A month later, the patient died at home after a severe acute bleeding episode of the gastrointestinal tract.

Development of inhibitors against factor VIII or factor IX is a common complication during specific substitutive treatment of hemophilia, and it is occasionally reported during interferon-α chronic therapy in patients with hemophilia A and chronic HCV hepatitis, but its relationship with acute or chronic HCV hepatitis is unknown.

The mechanism responsible for development of inhibitory reactivity against factor VIII in hemophilia A is related to the immunologic restricted specificity of inhibitor antibodies against regions on factor VIII protein; their reaction has been identified on immuno blotting. The 44-kD fragment from the heavy chain and the 72-kD fragment from the light chain of factor VIII, either or both, are immunogenic and increase antibody response toward them. Our patient did not have a history or signs of bleeding or spontaneous soft tissue hematoma before developing acute C hepatitis, and there has been no evidence of autoantibodies or clinical evidence of autoimmune diseases. This report suggests the possibility that, in this case, acute HCV infection could have induced the development of human factor VIII specific inhibitor.

From www.bloodjournal.org by guest on April 9, 2017. For personal use only.
Which Are the Nonerythroid Cells That Constitutively Express the Duffy Antigen?

Søren Nielsen, Asok Chaudhuri and A. Oscar Pogo