The unique t(15;17) of acute promyelocytic leukemia (APL) fuses the PML gene with the retinoic acid receptor α (RARα) gene. Although retinoic acid (RA) inhibits cell growth and induces differentiation in human APL cells, resistance to RA develops both in vitro and in patients. We have developed RA-resistant sublines of the human APL cell line, NB4, whose nuclear extracts display altered RA binding. In the RA-resistant subclone, R4, we find an absence of ligand binding of PML-RARα associated with a point mutation changing a leucine to proline in the ligand-binding domain of the fusion PML-RARα protein. In contrast to mutations in RARα found in retinoid-resistant HL60 cells, in this NB4 subclone, the coexpressed RARβ remains wild-type. In vitro expression of a cloned PML-RARα with the observed mutation in R4 confirms that this amino acid change causes the loss of ligand binding, but the mutant PML-RARα protein retains the ability to heterodimerize with RXRα and thus to bind to retinoid response elements (RAREs). This leads to a dominant negative block of transcription from RAREs that is dose-dependent and not relieved by RA. An unrearranged RARα engineered with this mutation also lost ligand binding and inhibited transcription in a dominant negative manner. We then found that the mutant PML-RARα selectively alters regulation of gene expression in the R4 cell line. R4 cells have lost retinoid-regulation of RXRα and RARβ and the RA-induced loss of PML-RARα protein seen in NB4 cells, but retain retinoid-induction of CD18 and CD38. Thus, the R4 cell line provides data supporting the presence of an RARα-mediated pathway that is independent from gene expression induced or repressed by PML-RARα. The high level of retinoid resistance in vitro and in vivo of cells from some relapsed APL patients suggests similar molecular changes may occur clinically.

© 1997 by The American Society of Hematology.

From the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and McGill University Department of Oncology and Medicine, Montreal, Quebec, Canada; the Dipartimento di Istologia ed Embriologia Medica, Universita di Roma “La Sapienza”, Rome, Italy; and Ligand Pharmaceuticals Inc, San Diego, CA.

Submitted March 10, 1997; accepted April 3, 1997.

Supported by grants from the Medical Research Council of Canada and the Associazione Italiana per la Ricerca sul Cancro (AIRC). W.S. is supported by a Medical Research Council Studentship Award, and W.H.M. is a Scholar of the Medical Research Council of Canada.

Address reprint requests to Wilson H. Miller Jr, MD, PhD, 3755 Chemin de la Côte-Ste-Catherine, Montreal, Quebec, Canada H3T 1E2.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1997 by The American Society of Hematology.

0006-4971/97/8912-0050$3.00/0

Blood, Vol 89, No 12 (June 15), 1997: pp 4282-4289
analyzed both the unarranged RARαs and fusion receptors of these clones for mutations that might explain their resistance to RA.

We report here a point mutation found in the ligand-binding domain of the fusion PML-RARα in the RA-resistant subclone, R4. R4 expresses PML-RARα protein detected by Western blot and the fusion protein binds RARE, but R4 nuclear extracts show ligand binding only by RARα. To determine that the mutation accounts for the observed loss of binding and transcriptional response to retinoids in R4 cells, we expressed in vitro PML-RARα or RARα proteins with this point mutation. The mutant PML-RARα and RARα proteins do not bind ligand, but retain their ability to bind RARE and block the transcription of RA-responsive genes in a dominant-negative fashion.

MATERIALS AND METHODS

Cell culture. The parental NB4 promyelocytic leukemia cell line, three RA-resistant subclones, and the myeloid leukemia HL-60 cells were grown in RPMI medium (GIBCO BRL, Burlington, Ontario, Canada) plus 10% fetal bovine serum (10% FBS; Upstate Biotechnology Inc, Lake Placid, NY). Cos-1 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Wisent Inc, St-Bruno, Quebec, Canada) supplemented with 10% FBS. All cell cultures were incubated at 5% CO2 at 37°C in humidified air.

