AC133 is one of a new panel of murine hybridoma lines producing monoclonal IgG antibodies (mAbs) to a novel stem cell glycoprotein antigen with a molecular weight of 120 kD. AC133 antigen is selectively expressed on CD34^{bright} hematopoietic stem and progenitor cells (progenitors) derived from human fetal liver and bone marrow, and blood. It is not detectable on other blood cells, cultured human umbilical vein endothelial cells (HUVECs), fibroblast cell lines, or the myeloid leukemia cell line KG1a by standard flow cytometric procedures. All of the noncommitted CD34⁺ cell population, as well as the majority of CD34⁺ cells committed to the granulocytic/monocytic pathway, are stained with AC133 antibody. In vitro clonogenicity assays have demonstrated that the CD34^{bright} AC133⁺ double-positive population from adult bone marrow contains the majority of the CFU-GM, a proportion of the CFU-Mix, and a minor population of BFU-E. The CD34^{dim} and AC133⁺ population has been shown to contain the remaining progenitor cells. AC133-selected cells engraft successfully in a fetal sheep transplantation model, and human cells harvested from chimeric fetal sheep bone marrow have been shown to successfully engraft secondary recipients, providing evidence for the long-term repopulating potential of AC133⁺ cells.

A cDNA coding for AC133 antigen has been isolated, which codes for a polypeptide consisting of 865 amino acids (aa) with a predicted size of 97 kD. This antigen is modeled as a 5-transmembrane molecule, a structure that is novel among known cell surface structures. AC133 antibody provides an alternative to CD34 for the selection and characterization of cells necessary for both short- and long-term engraftment, in transplant situations, for studies of ex vivo expansion strategies, and for gene therapy.

© 1997 by The American Society of Hematology.

Efficient selection of hematopoietic stem and progenitor cells is important for both experimental investigation and the clinical strategies of stem cell transplantation and gene therapy. functionally, isolated progenitors may permit study of the lineage commitment process and the capacity for ex vivo expansion. transplantation of enriched bone marrow or peripheral blood progenitors devoid of T lymphocytes may minimize serious complications of bone marrow allografts such as graft-versus-host disease, and tumor cell purging may be crucial to reducing tumor recurrence in autologous transplantation. The use of growth factors in ex vivo expansion of progenitor subsets could provide the next generation of cellular therapeutics for a variety of malignant and inherited diseases. monoclonal antibodies (MoAbs) to cell surface antigens are now routinely used for identification and subsequent isolation of subsets of progenitors, and have been useful for elucidation of receptor/ligand interactions involving progenitors and humoral or cellular regulatory elements. bone marrow– and blood-derived progenitors share expression of a great many surface markers with other hematopoietic cells, and they typically constitute less than 1% of normal bone marrow and 0.5% of peripheral blood. unfortunately, direct conventional strategies to develop novel antibodies specific for progenitors have been difficult due to the relative paucity of stem cells for immunization and screening purposes, and the immunodominance of class II and other stem cell antigens, which dominate the immune response when using standard immunization procedures.

The marker of choice in progenitor selection strategies is CD34, and over the past decade, the use of CD34 as a progenitor surface marker has resulted in a rapid appearance of more sophisticated purification techniques and clinical trials in the field of hematopoiesis. CD34 is a stage-specific antigen associated with hematopoietic stem and progenitor cells that is also expressed on small-vessel endothelial cells and embryonic fibroblasts. CD34 antigen density is highest on early progenitors, and the density decreases progressively as cells mature. Fully differentiated hematopoietic cells are CD34⁺. Cells described as early multipotential CFU-Mix, CFU-blast, and long-term culture-initiating cells appear as lymphocyte-like cells and express high amounts of CD34 antigen. The CD34^{bright} population includes cells with features of long-term B-cell lymphopoiesis and myelopoiesis in vitro, as well as mediating T, B, myelomonocytic, and megakaryocytic reconstitution in vivo. While the CD34^{dim} population contains lineage-committed progenitors, and these cells have no ability to provide long-term hematopoietic activity in vitro and in vivo. The CD34^{bright} population containing primitive stem cell activity is therefore the target population for study of progenitor reconstitutive and self-renewal abilities. However, only an arbitrary distinction between CD34^{bright} and CD34^{dim} subsets can be made on the basis of CD34 expression alone. CD38, CD71, CD50, HLA-DR, CD90, TIE, CD117, and other markers have been proposed as additional tools to further enrich the CD34^{bright} population for long-term engrafting cells. The consensus phenotype of primitive hematopoietic stem cells is CD34^{bright}, CD38^{dim}, HLA-DR^{dim}, CD90⁺, CD117⁺, lineage⁻, and rhodamine 123⁺.
In this report, we describe an immunization and screening procedure that has allowed the production of a novel MoAb, AC133. AC133 identifies a structurally novel 5-transmembrane antigen with expression restricted to CD34⁺ progenitor populations derived from blood and bone marrow. In contrast to CD34, AC133 does not react to HUVECs, the KG1a cell line, or fibroblasts. AC133 defines a population of immature/primitive and GM-committed cells that can subsequently be isolated by AC133 antibody using fluorescence or magnetic-activated cell sorting. Our observations show that AC133 defines a desirable population for experimental study of hematopoiesis and ex vivo expansion of progenitors. In providing a source of primitive stem cells, together with progenitor cells committed to the granulomonocytic maturation pathway, AC133 may have an important role in stem cell selection for transplantation.

MATERIALS AND METHODS

Fetal tissues and cord blood were obtained from Advanced Biosciences Resources Inc, (Alameda, CA), a nonprofit corporation that provides tissue in compliance with state and federal laws. Peripheral blood and cytokine-mobilized leukapheresis products were from Stanford Medical School Blood Center (Palo Alto, CA). Bone marrow cells were aspirated from the posterior iliac crest of consenting puriﬁed CD34⁺ cells. 29 For higher purity of CD34⁺ cells, a second column run was used. Purity of isolated CD34⁺ cells was generally greater than 90%, and cell viability as evaluated by propidium iodide exclusion was always higher than 95%.