DNA sequencing analysis. Total RNA was extracted from cells with guanidine isothiocyanate and prepared as previously described. 22 Oligonucleotide primers were designed flanking the entire PML-RARα coding region and synthesized by BRI (Montreal, Quebec, Canada). Different domains of PML-RARα were synthesized by reverse transcription polymerase chain reaction (RT-PCR) and used as a template for dsDNA cycle sequencing. The components and the methods were provided by the reaction kit (GIBCO BRL). For each domain, sequencing was performed using 1 pmol of internal primer end-labeled with [γ-32P] ATP (10 μCi/mL; Dupont-NEN, Boston, MA) by T4 polynucleotide kinase. PCR reactions were run on thermal cycler (GeneAmp PCR System 9600; Perkin-Elmer Cetus, Norwalk, CT) and analyzed by denaturing polyacrylamide sequencing gels. A GAPDH probe (Ambion, Austin, TX) was included in all samples as a control for RNA loading. As approximate size markers, [35S]-labeled Msp I-digested fragments of pBR322 were run on all gels.

Northern analysis. Total RNA was electrophoresed on a 1% formaldehyde agarose gel and blotted onto Zeta probe (BioRad, Mississauga, Ontario, Canada) transfer membranes. The filters were hybridized to a DNA probe labeled by random priming (Pharmacia Biotech, Baie d’Urfe, Quebec, Canada). Hybridization and autoradiography were performed as previously described. 26 The CD18 probe was isolated by RT-PCR. Two primers used for PCR correspond to CD18 sequences 931-950 and 1487-1506, respectively, and amplified a 800-bp fragment from pBS-PRA D (R4) digestion RP A (ΔA) in R4. The amplified cDNA was subcloned to pBS/KS+ vector. Both pBS-PR A D (ΔA) from RARα or pBS5-PML-RARα were digested with BglII and BstEII restriction enzymes. The 800-bp fragment produced from pBS-PR A D (R4) digestion containing the point mutation was ligated to the 5.1-kb fragment produced from pBS5-RARα or the 7.5-kb fragment from pBS5-PML-RARα digestion, generating a pBS5-RARα m4 or a pBS5-PML-RARα m4 construct. Both constructs were verified by sequencing analysis.

Assay for ligand binding activity. Cos-1 cells were transiently transfected by electroporation with pSG5 expression vectors containing either wild-type or mutant RARαs and PML-RARαs. Nuclear extracts were prepared from 1 to 5 x 106 cells and incubated for 18 hours at 4°C with 10 nmol 3H-RARα (50.7 Ci/mmol; DuPont-NEN), as previously described. 22, 23 The extracts were subsequently fractionated at 4°C by HPLC using a superose 6 HR 10/30 size exclusion column (Pharmacia, Uppsala, Sweden). The flow rate was 0.4 mL/min, fractions of 0.4 mL were collected, and radioactivity was determined using a liquid scintillation counter. The HPLC system was calibrated using a series of molecular weight (MW) markers, including the following: blue dextran, MW 2,000,000; thyroglobulin, MW 669,000; β-amylose, MW 200,000, bovine serum albumin, MW 66,000; and ovalbumin, MW 45,000.

Transcriptional activation assays. Cos-1 cells were grown in DMEM with 10% FBS and were seeded 1 day before transfection. Cells were rinsed with Opti-MEM (GIBCO BRL) and transfected by the lipofectamine method (GIBCO BRL) with 0.7 μg of receptor plasmid, 1 μg of reporter CAT plasmid, and 0.3 μg of pCMV-βGal as an internal control for transfection efficiency. Amounts of pSG5-RARαs and pSG5-PML-RARαs m4 were varied to have a total of 0.7 μg of plasmid. Cells were transfected for 4 hours and were replenished with 2 mL of DMEM with 10% FBS and were then incubated for 2 days with or without 10-8 mol/L IRA (Sigma, St Louis, MO). The chloramphenicol acetyltransferase (CAT) activity was measured using a modified protocol of the organic diffusion method. 24 Fifty microliters of cell extracts was incubated for 2 hours at 37°C with 200 μL of 1.25 mmol/L cold chloramphenicol (ICN, Costa Mesa, CA) dissolved in 100 nmol/L Tris-Cl, pH 7.8, and 0.25 μCi of 3H-labeled acetyl coenzyme A (NE[N, Streetsville, Ontario, Canada). The reaction was extracted with Ready Organic Scintillation Cocktail (Beckman, Mississauga, Ontario, Canada), and 750 μL of the organic phase was counted on a scintillation counter. The CAT counts were normalized with β-Gal activity to obtain relative CAT activity.

Ribonuclease protection assay. Total cytoplasmic RNA was isolated and RNase protection analysis was performed as described previously. 25 Hybridization of cRNA probes was performed at 45°C overnight followed by the addition of 300 μL of RNase digestion buffer containing 40 μg/mL of RNAse A and 700 U/mL of RNAse T1. RNAse digestion was performed at 25°C for 1 hour. The RNAse-resistant fragments were resolved by electrophoresis on 6% urea-polyacrylamide sequencing gels. A GAPDH probe (Ambion Inc, Austin, TX) was included in all samples as a control for RNA loading. As approximate size markers, [35P]-labeled Msp I-digested fragments of pBR322 were run on all gels.

Northern analysis. Total RNA was electrophoresed on a 1% formaldehyde agarose gel and blotted onto Zeta probe (BioRad, Mississauga, Ontario, Canada) transfer membranes. The filters were hybridized to a DNA probe labeled by random priming (Pharmacia Biotech, Baie d’Urfe, Quebec, Canada). Hybridization and autoradiography were performed as previously described. 26 The CD18 probe was isolated by RT-PCR. Two primers used for PCR correspond to CD18 sequences 931-950 and 1487-1506, respectively, and amplified a 576-bp CD18 cDNA fragment.

Western analysis. Nuclear extracts were diluted 1:1 with 2 x sodium dodecyl sulfate (SDS) sample buffer. Proteins were then fractionated by electrophoresis on a 8% SDS polyacrylamide gel and electroblotted onto a nitrocellulose membrane (Hybond C Super; Amersham, Milan, Italy). Proteins that reacted with the anti-RARα RPr(0) antibody34 (used at a 1:1,000 dilution) were detected using the ECL Western blotting detection kit (Amersham).

RESULTS

RA-resistant subclone R4 has a point mutation in the ligand-binding domain of PML-RARα. We have developed several RA-resistant subclones of NB4 by selection in RA-containing media without treatment with mutagens. 25 Unlike RA-resistant subclones reported by Dermime et al, 25 both Northern and Western analyses on these RA-resistant subclones showed expression of unarranged RARα and the fusion PML-RARα transcripts and proteins. Three resistant subclones (MR2, MR6, and R4) were subjected to DNA sequencing analysis using a dsDNA cycle sequencing system. Two primers depicted in Fig 1A were used in RT-PCR to specifically amplify the RARα part of PML-RARα (PRα

From www.bloodjournal.org by guest on April 12, 2017. For personal use only.
A primer specific to the first exon of RARα was combined with the 3’ UTR primer shown (Fig 1A) to amplify the coexpressed unrearranged RARα. In one resistant subclone, R4, a point mutation was found in PML-RARα codon 890, showing a T → C conversion leading an amino acid change of leucine to proline (Fig 1B). Sequencing both strands of cDNA confirmed the point mutation. This point mutation is localized in the ligand-binding domain of PML-RARα within the autonomous activating domain (AF-2 AD) and 10 amino acids upstream to the AF-2 core domain. No other mutations or deletions were detected in PRα ∆A of R4 or the MR2- and MR6-resistant lines. The sequence of unrearranged RARα was normal in all three cell lines.