Antibody Production

Immunoassay. For the AC133 hybridoma, 6-week-old female New Zealand Black (NZB) mice (Simonsen Laboratories, Gilroy, CA) were inoculated with human CD34⁺ cells under anesthesia on days 0, 3, 6, 9, 13, 17, and 20 in the right hand footpad, and peripheral blood mononuclear cells in the left hand footpad on days −3, 0, 3, 6, 9, 13, 17, and 20. CD34⁺ cells were immunomagnetically selected (QBEnd10 microbeads; AmCell Corp, Sunnyvale, CA) from a leukapheresis pack prepared from a cytokine-mobilized donor. Both cell types were incubated with 1:100 phytohemagglutinin (PHA) (GIBCO/BRL, Gaithersburg, MD) and resuspended in phosphate-buffered saline (PBS), pH 7.4 (Sigma, St Louis, MO) and centrifuged over Histopaque-1077 (Sigma) for 30 minutes at 400g. Mononuclear cells recovered from the interface were washed and stored in liquid nitrogen if not used immediately.

Fetal Liver Preparation

Second-trimester fetal livers were mechanically dissociated in PBS, pH 7.4, containing 5 mmol/L EDTA, 0.5% bovine serum albumin (BSA), and 0.05% sodium azide (Sigma). The cell suspension was ﬁltered sequentially through a Collector Tissue Sieve (VWR, San Diego, CA) and 70-μm nylon mesh. Red blood cells, nucleated red blood cells, and mononuclear cells were separated by Histopaque-1077 density sedimentation. The CD34-rich fragment was collected from the interface. Cells were then washed and stored in liquid nitrogen for further use. Normally, 10⁸ to 10⁹ cells were harvested from one specimen, and the proportion of intact CD34⁺ cells obtained was between 5% and 15%.

Fetal and Adult Bone Marrow Preparation

For phenotypic analysis, fetal bone marrow was obtained from aborted fetuses of 17 to 22 weeks’ gestation. Marrow suspension was prepared by flushing intramedullary cavities of upper- and lower-extremity bones with PBS, pH 7.4, containing 5 mmol/L EDTA, 0.5% BSA, and 0.05% sodium azide. The cells were pelleted and resuspended in the same buffer. Adult bone marrow and cell suspensions from fetal bone marrow were diluted 10-fold in buffer containing 0.17 mmol/L NH₄Cl, 10 mmol/L KHCO₃, and 0.1 mmol/L tetrasodium EDTA in double-distilled H₂O (pH 7.2, 20°C) to lyse the mature red blood cells. After 5 minutes of lysing, cells were centrifuged, washed, and passed through a 70-μm nylon filter (Becton Dickinson Immunocytometry Systems [BDIS], San Jose, CA) for subsequent staining.

Adult bone marrow for in vitro colony assays or in vivo studies was diluted with an equal volume of PBS without calcium or magnesium (PBS−) and centrifuged over Accupaque (1.086 g/mL; Accurate Chemical and Scientific Corp, Westbury, NY) for 30 minutes at room temperature at 450g. The cells at the interface were washed three times with PBS− and resuspended in α-medium (α-modification of Eagle’s medium; ICN, Aurora, OH) containing 10% fetal bovine serum (Intergen, Purchase, NY) for overnight storage at 4°C. Before analysis, cells were resuspended in PBS− containing 2% human AB serum, 0.1 mg/mL DNase (Sigma), and 0.1% sodium azide.

CD34⁺ Cell Purification

For immunization and FACS analysis, CD34⁺ cells were enriched from fetal liver preparations, fetal and adult bone marrow, cord blood, peripheral blood, or mobilized leukapheresis product. Cells from these sources were ﬁrst prepared with Histopaque-1077 density gradient centrifugation. Mononuclear cells were then incubated with CD34 (QBEnd10)-conjugated magnetic microbeads (AmCell Corp, Sunnyvale, CA) and processed through a MACS magnetic separation column (Miltenyi Biotec, Bergisch Gladbach, Germany) to obtain puriﬁed CD34⁺ cells. For higher purity of CD34⁺ cells, a second column run was used. Purity of isolated CD34⁺ cells was generally greater than 90%, and cell viability as evaluated by propidium iodide exclusion was always higher than 95%.

Fusion. On day 21, right hand popliteal lymph nodes from the CD34 cell injection site of NZB mice or both popliteal nodes from WERI-Rb1–injected Balb/c mice were removed. A lymphocyte suspension was prepared and fused to SP2/Ag14 myeloma cells using a modiﬁcation of the method described by Köhler and Milstein. D Washed cells were plated on 10 96-well plates in DMEM supplemented with 20% fetal bovine serum (FBS), 2 mmol/L L-glutamine, 15 mmol/L HEPES, 10⁻⁴ mol/L hypoxanthine, and 2 μg/mL azaserine (FCS from HyClone Laboratories Inc, Logan, UT; other reagents from Sigma), and placed in a 37°C incubator with 9% CO₂.

Primary screening and subcloning. Hybridoma supernatants were screened on fetal liver cell preparations using two-color flow cytometric analysis. Binding of secreted mouse Ig from supernatants to the fetal liver cells was traced with phycoerythrin (PE)-conjugated rat anti-mouse IgG₁ and IgG_{2b} (BDIS), and counterstaining with fluorescein isothiocyanate (FITC)-conjugated mouse anti-human CD34 (HPCA-2; BDIS; QBEnd10, AmCell Corp). Dead cells in the...
fetal liver preparation were excluded from analysis by propidium
iodide staining.25 CD34PE and HLA-DRFITC (PharMingen, San
Diego, CA) were used for FACSscan compensation. All selected
antibodies used later for this study were derived from cells subcloned
by limiting dilution. The isotype of new antibodies was determined
by the ISOTYPE Ab-STAT Kit (SangStat Medical Corp, Palo Alto,
CA) or by FACS analysis using rat anti-mouse isotype fluorescent
conjugates (BDIS).