Loss of retinoid binding activity of the R4 mutant PML-RARα. The mutant codon 890 is within the helix 11-helix 12 region of the RARα ligand-binding domain. Proline is a small cyclic amino acid that typically disrupts helical structures, causing an altered conformation of the protein. To confirm that the point mutation we found alters the conformation of the ligand-binding domain to block RA binding, we examined the retinoid binding activity of the R4 mutant PML-RARα protein. The T → C mutation was introduced into a wild-type PML-RARα cDNA, which was subcloned in an expression vector and transiently transfected into Cos-1 cells. Western analysis (Fig 2A) showed that transfected cells expressed mutant PML-RARα protein. The binding of [3H]-tRA was analyzed in nuclear extracts prepared from transfected Cos-1 cells (Fig 2B). The size exclusion HPLC profile of extracts from cells expressing mutated form of PML-RARα (PML-RARα m4) shows no specific peaks corresponding to either PML-RARα monomer or high molecular weight complex binding to labeled RA. 4,29,36 The only two specific all-trans retinoic acid (tRA) binding components correspond to molecular weights of 50,000 and 16,000, probably representing the endogenous RARs and CRABPs present in Cos-1 cells. To determine whether the effects of this point mutation were dependent on the structure of the PML-RARα protein or would also be seen in the unrearranged RARα, we constructed a vector expressing RARα in which codon 890 was replaced by Pro (RARα m4). The binding of [3H]-tRA was analyzed as described above; no peaks at 50,000 corresponding to RARα-tRA specific binding were observed. 29 Thus, this Leu → Pro mutation in the ligand-binding domain abolishes the ability of both RARα and PML-RARα to bind their ligand.

Transcriptional inhibition by in vitro expressed mutant proteins. The conformational change induced by the R4 mutation might also be expected to alter protein-protein interactions that are required for RARE binding and activation. Doré and Momparler22 found a point mutation in the LBD of RARα in RA-resistant HL60 cells that caused a significant reduction in the formation of RXR-RAR heterodimers on an RARE. In gel-shift experiments, we find that nuclear extracts from R4 bind an RARE as well as extracts from NB4 (Rosenauer et al26 and data not shown), suggesting no loss of DNA binding by the mutant PML-RARα. Thus, we compared the transcriptional activity of mutant PML-RARα with that of wild-type RARα and PML-RARα on two retinoid-responsive elements. Receptor plasmids were cotransfected into Cos-1 cells with a tk-CAT reporter driven by either a palindromic thyroid response element (TRE) or the RARE of the RARβ (βRE)37,38 (Fig 3). Expression of wild-type RARα allowed transactivation of a TRE by 10–6 mol/L tRA (Fig 3A). PML-RARα stimulated the RA-induced transcription of a TRE more efficiently than RARα, whereas the mutated form, PML-RARα m4, has lost the ligand-dependent tran-
Fig 2. (A) Wild-type RARα and PML-RARα as well as mutant PML-RARα and RARα were transiently transfected into Cos-1 cells. Nuclear extracts of transfected cells were subjected to Western analysis to examine the expression of exogenous proteins. Lane 1, Cos-1 cells transfected with mock; lane 2, transfected with RARα wt; lane 3, transfected with mutant RARα (RARα m4); lane 4, transfected with PML-RARα wt; lane 5, transfected with mutant PML-RARα (PML-RARα m4). (B) Specific nuclear tRA binding activity in Cos-1 cells transfected with (1) PML-RARα m4 or (2) RARα m4 in comparison to those transfected with wild-type receptors (3) and (4). Nuclear extracts were incubated with [3H]-tRA alone (●) or with [3H]-tRA in the presence of 200-fold excess of unlabeled tRA (○).
Table 1. Expression of Retinoid Receptor Isoforms and CD38 With or Without 10⁻⁶ mol/L tRA Treatment (Expression Level Is Represented by Arbitrary Units)

<table>
<thead>
<tr>
<th>Receptor</th>
<th>NB4, Control</th>
<th>NB4, tRA (d3)</th>
<th>R4, Control</th>
<th>R4, tRA (d3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RARα</td>
<td>12.7</td>
<td>13.2</td>
<td>15.6</td>
<td>17.0</td>
</tr>
<tr>
<td>RARβ</td>
<td>0</td>
<td>6.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RXRα</td>
<td>4.3</td>
<td>1.9</td>
<td>7.2</td>
<td>6.8</td>
</tr>
<tr>
<td>RXRβ</td>
<td>5.6</td>
<td>6.9</td>
<td>9.3</td>
<td>9.7</td>
</tr>
<tr>
<td>CD38</td>
<td>2.0</td>
<td>8.5</td>
<td>4.5</td>
<td>14.6</td>
</tr>
</tbody>
</table>

Expression of six retinoid receptor isoforms and CD38 in NB4 and R4 cells with or without 10⁻⁶ mol/L of tRA treatment. The bands appeared on RNase-protection blot were scanned by phosphoimager to quantify the data and are presented in the table as arbitrary units.

Transcriptional activity of the wild-type (Fig 3A). Similarly, RARα m4 does not activate transcription in response to RA. Figure 3B shows that RA induced transcription of the βRE-tk-CAT reporter without cotransfected receptors, and the fold induction was increased by cotransferring either RARα or PML-RARα. Whereas RARα transfection also slightly increased transcription in the absence of ligand (122% of control relative CAT in Fig 3B), PML-RARα acted as a dominant negative inhibitor of the control transcriptional activity, reducing baseline CAT to 16%. This dominant negative inhibition of PML-RARα is maintained in the mutant PML-RARα, as shown by a low baseline CAT of 11%. The constructed mutant RARα also shows a baseline inhibition, yielding only 31% of control relative CAT (26% of the basal transcription of cotransfected wild-type RARα). Although the inhibition of wild-type PML-RARα was released by RA, the mutant PML-RARα preserved this transcriptional inhibition in the presence of ligand. In the presence of RA, the relative CAT activity of PML-RARα m4 was 13.6% of wild-type PML-RARα and 4% of wild-type RARα. We then tested whether the mutant PML-RARα would repress a cotransfected wild-type RARα in a dominant negative manner. Wild-type RARα and PML-RARα m4 were cotransfected into Cos-1 cells along with βRE-tk-CAT reporter in the presence or absence of 10⁻⁶ mol/L tRA (Fig 3C). PML-RARα m4 is seen to block the transactivation of normal RARα in a dose-dependent manner.

Retinoid receptor and RA-induced gene expression in R4 cells. To determine whether the expression of this mutant PML-RARα in R4 directly affected retinoid receptor levels, we compared R4 with NB4 in their expression of the six retinoid receptor isoforms in a ribonuclease protection assay. The hybridizing bands specific for each receptor were scanned by phosphoimager and are presented in arbitrary units in Table 1. Neither RARγ nor RXRγ expression is detected in NB4 or R4 cells. RARα, RXRα, and RXRβ are constitutively expressed in both NB4 and R4 cells. As previously reported, a small decrease in RXRβ expression is observed in NB4 cells treated with tRA. Interestingly, a significant increase in RARβ expression is seen in NB4 cells. Both the induction of RARβ and decrease of RXRα expression upon RA are lost in R4 cells. However, we have found that one retinoid-regulated gene, myeloblastin, retains its response to RA in R4 cells. We therefore examined the
expression of two other RA-induced genes, CD38 and CD18 (leukocyte adherence β subunit), that have been shown to be transcriptionally upregulated during RA-induced differentiation in myeloid leukemia HL-60 cells. RA-dependent upregulation of both genes was observed in both parental NB4 cells and resistant subclone R4 cells. The RA-induced CD38 expression is presented in Table 1 by the RNase-protection method. Northern analysis was performed to examine the expression of CD18 (Fig 4). NB4.306, an RA-resistant NB4 subclone that does not express detected PML-RARα protein, was reported to have RA-dependent induction of CD18 expression in a manner similar to NB4 cells. In the two PML-RARα expressing cell lines we examined, CD18 expression is induced by RA. Thus, a significant subset of RA-regulated genes continue to be regulated in a variety of cells that are resistant to RA-induced differentiation.