Antibody Purification and Conjugation

Pure AC133 or AC133-like antibodies were prepared from hol-
low-fiber (Cellmax QUAD Artificial Capillary System; Cellco Inc,
Germantown, MD) cultures or from ascites fluid by protein A chroma-
ography.33 FTTC and PE conjugates were prepared using standard
procedures.34,35 AC133 magnetic bead conjugates were obtained from
Miltenyi Biotec.

Cell Lines and Activation

Cell lines used for this study were obtained from the ATCC (Rock-
ville, MD) and maintained in DMEM with 10% FBS, 2 mmol/L-
glutamine, and 15 mmol/L HEPES in a 9% CO2 atmosphere.
HUVECs were from Clonetics (San Diego, CA), and NT-2 and
hNT neurons were kindly provided by Dr M. McGrogan (Layton Bio-
Sciences, Gilroy, CA). Anchorage-dependent cells were removed
from the flasks by Trypsin-EDTA digestion (GIBCO/BRL). For acti-
vation, 1:100 PHA was added to aseptically prepared peripheral
blood mononuclear cells in culture medium and placed in a 37°C
humidified incubator with 9% CO2. Cell lines KG1a, K562,
HEL92.1.7, Jurkat, Daudi, HPB-ALL, SK-N-MC, SK-N-SH, H4,
134H, 8402, Y79.1, and WERI-Rb-1 were activated with 1 ng/mL
phorbol myristate acetate (PMA)-GIBCO/BRL. Activated cells were
harvested at 24-, 48-, 72-, 96-, and 120-hour intervals and
washed with PBS before FACS analyses.

Cell Staining

To minimize nonspecific antibody binding, cells were preincu-
bated with PBS containing 0.5% human γ-globulin (Sigma). For
indirect immunofluorescence staining, nucleated cells from bone
marrow, cord blood, or fetal liver were incubated with an unla-
belled MoAb, washed twice in PBS-FCS, and stained with fluoresceine-
conjugated secondary antibodies. Before additional labeling with
fluoresceine-conjugated MoAbs, the cells were washed twice and
incubated for 20 minutes with 30% normal mouse serum to block
remaining binding sites for antimouse IgG. All incubation steps were
performed on ice for 25 minutes. Immunostained cells were either
kept on ice and analyzed immediately by flow cytometry or fixed
in 0.5% paraformaldehyde and analyzed within 48 hours.

Flow Cytometric Analysis

One-, two-, three-, or four-color FACS analysis was used for
AC133 antibody screening, determination of AC133 expression on
cell lines, AC133 cell phenotyping, and stem/progenitor cell eval-
uation after magnetic selection. CD90PE (Thy-1) was obtained from
PharMingen. Anti-Flt3 MoAb SF 1.340 and CD117 MoAb 104D2
were obtained from the Sixth International Workshop on Leukocyte
Differentiation Antigens. MoAbs used to discriminate between non-
committed and various lineage-committed progenitor cells included
CD34 (HPCA-2), CD38 (Leu-17), CD19 (SJ25C1), CD71 (trans-
ferrin receptor) (all from BDIS), CD50 (140-11; kindly provided by
Dr Ramon Villela, Servei d’Immunologia, Hospital Clinic, Barce-
lona, Spain), and CD64 (M22; MedaRex Inc, Annandale, NJ). The
mAbs were conjugated to FITC, PE, peridinin chlorophyll protein
(PerCP), or allophycocyanin (APC). Fluorochrome conjugates that
are not listed in the BDIS catalog were made through the BDIS
custom conjugation program. Isotype control mouse MoAbs in-
cluded anti–keyhole limpet hemocyanin (IgG1; BDIS) and NC2
(IgG1; Fifth International Workshop on Leukocyte Differentiation
Antigens). Polyclonal PE-conjugated F(ab’2); goat anti-mouse IgG
heavy + light chain was purchased from Jackson Immunoresearch
(West Grove, PA). Normal mouse serum was from Caltag Labora-
tories (South San Francisco, CA).

For phenotypic analysis, immunostained cells were analyzed using
an experimental high-sensitivity flow cytometer designed by Dr Rob-
ert Hoffman at BDIS. This flow cytometer is equipped with three
lasers: a 488-nm argon ion laser (15 mW) for excitation of PerCP
and FITC, a 633-nm helium-neon laser (10 mW) for excitation of
APC, and a 532-nm YAG laser (20 mW) for excitation of PE. The
532-nm excitation of PE yields six times the signal to noise ratio
obtained with 488-nm excitation (not shown). For each sample,
10,000 to 50,000 events were acquired in list mode with Cell Quest
software (BDIS). Forward light scatter, orthogonal light scatter, and
di#uorescence signals were determined for each cell, and the
listmode data ®les were analyzed on a Macintosh computer with
Paint-A-GatePRO (BDIS).

Colony Assay

Adult bone marrow cells were stained with PE-conjugated AC133
antibody at a concentration of 200 ng/106 cells in a volume of 100
µL and with FITC-conjugated CD34 antibody at a concentration of
2 µg/106 cells in 100 µL for 30 minutes at 4°C. Propidium iodide
was added to the final wash as an indicator of nonviable cells. A
BDIS FACS Vantage was used to analyze and sort bone marrow
mononuclear cells into fractions of CD34+, CD34+/AC133+, and
CD34+/AC133 .

Clonal cell cultures were performed in 35-mm culture dishes using
serum-free conditions.26 One milliliter of the culture mixture con-
tained 500 sorted cells, 2% deionized crystallized BSA, 10 pg/mL
soybean lecithin, 6 µg/mL cholesterol, 1 × 105 mol/L sodium sele-
site, 300 µg/mL human transferrin, 10 µg/mL insulin (reagents from
Sigma), and 1.2% 1,500-centipoise methylcellulose (Shinetsu Chemi-
cal, Tokyo, Japan).

The source of recombinant human cytokines was as previously
described.7 Concentrations of the cytokines were interleukin-3 (IL-
3) 100 U/mL, stem cell factor (Steel factor, kit ligand) 100 ng/mL,
thrombopoietin (TPO) 100 ng/mL, IL-6 100 ng/mL, and erythropoie-
tin (EPO) 2 U/mL. Cultures were incubated at 37°C in a humidified
atmosphere of 5% CO2, 5% O2, and 90% N2. Colonies were identi-
fied on day 14 of incubation, on an inverted microscope using the
criteria described previously.7

Preliminary In Vivo Analysis

After two washes with PBS, pH 7.4, containing 0.5% BSA and
5 mmol/L EDTA, bone marrow mononuclear cells were incubated
with AC133-conjugated magnetic beads (Miltenyi Biotec) for 30
minutes at 4°C and passed through a V column in the magnetic
field of a VarioMACS Apparatus (Miltenyi Biotec). To obtain a
higher purity of CD34+ cells, eluted AC133 cells were recaptured
on a second V column. Recovered bone marrow cells were evalu-
cated by FACS analysis with CD34PE (HPCA-2; BDIS) against
CD45FITC, CD15FITC, and Glycoporphin-A FITC (PharMingen).
Ninety-#ve percent of AC133 cells obtained from bone marrow
magnetic separation were CD34+ cells. AC133-selected cells were
transplanted into primary preimmune fetal sheep (earlier than 65
gestation days; term, 145 days) recipients using the amniotic bubble
technique.38 Five fetuses received a single intraperitoneal injection of
1.5 × 106 AC133-puri®ed cells. All recipients survived the proce-
dure. One fetus was killed at 60 days posttransplantation (ie, 120
A NOVEL MOLECULE ON CD34 PROGENITORS

days gestation, 25 days before birth) and evaluated for human donor cell activity by flow cytometry. The remaining animals were carried to term. These lambs were evaluated soon after birth and at intervals thereafter. For transplantation of secondary recipients, human CD45+ cells were isolated from the marrow of a primary chimeric recipient by immune adherence “panning” and transplanted into preimmune fetal sheep.39 Each of four fetuses received 6 × 104 CD45+ cells isolated from the marrow of a primary recipient made chimeric with AC133-purified cells. Donor cell engraftment and expression were determined by flow cytometry and karyotyping of colonies derived from hematopoietic progenitors (CFU-Mix, CFU- of AC133PE conjugate to the AC133

RESULTS

Antibody Production and Screening

The contralateral immunization of NZB mouse popliteal lymph node cells with purified progenitors has allowed the production of an IgG1-secreting hybrid culture, 5F3, which stained only the CD34+ subset of a fetal liver preparation (Fig 1). This hybridoma was subcloned by limiting dilution and renamed AC133. AC133 was of immediate interest in that it was not reactive to unfractionated peripheral blood mononuclear cells (PBMCs), granulocytes, platelets, fibroblasts, cultured HUVECs, or various CD34-expressing cell lines such as KG-1, KG-1a, or 8402 (Table 1). By FACS analysis, AC133 specifically stained CD34+ cells in human fetal livers (n = 27; mean, 29.88% of CD34+ cells) and bone marrow (n = 3; mean, 31.6%), adult bone marrow (n = 2; mean, 70%), cord blood (n = 2; mean, 35.13%), and leukapheresis products from cytokine-mobilized donors (n = 3; mean, 54.9%) (Fig 1). Staining of PHA-activated PBMCs was negative (data not shown). AC133 antigen expression by FACS analysis of a large panel of hematopoietic and nonhematopoietic cell lines was uniformly negative, with the exception of two human retinoblastoma cell lines, Y79.1 and WERI-Rb-1, and one teratocarcinoma-derived cell line, NT2 (Table 1 and Fig 2). These NT2 precursor cells differentiate into postmitotic cells with properties of central nervous system neurons in vitro by retinoic acid induction.35 hNT neurons derived from the NT2 cell line were found to have downregulated AC133 antigen expression to undetectable levels (not shown). While AC133 antigen expression levels were low on Y79.1 cells, they were approximately 10-fold higher on WERI-Rb-1 cells. The 24-hour PMA activation of Y79.1 resulted in upregulation of AC133 antigen expression, but no upregulation was seen with the WERI-Rb-1 cell line. PMA activation of a panel of cell lines for 24 to 96 hours did not induce AC133 antigen expression (Table 1). Retinoblastoma cell line expression led us to examine AC133 expression on other cell lines of neural origin; however, AC133 was found to be nonreactive with SK-N-SH, SK-N-MC, or IMR32, three neuroblastoma cell lines, with H4, a human neuroglioma cell line, or with 134H, a glioblastoma cell line (Table 1). Baboon bone marrow cells (kindly provided by Dr Jonathon Allen, Southwest Foundation for BioMedical Research, San Antonio, TX) did not express the AC133 antigen (data not shown).

The WERI-Rb-1 cell line that expressed high levels of AC133 antigen was used as immunogen in two further immunizations to produce a panel of antibodies to the AC133 antigen. Balb-c mice were immunized via the footpad with WERI-Rb-1 cells, and two separate fusions of popliteal lymph node cells from these animals resulted in a number of new hybridomas that secreted AC133-like antibodies (Table 2). Specificity of these new antibodies was confirmed by two- or three-color FACS analysis, cross-blocking studies, immunoprecipitation, and/or by reactivity with AC133-transfected COS cells.41 Cross-blocking studies using an excess (5 µg) of unlabeled antibody to compete with the binding of AC141PE conjugate to the AC133+ cell line WERI-Rb-1 indicates that at least two and maybe three spatially unrelated epitopes are recognized by the panel of antibodies in Table 2.

Phenotyping Studies

Phenotyping of AC133+ cells was accomplished using multicolor FACS analysis with a panel of conjugated antibodies directed to leukocyte surface structures known to be expressed on human hematopoietic stem, progenitor, or lineage-committed progenitor cells. Typically, AC133 stained 20% to 60% of all CD34+ cells derived from fetal liver and bone marrow, adult bone marrow, cord blood, and peripheral blood. Only CD34+ cells from all of these tissue sources were AC133+. Fetal bone marrow (FBM) cells were stained with AC133 and also CD38, CD50, CD64, CD71, and CD19 to allow identification of noncommitted and various lineage-committed progenitor cells (Fig 3). AC133 did not stain above isotype control levels on CD34− cells (not shown). Figure 3B through E represent CD34+ cells gated from region R1 in Fig 3A, and 26% to 37% of CD34+ cells were AC133+ (n = 3). Noncommitted progenitor cells were identified as CD34+CD38−CD50− cells,17,19,42 and were among the CD34+ cells showing the brightest staining with AC133 (Fig 3B, violet dots). In contrast, only a sub-
Table 1. AC133 Expression Profile

<table>
<thead>
<tr>
<th>Primary Cells and Cell Lines</th>
<th>Protein Detected by FACS Staining</th>
<th>Nonhematopoietic cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleated red blood cells</td>
<td>–</td>
<td>134H* Glioblastoma</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>–</td>
<td>AZ676 Carcinosarcoma, breast</td>
</tr>
<tr>
<td>Monocytes</td>
<td>–</td>
<td>BT474 Ductal carcinoma, breast</td>
</tr>
<tr>
<td>Granulocytes</td>
<td>–</td>
<td>BT549 Ductal carcinoma, breast</td>
</tr>
<tr>
<td>Platelets</td>
<td>–</td>
<td>T47D Ductal carcinoma, breast</td>
</tr>
<tr>
<td>Fetal thymocytes</td>
<td>–</td>
<td>BT20 Carcinoma, breast</td>
</tr>
<tr>
<td>Fetal splenocytes</td>
<td>–</td>
<td>Du4475t Metastatic cutaneous</td>
</tr>
<tr>
<td>CD34 cells from all tissues</td>
<td>+</td>
<td>nodule, breast carcinoma</td>
</tr>
<tr>
<td>PHA-activated PBMCs</td>
<td>–</td>
<td>MCF-7 Adenocarcinoma, breast</td>
</tr>
<tr>
<td>Baboon CD34+</td>
<td>–</td>
<td>H4* Neuroglioma</td>
</tr>
<tr>
<td>NZB + LPR mouse splenocytes</td>
<td>–</td>
<td>SK-N-MG* Neuroepithelioma,</td>
</tr>
<tr>
<td>NZB + LPR mouse thymocytes</td>
<td>–</td>
<td>metastasis to</td>
</tr>
<tr>
<td>NZB + LPR mouse hepatocytes</td>
<td>–</td>
<td>SK-N-SH* Neuroblastoma, metastasis</td>
</tr>
<tr>
<td>8402* T-cell line</td>
<td>–</td>
<td>IMR-32 Neuroblastoma</td>
</tr>
<tr>
<td>JM T-cell line</td>
<td>–</td>
<td>WERI-Rb-1 Retinoblastoma</td>
</tr>
<tr>
<td>Jurkat* T-cell line</td>
<td>–</td>
<td>Y79 Retinoblastoma</td>
</tr>
<tr>
<td>HPB-ALL* T-ALL</td>
<td>–</td>
<td>CACL74-36 Melanoma</td>
</tr>
<tr>
<td>Molt-4 T-ALL</td>
<td>–</td>
<td>HT1080 Fibrosarcoma</td>
</tr>
<tr>
<td>HUT-78 Cutaneous T-cell</td>
<td>–</td>
<td>CC90 Diploid fibroblast</td>
</tr>
<tr>
<td>T lymphoma</td>
<td>–</td>
<td>CC93 Diploid fibroblast</td>
</tr>
<tr>
<td>HEL.92.1.7* Erythroblastemia</td>
<td>–</td>
<td>CC95 Diploid fibroblast</td>
</tr>
<tr>
<td>K562* Erythroblastemia</td>
<td>–</td>
<td>EBV-transformed B-cell line</td>
</tr>
<tr>
<td>IM-9 EBV-transformed B-cell line</td>
<td>–</td>
<td>HT29 Adenosarcoma, colon</td>
</tr>
<tr>
<td>Daudi* EBV-transformed B-cell line</td>
<td>–</td>
<td>COLO 205 Adenosarcoma, colon</td>
</tr>
<tr>
<td>Raji EBV-transformed B-cell line</td>
<td>–</td>
<td>SK HEF-1 Adenocarcinoma, liver</td>
</tr>
<tr>
<td>HS-Sultan EBV-transformed B-cell line</td>
<td>–</td>
<td>Chang Liver Hela markers</td>
</tr>
<tr>
<td>T.5.1 EBV-transformed B-cell line</td>
<td>–</td>
<td>HUVEC Teratocarcinoma line</td>
</tr>
<tr>
<td>BJAB North American Burkitt’s lymphoma</td>
<td>–</td>
<td>NT2 Teratocarcinoma line</td>
</tr>
<tr>
<td>KG1* AML</td>
<td>–</td>
<td>hNT Neuron cell derived from</td>
</tr>
<tr>
<td>KG1a* AML</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HL-60 Promyelocytic leukemia</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RPMI-826 Myeloma</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>U937 Histiocytic lymphoma</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
| Cell lines were maintained as described, and single-cell suspensions were prepared in PBS containing 0.5% BSA and 0.1% sodium azide. Following staining with AC133PE or control antibodies, cells were washed and fixed in 1% paraformaldehyde in PBS before flow cytometric analysis. * Tested negative for AC133 expression following PMA activation. † CD34+ but AC133+.

Fig 2. Flow cytometric staining of (A) retinoblastoma cell line WERI-Rb-1 and (B) teratocarcinoma cell line NT2 with PE-conjugated antibodies. Solid line, IgG1 control; dashed line, QBEnd10 (CD34); bold line, AC133. All three antibodies were isotype IgG1.
Table 2. Antibodies With Specificity for AC133 Antigen

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Immunogen</th>
<th>Isotype</th>
<th>AC141PE Cross-Blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC133</td>
<td>HSC</td>
<td>IgG1-κ</td>
<td>-- (E)</td>
</tr>
<tr>
<td>AC139</td>
<td>WERI-Rb-1</td>
<td>IgG1-κ</td>
<td>+/-</td>
</tr>
<tr>
<td>AC140</td>
<td>WERI-Rb-1</td>
<td>IgG1-κ</td>
<td>--</td>
</tr>
<tr>
<td>AC141</td>
<td>WERI-Rb-1</td>
<td>IgG1-κ</td>
<td>+++</td>
</tr>
<tr>
<td>AC142</td>
<td>WERI-Rb-1</td>
<td>IgG1-κ</td>
<td>+/-</td>
</tr>
</tbody>
</table>

AC133 was raised by immunization with hematopoietic stem cells (HSC), and AC139 to AC142 were raised by immunization with the WERI-Rb-1 retinoblastoma cell line.

Abbreviations: +++, complete cross-blocking of AC141PE conjugate by unlabeled AC141; +/-, partial cross-blocking; --, zero cross-blocking ability; (E), 20% enhancement of AC141PE conjugate binding in the presence of unlabeled AC133 antibody.

A NOVEL MOLECULE ON CD34 PROGENITORS

A set of lymphoid-committed progenitors, identified as CD34⁺CD19⁺ cells, were stained with levels above the isotype control (Fig 3C, blue dots). Granulomonocytic-committed progenitor cells (CD34⁺CD64⁺, green dots in Fig 3D) showed decreasing staining with AC133 with increasing levels of CD64 expression, indicating downregulation of the AC133-binding molecule with granulomonocytic differentiation. However, the mean fluorescence intensity (MFI) for this subset was higher than the MFI for the lymphoid-committed (Fig 3C) and erythroid-committed (red dots, Fig 3E) progenitors. The erythroid-committed progenitor cells (CD34⁺CD38⁻CD71⁻CD64⁻) were stained with AC133 only slightly above isotype control levels. The staining pattern of adult bone marrow (ABM) CD34⁺ and CD34⁻ cells with AC133 closely resembled that shown for FBM cells (Fig 3). However, a larger fraction of CD34⁻ ABM cells stained

Fig 3. Staining of FBM cells with AC133. Ammonium chloride-lysed FBM cells were labeled with AC133 and goat anti-mouse PE, followed by staining with CD34FITC (A through E) and CD38APC and CD50PerCP (B), or CD19APC (C), or CD64APC and CD71PerCP (D and E). (A) Unfractionated FBM cells. (B through E) Staining of CD34⁺ cells only, gated from region R1 in A. Noncommitted progenitor cells (CD34⁺CD38⁻CD50⁻) are represented by enlarged violet dots in B, and lymphoid committed progenitors (CD34⁺CD19⁻) are depicted in blue in C. Granulomonocytic committed progenitors (CD34⁺CD64⁺) are represented by green dots in D, and erythroid committed progenitors (CD34⁺CD71⁻CD64⁻) are depicted in red in E. Dashed lines represent isotype control levels for each of the colored populations. TOLS, transformed orthogonal light scatter. The results are representative of 3 experiments.
positively with AC133 (64% to 76%, n = 2) as compared
with FBM cells. Figure 4 furthermore shows that when label-
ing with CD34 and AC133, CD117 (anti-SCF-R), or anti-
Flt3, respectively, AC133 fluorescence shows the closest
positive correlation with CD34 fluorescence. Both Flt3 (Fig
4B) and CD117 (Fig 4C) were expressed also on subsets of
CD34+ cells.

AC133 cDNA Cloning and Protein Structure

The isolation and sequencing of a novel cDNA encoding
the AC133 antigen is described in detail elsewhere.41 Briefly,
the cDNA encodes a single open reading frame of 2,595
nucleotides, and predicts an 865-amino acid protein with
a MW of 97 kD. The AC133 antigen is modeled as a 5-
transmembrane protein with an extracellular N-terminus and
d a cytoplasmic C-terminus. The structure of the AC133 anti-
gen appears to be novel among known hematopoietic cell
surface antigens.46,47 Immunoprecipitation detected AC133
antigen with a molecular weight of 120 kD in PMA-activated
Y79.1 and WERI-Rb-1 cells.

In Vitro Colony Assays

Quadruplicate culture dishes were seeded with 500 adult
bone marrow cells sorted from regions similar to those de-
picted in region R1 + R2 (CD34+), R1 (CD34+, AC133−
or R2 (CD34+, AC133+) (Fig 1). There were no AC133+
cells that were negative for CD34. On day 14 of incubation,
culture dishes were scored for colony growth as previously
Described.37 The results shown in Table 3, which is an exam-
ple of one of three similar experiments, clearly indicate that
the majority of CFU-GM are contained in the CD34+/AC133+ fraction, while the majority of BFU-E and CFU-Mix are in the CD34+/AC133− fraction. This finding is sur-
prising, as CFU-Mix have been previously considered to be
more primitive and therefore to express a high density of
CD34.9

In Vivo Engraftment Studies

Xenogeneic transplantation studies were performed using
the fetal sheep model as previously described.38 In this set
of experiments, fetal sheep were inoculated with 1.5×10^5
CD34/AC133 double-positive cells. The bone marrow of one
member of this group of primary recipients was analyzed
for the presence of human cells at 60 days posttransplant,
which is approximately 25 days before birth, and these hu-
man cells were used to inoculate secondary recipients. Other
animals were carried to term and examined at various times
after birth using CD45 expression or in vitro colony forma-
tion for the presence of human donor cells in bone marrow.
The percentage of colonies exhibiting a human karyotype
and the percentage of marrow cells expressing the CD45
antigen in these primary recipients are listed in Table 4. The
percentage of CD45+ cells in the marrow of primary
recipients ranged from 0.7% to 1.7% of total marrow mono-
uclear cells, and in vitro derived colonies demonstrate the
human and multilineage nature of these cells. Only primitive
repopulating cells have the ability to engraft in secondary
recipients,48 and therefore, human progenitors isolated from
secondary recipients must necessarily be derived from primi-
tive stem cells obtained from the primary recipients. The
data in Table 5 clearly demonstrate that multilineage cells

Table 3. Colony Formation From CD34+ Cells Separated
on the Basis of AC133 Expression

<table>
<thead>
<tr>
<th>Fraction</th>
<th>% of Population</th>
<th>GM</th>
<th>E</th>
<th>CFU-Mix</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD34+</td>
<td>1.6</td>
<td>15 ± 1</td>
<td>20 ± 4</td>
<td>8 ± 3</td>
<td>42 ± 4</td>
</tr>
<tr>
<td>CD34+AC133−</td>
<td>1.3</td>
<td>13 ± 1</td>
<td>30 ± 5</td>
<td>16 ± 3</td>
<td>59 ± 7</td>
</tr>
<tr>
<td>CD34+AC133+</td>
<td>0.3</td>
<td>82 ± 8</td>
<td>24 ± 2</td>
<td>18 ± 2</td>
<td>124 ± 9</td>
</tr>
</tbody>
</table>

Five hundred cells were incubated in serum-free medium con-
taining cytokines for 14 days. Colonies were identified in situ.3
Abbreviations: GM, granulocyte and/or macrophage colonies; E,
erythroid colonies; CFU-Mix, mixed colonies containing erythroid and
myeloid cells and/or megakaryocytes.
A NOVEL MOLECULE ON CD34 PROGENITORS

Table 4. Donor (human) Cell/progenitor Activity in Bone Marrow of Primary Sheep Recipients

<table>
<thead>
<tr>
<th>Colonies With Human Karyotype</th>
<th>CFU-Mix</th>
<th>CFU-GM</th>
<th>BFU-E</th>
<th>% CD45-Cells*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>770</td>
<td>9/290</td>
<td>3.1</td>
<td>60/1,000</td>
<td>6.0</td>
</tr>
<tr>
<td>771</td>
<td>8/186</td>
<td>4.3</td>
<td>29/763</td>
<td>3.8</td>
</tr>
<tr>
<td>772</td>
<td>0/162</td>
<td>0</td>
<td>17/370</td>
<td>4.6</td>
</tr>
<tr>
<td>775</td>
<td>8/381</td>
<td>2.1</td>
<td>79/887</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Data from primary fetal recipients transplanted with 1.5 x 10^6 CD34+ cells/fetus are presented. As expected, donor cell activity was also detected in bone marrow of some animals transplanted with 1 x 10^6 primarily CD34+, AC133+ cells/fetus. Bone marrow mononuclear cells obtained 1 week after birth were cultured in multiple methylcellulose plates as previously described. Total colony numbers were counted on days 9 and 19 of incubation; all 3 progenitor types (CFU-Mix, CFU-GM, and BFU-E) were detected on both days. On day 19, colonies were removed from the plate and individually processed for karyotyping. Percent values indicate the percentage of total colonies enumerated on day 9 (denominator) of culture that were determined to be of human origin (numerator) and were calculated as % human colonies = (no. of human colonies on day 19 x 100)/total no. of colonies on day 9.

DISCUSSION

Human hematopoietic stem and progenitor cells share a large number of immunogenic cell surface structures with mature hematopoietic cells. Molecules such as HLA class I and II, b1 and b2 integrins, CD26, CD31, CD43, CD44, CD45, CD50, CD53, and CD71 are examples of structures expressed on CD34+ cells, and these can dominate the immune response to a level where less immunogenic/novel molecules are not recognized by the host animal. Other investigators have approached this problem with techniques such as subtractive immunization, where animals are exposed to the tolerizing agent cyclophosphamide to suppress the immune response to immunodominant antigens. Our approach to this problem has been a contralateral footpad immunization procedure in mice, where the left footpad is injected with mature hematopoietic cells that express many of the antigens expressed on progenitors and the right footpad is injected with CD34+ progenitors. This system relies on the ability of antigen-specific lymphocytes to traffic to the site of initial antigenic stimulation. Therefore, in this example, the left footpads of the mice were injected on days -3, 0, 3, 6, 9, 13, 17, and 20 with PBMCs, while the right footpads were injected with purified progenitors on days 0, 3, 6, 9, 13, 17, and 20. Antigen-specific lymphocytes specific for shared antigens were decoyed to the left popliteal lymph node, while lymphocytes draining to the right popliteal node were more likely to respond to less immunogenic and hopefully novel structures. This powerful immunization procedure combined with the utilization of human fetal liver cell populations that provide large numbers of CD34+ progenitors for screening has permitted the recognition of a novel MoAb, AC133, that recognizes only the CD34bright subset of human progenitors. This antibody reacts with only two human retinoblastoma cell lines and a teratocarcinoma cell line from a panel of 46 human cell lines tested. It is of interest that we have not encountered a cultured cell line that is double-positive for both AC133 and CD34. CD34- and AC133 antigens are coexpressed on primitive progenitors and on some leukemias, and therefore, both can be considered early antigens. However, the lack of reactivity of AC133 antibody to endothelial cells or fibroblasts, together with the cell line staining data and immunohistology, demonstrates that the AC133 antigen is restricted to stem cells and possibly a few other tissues such as retina, pancreatic islet cells, and placenta. While protein expression has not been demonstrated on these last three tissues, ESTs (expressed sequence tags) derived from human tissues such as retina, pancreatic islets, and placenta matching the AC133 gene sequence are present in Genebank. Therefore, although progenitor cells coexpress these two early antigens, they appear to share no other known relationship, as the function of either molecule is not known and the expression on other cells and tissues

Table 5. Relative Distribution of Donor (human) Hematopoietic Progenitors/Cells in Bone Marrow of Secondary Sheep Recipients at 60 Days Posttransplant

<table>
<thead>
<tr>
<th>Colonies With Human Karyotype</th>
<th>CFU-Mix</th>
<th>CFU-GM</th>
<th>BFU-E</th>
<th>% CD45-Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>A14</td>
<td>0/164</td>
<td>0</td>
<td>1/498</td>
<td>0.0</td>
</tr>
<tr>
<td>A15</td>
<td>1/310</td>
<td>0.3</td>
<td>98/1,607</td>
<td>6.0</td>
</tr>
<tr>
<td>A16</td>
<td>16/421</td>
<td>3.8</td>
<td>73/1,177</td>
<td>6.2</td>
</tr>
<tr>
<td>A17</td>
<td>11/262</td>
<td>4.2</td>
<td>14/467</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Primary recipients served as donors for secondary transfer studies.

* The numerator indicates the actual number of colonies exhibiting human karyotype, and the denominator indicates the total number of colonies enumerated on day 9 of culture.
and the degree of antigen glycosylation and protein structure41 are markedly different.

Expression of the AC133 antigen has been shown to be restricted to human progenitors and to a teratocarcinoma cell line, NT2, as well as two retinoblastomas, using FACS analysis of multiple primary and continuous cell lines. The two retinoblastoma lines are composed of neuron-committed cells and are karyotypically abnormal.52 NT2 cells from a human malignant testicular germ cell tumor may contain elements that resemble extraembryonic tissues of the trophoblast, yolk sac, or various embryonic tissues. NT2 cells have been reported to represent a committed neuronal precursor stage of differentiation,53,54 which differentiate to mature neurons on induction with retinoic acid. The differentiated cells, called hNT neurons, lose neuroepithelial markers such as VLA-4 (CD49d) and cytokeratins detected by the antibody CAM-5.2 (A.Y. and D.B., unpublished data, September 1996). AC133 antigen expression is undetectable on hNT neurons, and therefore appears to be a very early antigen, which is rapidly lost during cell differentiation. No sequence similarity with known tyrosine kinase receptor families or with other multiple transmembrane antigens has been found.41

We have shown that AC133 is expressed on a population of stem and progenitor cells that contain all of the CD34bright and CD38+ progenitors, as well as the CD34bright cells committed to the granulocytic/macrophage pathway. These cells engraft and home to the bone marrow of fetal sheep in a xenogeneic transplantation model. Moreover, cells harvested from primary sheep recipients successfully engraft secondary recipients, demonstrating the long-term repopulating potential of AC133-derived progenitors. One surprising finding in this series of experiments was that the majority of the CFU-Mix population, which is generally considered to be a primitive population of progenitors, were found in the CD34dim/AC133- fraction. In the murine system, single CD34dim cells have been shown to reconstitute lethally irradiated mice,55 suggesting the possibility that the true stem cell may in fact be CD34- or CD34dim. Whether a similar cell type exists in man will require further study.

While the AC133 antigen has no known ligand or function at this time, we have shown it to have a novel expression pattern and 5-transmembrane structure.41 Downregulation to undetectable levels in mature hematopoietic cells and on terminally differentiated teratocarcinoma cells, as described for growth factor receptors such as fibroblast growth factor receptor,56 may suggest a functionally restricted role for this molecule. Alternatively, the presence of a leucine zipper motif in the second extracellular loop of the AC133 molecule41 may suggest a role in protein-protein interactions, perhaps with bone marrow stromal antigens. The AC133 antigen system that provides all CD34-/CD38+ primitive cells, including presumably the SCID repopulating cell57 as well as CFU-GM needed for short-term engraftment,58 may provide an alternative to the widely used CD34 antigen in hematopoietic stem cell manipulations.

ACKNOWLEDGMENT

We thank Kerry MaGee and Gary Frenzel for excellent technical assistance, and Michael McGrogan for the generous gift of NT-2 cells and hNT neurons.

REFERENCES

1. deWynter EA, Coutinho LH, Pei X, Marsh JCW, Hows J, Luft T, Testa NG: Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord blood and peripheral blood (primed for apheresis) using five separation systems. Stem Cells 13:524, 1995

54. Andrews PW, Damjanov J, Simon D, Banting GS, Carlin AI
C, Dracopoli NC, Fogh J: Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tra-2 differentiation in vivo and in vitro. Lab Invest 50:147, 1984

AC133, a Novel Marker for Human Hematopoietic Stem and Progenitor Cells

Amy H. Yin, Sheri Miraglia, Esmail D. Zanjani, Graca Almeida-Porada, Makio Ogawa, Anne G. Leary, Johanna Olweus, John Kearney and David W. Buck