DISCUSSION

Studies of retinoid-resistant subclones have led to insights into the molecular mechanisms of response to retinoids in RA-inducible embryonal carcinoma and leukemic cell lines. We applied the same strategy to study APL using the in vitro model provided by the NB4 cell line. We developed several RA-resistant NB4 subclones to investigate the molecular basis of RA-resistance in APL. In Cos-1 cells, both intact and mutant PML-RARα proteins inhibit transcriptional activity in the absence of ligand, again suggesting preservation of protein-protein or protein-DNA interaction. Although the intact PML-RARα becomes a transcriptional activator in response to RA, the mutant receptors continue to inhibit transcription in the presence of RA. The RA-RARα plays a dual role in the APL phenotype: it mediates the block of differentiation but retains sensitivity to RA. Pharmacologic levels of RA release the differentiation block, perhaps by inducing proteolysis of PML-RARα protein. The RA-induced degradation of PML-RARα seen in NB4 is lost in RA, perhaps because PML-RARα-induced transcription is required to express or activate a protease, or, alternatively, the conformational change in the mutant PML-RARα confers resistance to proteolysis.

Studies suggested that the ratio of expression of PML-RARα to that of the unrearranged RARα is important in maintaining the dominant negative block of myelocytic dif-
ferentiation, PML-RARα forms large multimeric complexes with itself, PML, RXR, and possibly a group of ligand-dependent transcription factors. Thus, PML-RARα and RARα may compete for common coactivators. PML-RARα has previously been shown to suppress transcription of RAREs in the absence of ligand, possibly by the sequestration of either PML, RXR, or other proteins. RA induces specific degradation of PML-RARα and so releases the block to transcription. However, because mutant PML-RARα is not degraded by RA, we were able to test its dominant negative function in the presence of ligand, and we find that it blocks the transcriptional activity of cotransfected wild-type RARα in a dose-dependent manner.

There is evidence that we can differentiate transcription mediated by PML-RARα from that by RARα. We compared the expression and retinoid regulation of six retinoid receptor isoforms in either PML-RARα or mutant PML-RARα-expressing cell lines. The RA-dependent regulation of RXRα and RARβ observed in NB4 cells is lost in R4 cells, whereas myeloblastin, CD18, and CD38 continue to be regulated. The loss of RA-inducible regulation in some but not all genes in R4 cells indicates that the mutant PML-RARα selectively blocks RARα-regulated signaling. RARα may mediate induction of certain genes even in the presence of dominant negative PML-RARα.

APL is a unique example in oncology of a molecular translocation that can be treated by therapy targeted directly towards the defect, the chimeric PML-RARα gene. However, an aberrant form of PML-RARα found in R4 cells prevents it from responding to RA normally and results in the resistance of cells to RA treatment. The high level of retinoid resistance in vitro and in vivo of cells from some relapsed APL patients suggests that similar molecular changes may occur clinically.

ACKNOWLEDGMENT

We thank Dr Henry Sucov for kindly providing the βRE-tk-CAT response elements, Dr Sylvie Mader for the TREpal-tk-CAT response element, and Dr Pierre Chambon for his generous gift of the berg DA, Young CW, Dmitrovsky E, Warrell RP Jr: Continuous

REFERENCES

21. Robertson KA, Emami B, Collins SJ: Retinoid acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor
DOMINANT NEGATIVE PML-RARα MUTATION

ligand-binding domain that confers dominant negative activity. Blood 80:1885, 1992

22. Doré BT, Monparler RL: Mutation in the ligand-binding domain of the retinoic acid receptor alpha in HL-60 leukemic cells resistant to retinoic acid and with increased sensitivity to vitamin D3 analogs. Leuk Res 20:761, 1996

44. Ahn MJ, Nason-Burchenal K, Moasser MM, Dmitrovsky E: Growth suppression of acute promyelocytic leukemia cells having increased expression of the non-rearranged alleles: RAR α or PML. Oncogene 10:2307, 1995

A Retinoid-Resistant Acute Promyelocytic Leukemia Subclone Expresses a Dominant Negative PML-RARα Mutation

Wenlin Shao, Laura Benedetti, William W. Lamph, Clara Nervi and Wilson H. Miller, Jr

Updated information and services can be found at:
http://www.bloodjournal.org/content/89/12/4282.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml