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Granules of the Human Neutrophilic Polymorphonuclear Leukocyte
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neity simply that some proteins must be segregated to surviveP inside the neutrophil, or for the neutrophil to survive, much
OLYMORPHONUCLEAR leukocytes were discovered
by Paul Ehrlich,1 when fixation and staining techniques

as two-component glue has to be stored in two separatemade it possible to identify the lobulated nucleus and the
tubes, although both will be used at the same time? Whethergranules that have given name to these cells and allowed for
one or the other reason applies, both raise the question oftheir classification as eosinophils, basophils, and neutrophils.
how the neutrophil can target proteins into different granuleNeutrophilic granulation refers to staining by a mixture of
subsets.basic and acid, ie, neutral, dyes,1 whereas the term specific

The purpose of this review is to present the heterogeneitygranules was used by Paul Ehrlich to distinguish true gran-
of granules and discuss the functional importance of thisules from artifacts with a granular appearance.2 It was later
and, furthermore, to address how the neutrophil controls therealized that two types of granules could be distinguished in
structure and mobilization of these different granules.neutrophils on the basis of their affinity for dye: azurophil

granules, which take up the basic dye azure A at the promy-
BASIC ASPECTS OF GRANULOGENESISelocytic stage, due to their content of acid mucopolysaccha-

Granules start to form at the stage of neutrophil maturationride,3and specific granules, which do not. A clear distinction
marked by transition from myeloblast to promyelocyte.4,5between these two types of granules was established when
From here on, formation of granule proteins continues eventhe peroxidase staining method for electron microscopy was
up to the stage of segmented cells.28adopted to identify myeloperoxidase (MPO), which is pres-

In general, granules are believed to be formed by aggrega-ent only in azurophil granules.4,5 This distinction was corrob-
tion of immature transport vesicles that bud off from theorated by the development of subcellular fractionation tech-
trans-Golgi network (TGN), in which sorting takes placeniques for separation of the granules.6-9 It has become dogma
between constitutively secreted proteins and proteins thatthat these two types of granules are fundamentally different.
are routed into the regulated secretory pathway, ie, go toSpecific granules have been characterized as secretory gran-
granules.29-31 The original study by Bainton et al4,5 showedules that play important roles in initiating the inflammatory
that such vesicles bud off from cis-Golgi to form storageresponse,10 whereas azurophil granules are often viewed as
granules at the promyelocyte stage, but from the trans-Golgilysosomes that are particularly active in the digestion of
at the myelocyte stage, where specific granules are formed.phagocytosed material.11-14

This implies that the sorting apparatus (if existing) is local-This simplistic view of granules has been challenged by
ized in the cis-Golgi in promyelocytes and moves to theresults from subcellular fractionation experiments in which
TGN in more mature cells. Unlikely as this may seem, itgranule proteins were found in more than two peaks on
agrees with the finding that MPO, a major protein of azuro-density gradients.9,13,15,16 In addition, the existence of a ter-
phil granules, does not contain complex carbohydrate sidetiary granule type, identified by its late appearance during
chains,32,33 but it is contradicted by the finding that severalmyeloid maturation, was indicated by electron microscopy.3
other azurophil granule proteins, including elastase, cathep-During the last 15 years, high-resolution subcellular fraction-
sin G, and proteinase 3, acquire complex oligosaccharideation techniques, alone or in combination with immune-elec-
side chains.34,35 Refining of carbohydrate side chains fromtron microscopy and flow cytometry, have shown a bewilder-
simple to complex is a feature of the intermediate- and trans-ing heterogeneity of the neutrophil’s granules17-22 and have
Golgi stacks.36

furthermore identified an additional regulated exocytotic
Several regulatory steps will be required if granules arestorage organelle, the secretory vesicle.23-26

formed by fusion from smaller unit transport vesicles thatA novel aspect of the physiology of granules was unrav-
bud off from the Golgi and undergo homotypic fusion untileled by the discovery that these regulated storage organelles
they achieve the size of a granule. It must be secured that(granules and secretory vesicles) are not just simple bags of
such transport vesicles do not fuse with the plasma mem-proteolytic or bactericidal proteins that are kept in store until
brane, as do transport vesicles that mediate constitutive se-liberated either to the outside of the cell or to the phagocytic
cretion. Furthermore, it must be secured that such transportvacuole, but are also important reservoirs of membrane pro-
vesicles do not fuse with already formed granules, becauseteins that become incorporated into the surface membrane
this would lead to mixing of granule proteins destined forof the neutrophils when these organelles fuse with the plasma
different types of granules.membrane and exocytose their content.17,27 In this way, gran-

ules and secretory vesicles may fundamentally change the
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Fig 2. Classification of granules in neutrophils.
Peroxidase-positive (azurophilic or primary) granules
are characterized by the content of MPO and may be
further divided based on their content of defensins
into large, defensin-rich granules and the smaller de-
fensin-poor granules. The peroxidase-negative gran-
ules may be divided into specific (secondary) gran-
ules and gelatinase (tertiary) granules on the basis
of their relative content of lactoferrin and gelatinase.
All granules contain lysozyme. Secretory vesicles
share some of their membrane proteins with peroxi-
dase-negative granules, whereas others are unique
to secretory vesicles. Def., defensins; Gela., gela-
tinase; Tert., tertiary.

Aggregation of smaller unit vesicles to form mature gran- ogy, eg, for classification of myeloproliferative or myelodys-
plastic disorders.ules creates a surface to volume problem because the surface

area of the final granule is the sum of the surface area of It is well established that major differences exist between the
different granule subsets regarding the extent to which thesethe transport vesicles that fused to create the mature granule,

and the volume of the mature granule is the sum of the are mobilized both in vitro and in vivo.46-50 Gelatinase granules
(identified by gelatinase) are mobilized more readily than specificvolume of cargo carried by the transport vesicles (Fig 1).

Azurophil granules are generally described as spherical or granules (identified by lactoferrin),16,51,52 which again are exocy-
tosed more readily than azurophil granules (identified by MPO).football shaped, whereas specific granules are known to

adopt more irregular and elongated forms.5 This might be a This hierarchy applies both when neutrophils isolated from pe-
ripheral blood are stimulated with various secretagogues andreflection of volume adjustment in azurophil granules, which

are known to proteolytically process a significant part of when exudate neutrophils collected in a skin window chamber
are analyzed and further stimulated.48,50 It therefore makes sensethe proteins that are targeted to these.32,37,38 In this respect,

azurophil granules resemble lysosomes.39 In contrast, no pro- from a functional point of view to classify the neutrophil granules
into peroxidase-positive (or azurophilic or primary) granules,cessing and therefore no increase in osmotic activity due to

proteolysis has been observed in specific granules, with one defined by their content of MPO, and to further subdivide the
peroxidase-negative granules into specific (or secondary) gran-possible exception.40

The question of whether granules of neutrophils are ules, defined by their content of lactoferrin, and gelatinase (or
tertiary) granules, defined by their high concentration of gela-formed by fusion of unit vesicles has not been addressed,

but patch-clamp capacitance studies that accurately quanti- tinase20,21 (Fig 2). A number of proteins have been identified in
these granules. Table 1 gives the content of the different typestate the size of granules that are incorporated into the plasma

membrane have been performed on horse eosinophils and rat of granules. The localization of some of these proteins has been
determined by electron microscopy, some by subcellular fraction-basophils. These studies have shown that individual granules

differ in size by the size of unit vesicles. This indicates that ation, and some by mobilization, assuming that proteins that are
mobilized together also localize together.granules are formed by homotypic fusion of a finite but

slightly varying number of smaller unit vesicles.41,42

SECRETORY VESICLES
CLASSIFICATION OF NEUTROPHIL GRANULES When considering exocytosis of granules, it should be

kept in mind that exocytosis of granule content is a conse-Granules may be classified on the basis of their size, mor-
phology, or electron density or with reference to a given quence of fusion of granule membrane with the plasma mem-

brane and incorporation of granule membrane into theprotein.5 The initial classification into two major types of
granules was based on the content of MPO.4 However, the plasma membrane. In many cells, this membrane is rapidly

retrieved for re-use (adipocytes, neurons),53-57 but in neutro-granules can be further subdivided on the basis of other
intragranular proteins,21,43,44 as observed in Fig 2. It should phils, the membrane of mobilized granules largely remains

part of the plasma membrane.58-61 In this way, membranebe emphasized that, according to the targeting-by-timing hy-
pothesis that will be discussed later, classification of granules proteins located to the membrane of granules translocate to

the surface membrane and furnish the cell with new receptorsis arbitrary, because granules form a continuum from azuro-
phil granules to gelatinase granules, sharing some proteins, and other functional proteins.17

The observation that the b2-integrin Mac-1 (amb2 , CD11b/eg, lysozyme,45 whereas other proteins can be chosen to
serve as specific markers of one particular subset, eg, MPO, CD18) became incorporated into the plasma membrane without

corresponding exocytosis of granule content led to the discov-lactoferrin, and gelatinase. A primary question is whether
classification of granules is physiologically meaningful. A ery of the most rapidly mobilizable intracellular structure in

neutrophils, the secretory vesicle.23,24,26,58 Secretory vesicles aresecondary question is whether it is of use in clinical hematol-
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Table 1. Content of Human Neutrophil Granules and Secretory Vesicles

Azurophil Granules Specific Granules Gelatinase Granules Secretory Vesicles

Membrane Membrane Membrane Membrane
CD6359,289 CD11b64,104 CD11b64,109,327-330 Alkaline phosphatase23-26,66

CD68290 CD15 antigens305 Cytochrome b558
20 CR165

V-type H/-ATPase291 CD66306 Diacylglycerol-deacylating Cytochrome b558
62,333

CD67306 enzyme331 CD11b62,64

Cytochrome b558
17,52,105 fMLP-R109,131 CD14334

fMLP-R131,307,308 SCAMP170 CD1663,334 *
Fibronectin-R309 Urokinase-type fMLP-R131

G-proteina-subunit310,311 plasminogen activator-R319 SCAMP170

Laminin-R309 VAMP-2170 Urokinase-type plasminogen
NB 1 antigen312 V-type H/-ATPase291 activator-R319

19-kD protein313 V-type H/-ATPase291

155-kD protein314 VAMP-2170

Rap1, Rap2315,316 CD10, CD13, CD45335 *
SCAMP170 C1q-receptor336 *
Thrombospondin-R317 DAF60 *
TNF-R318

Urokinase-type plasminogen
activator-R319

VAMP-2170

Vitronectin-R309

Matrix Matrix Matrix Matrix
Acid b-glycerophosphatase11 b2-Microglobulin320 Acetyltransferase332 Plasma proteins24,25 (including
Acid mucopolysaccharide292 Collagenase321 b2-Microglobulin20 tetranectin)
a1-Antitrypsin293 Gelatinase21,322 Gelatinase16,21,107

a-Mannosidase11 hCAP-18117 Lysozyme45

Azurocidin/CAP37/heparin Histaminase323

binding protein294-296 Heparanase324

Bactericidal permeability Lactoferrin301

increasing protein297 Lysozyme7,8,298

b-Glycerophosphatase7 NGAL126

b-Glucuronidase7,298 Urokinase-type plasminogen
Cathepsins11 activator319,325

Defensins43,299 Sialidase303

Elastase300 SGP2840

Lysozyme7,8,298 Vitamin B12-binding
Myeloperoxidase301 protein326

N-Acetyl-b-glucosaminidase7

Proteinase-3302

Sialidase303

Ubiquitin-protein304

* This localization is based on kinetics of upregulation in response to stimulation with inflammatory mediators, but has not yet been demon-
strated by subcellular localization by immunocytochemistry.

important because of their membrane, which is particularly comes clear that these serve different and significant functions
rich in receptors.62-65 The only known intravesicular content of (Fig 3). Our view on secretory vesicles is that these are mobi-
secretory vesicles is plasma. Albumin therefore currently serves lized when the neutrophil establishes the primary rolling contact
as marker of these vesicles.25 This indicates that secretory vesi- with activated endothelium, which is mediated primarily by
cles are endocytic in origin. It should be noted that secretory selectins and their ligands, eg, PSGL-1.71-74 The mobilization
vesicles are not part of a constitutive endocytosis/exocytosis of secretory vesicles may be mediated by signaling through the
organelle. Once mobilized, secretory vesicles are not reformed, selectins75,76 or by inflammatory mediators liberated from the
either in vitro or in vivo.66-70 endothelium.77,78 This view is in agreement with the observation

that secretory vesicles have been completely mobilized in neu-
SPECIFIC FUNCTIONS OF GRANULES AND SECRETORY trophils that are collected in plasma in a skin window cham-

VESICLES ber.50 Thus, mobilization of secretory vesicles transforms the
neutrophil to a b2-integrin presenting cell79,80 and in this wayWhen combining the known content of the different granules

and secretory vesicles with their order of mobilization, it be- changes the cell from a generally passive cell, well suited for
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appropriate gene knock-out experiment has not been per-
formed to address this. A human gene knock-out is provided
by the rare condition, specific granule deficiency,101,102 al-
though the functional defects in this condition, which include
inability of neutrophils to infiltrate into tissues, may be
caused by the lack of expression of other granule proteins
than gelatinase.103

Although subject to much previous debate,104-109 the mem-
brane of specific granules has not definitively been shown
to be different from that of gelatinase granules, except by
quantitative measures (total area of specific granules is larger
than the total area of gelatinase granules).20,21 The mem-
branes of specific-and gelatinase granules relate to phagocy-
tosis and intracellular killing, because these are the main
stores of Mac-1 (amb2 , CD11b/CD18) and of the flavocy-Fig 1. Intracellular routing of newly synthesized proteins. Newly

synthesized proteins are sorted into pathways for constitutive (trian- tochrome b558 (gp91phox/p22phox), an essential component of
gles) and regulated (circles) exocytosis. If formation of storage gran- the NADPH oxidase.20,104,105

ules occurs by homotypic aggregation of transport vesicles, a surface With respect to intragranular proteins, specific granules
to volume problem will arise that can be solved only by either ad-

are dominated by lactoferrin,8,110 the function of which isjusting (expanding) the volume to fit the surface of a spherical parti-
still unknown. Of the constituents listed in Table 1, thecle (A) or by adjusting the shape so that the surface fits the volume

(B). E.R., endoplasmic reticulum; TGN, trans-Golgi network. zymogen collagenase should be mentioned because this,
like gelatinase of gelatinase granules, most likely is im-
portant for the ability of the neutrophil to make its way
through tissues.111-113 Azurophil granules are characterizedcirculation, to a highly responsive cell, primed for migration
by their content of hydrolytic and bactericidal proteinsinto tissues.81-93

such as elastase, bactericidal permeability-increasing pro-Type IV collagen, a major constituent of basement mem-
tein, defensins, and MPO.5,7,13 Azurophil granules havebranes, and type V collagen of interstitial tissues, are sub-
been further subdivided on the basis of several proteins.114strates of gelatinase.94-96 It is likely that exocytosis of gela-
Defensins are the dominating protein in a major subsettinase from gelatinase granules is essential for migration
of azurophil granules.43 Three novel proteins of specificof neutrophils through basement membranes.97,98 Although
granules that may turn out to contribute significantly toevidence for disruption of the basement membrane has not
the function of neutrophils have recently been identified.been obtained by in vivo experiment,99 in vitro experiments
These are NGAL,115,116 hCAP-18,117-119 and SGP28.40support the need for gelatinase activity in migration of neu-

trophils through Matrigel and amnion membranes,100 but the NGAL. NGAL is a member of the lipocalin family of

Fig 3. Specific functions of neutrophil granules and secretory vesicles in relation to diapedesis and phagocytosis. (1) Primary contact
between endothelium and circulating neutrophils is established via selectins and their ligands, which causes the neutrophils to roll along the
activated endothelium. This contact may transduce signals in the neutrophils that mobilize secretory vesicles. (2) Integration of the membrane
of secretory vesicles and its associated CD11b/CD18 enhances the potential of the neutrophil for firm adhesion to endothelium. (3) Exocytosis
of gelatinase from gelatinase granules may help degradation of type IV collagen in basement membranes. (4) Mobilization of specific granules
to the surface membrane may enhances the phagocytic potential of the neutrophils by providing CR3 (CD11b/CD18). Fusion of azurophil and
specific granules with the phagosome creates conditions for oxygen-dependent and -independent bactericidal activity. (Modified and reprinted
with permission.200).
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Fig 4. Granules defined by timing of biosynthesis
of their characteristic proteins. The granules formed
at any given stage of maturation of neutrophil pre-
cursors will be composed of the granule proteins
synthesized at that time. The different subsets of
granules identified are the result of differences in the
biosynthetic windows of the various granule pro-
teins during maturation and not the result of specific
sorting between individual granule subsets. When
the formation of granules ceases, secretory vesicles
will form337 (this point has not yet been proven). The
control of biosynthesis is exerted by transcription
factors that control the expression of genes for the
various granule proteins. It cannot be ruled out that
posttranscriptional control occurs so that biosynthe-
sis of proteins is not a precise reflection of the corre-
sponding mRNA levels. MB, myeloblast; PMC, pro-
myelocyte; MC, myelocyte; MMC, metamyelocyte;
BC, band cell; Segm., segmented cell.

proteins, which were recently reviewed by Flower.120 Lipo- that is homologous to cathelin, a protein purified from por-
cine neutrophils,136 whereas the C-terminal parts of catheli-calins, the archetype of which is retinol-binding protein, are

25- to 30-kD proteins that have a three-dimensional struc- cidins are highly diverse, ranging from 12135 to 100 amino
acids.137 The C-termini are highly cationic. Some are ex-ture121 that has been likened to a coffee filter.122 Lipocalins

are known to bind small lipophilic substances (eg, retinol). tremely rich in proline and arginine,135,138,139 whereas others,
including the C-terminal 39 aminoacids of hCAP-18, formNGAL, so named because of its ability to complex with

gelatinase (neutrophil gelatinase associated lipocalin),115,116 an amphipatic a-helix.119 Indeed, we discovered hCAP-18
as a protein highly enriched in the Triton-phase during Tritonis the human homologue of the mouse protein 24p3 that was

identified in SV40 transformed kidney cells.123,124 A closely X-114 phase separation of proteins from specific granules.117

Cathelicidins are stored as intact proteins in specific gran-homologous protein was recently identified as the protein
whose expression is increased the most in neu-transformed ules (or large granules of ruminant neutrophils), but the C-

termini may be cleaved off when the proteins are exposedrat mammary carcinomas. This protein was termed neu-re-
lated lipocalin.125 NGAL is normally found only in the spe- to elastase140,141 during concomitant degranulation of specific

and azurophil granules, and the bactericidal activity of thecific granules of human neutrophils,126,127 but its production
is significantly induced in colon epithelial cells during in- C-terminal peptides is unleashed.118,141 The C-terminal pep-

tides are not only microbicidal, but may also be toxic toflammation (Crohn’s disease, ulcerative colitis, appendicitis,
and diverticulitis), as evidenced both by immune-histochem- eucaryotic cells.142

SGP28. SGP28 is a glycoprotein of specific granulesistry and by in situ hybridization.128 The synthesis of NGAL
has been shown to be induced in peripheral blood neutrophils with a molecular weight of 28 kD, hence its name.40 It is

homologous to two other proteins: Tpx-1, which is a humantreated with granulocyte-macrophage colony-stimulating
factor (GM-CSF).129 Two studies on the subcellular localiza- testis specific protein,143 and sperm-coating glycoproteins of

rat epididymis.144 These proteins constitute a family oftion of the fMLP receptor by photo-affinity labeling identi-
fied NGAL as a 25-kD fMLP-binding protein of specific cystein-rich proteins termed CRISPs (cysteine-rich secretory

proteins).145 SGP28 was independently cloned from a sali-granules.130,131 Our hypothesis is that NGAL may participate
in regulating the inflammatory response by binding small vary gland cDNA library and termed CRISP-3 and was found

expressed (Northern blotting) also in pancreas and epitheliallipophilic inflammatory mediators such as fMLP, platelet
activating factor (PAF), leukotriene B4 (LTB4), and lipo- cells of the large bowel.145 Part of SGP28 shows high amino

acid sequence homology to plant proteins known as patho-polysaccharide (LPS).
hCAP-18. hCAP-18, also named FALL-39, was recently genesis-related proteins. There are proteins that are believed

to be important for resistance to infections caused by bothidentified independently by three groups.117-119 It is the only
human member of the cathelicidin family of bactericidal virus, bacteria, and fungi.146

peptides132 (see Zanetti et al133 and Levy134 for recent re-
FUNCTIONAL INTERPLAY OF GRANULESviews). These peptides were first discovered in neutrophils

of ruminants.135 Cathelicidins are proteins that share a high The generation of reactive oxygen metabolites that is es-
sential for proper microbicidal activity of neutrophils is de-level of homology in the N-terminal 14-kD part of the protein
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pendent on components of both peroxidase-negative gran- maleimide sensitive factor) and the attachment proteins for
NSF, the SNAPs (soluble NSF-attachment proteins), in fur-ules (which harbor the flavocytochrome b558 , an essential

component of the NADPH oxidase) and of azurophil gran- ther combination with Ca2/, synaptotagmin, and other mem-
brane proteins.30,31,162,163 The experimental evidence for theules (which contain MPO that transforms the relatively in-

nocuous product of the NADPH oxidase, H2O2, to hypochlo- relevance of this mechanism to control exocytosis is derived
mainly from studies on neuronal tissue.164-166 One of therous acid147). As mentioned above, proteases from azurophil

granules may activate the cathelicidin present in specific strongest indications to support this hypothesis is the obser-
vation that the neurotoxins botulinus and tetanus toxins spe-granules by proteolytically removing the inhibitory (and pro-

tective) N-terminal cathelin-like part of the protein. Like- cifically cleave SNARE proteins.167-169

In neutrophils, the t-SNARE protein, syntaxin-4, is foundwise, gelatinase and collagenases may be converted from
their proform to active proteases by elastase liberated from exclusively in the plasma membrane, whereas the cognate

v-SNARE, VAMP-2, is present in the membrane of the mo-azurophil granules97 or by reactive oxygen metabolites gen-
erated by the NADPH oxidase.112,148 bilizable granules and secretory vesicles, with the highest

density on the membrane of secretory vesicles and gelatinase
CONTROL OF GRANULE EXOCYTOSIS granules followed by specific granules. VAMP-2 could not

be detected on azurophil granules.170 This could indicateAs alluded to above, secretory vesicles and the different
that exocytosis of the neutrophil granules and of secretorykinds of granules are mobilized in a hierarchy, which seems
vesicles is stochastic, ie, that the likelihood that any givenadjusted to the different roles these organelles play during
granule will be exocytosed, is determined entirely by thethe journey of the neutrophil from the circulation to the
density of fusion-proteins in the membrane of that granuleinflammatory focus. Because all granules and secretory vesi-
(as recently observed in sea urchin eggs171) and that no quali-cles appear randomly distributed throughout the cytosol in
tative differences exist among fusion proteins associatedthe circulating cell21,25,62,63 and localized towards the lamelli-
with the different types of granules.pod in the (fMLP-) activated cell,70 this hierarchy must rely

The signal transduction pathways that lead to granule exo-on mechanisms that discriminate between the different gran-
cytosis are not completely known. Involvement of G-pro-ule subsets. However, hierarchic mobilization excludes inde-
teins is indicated by the ability of the nonhydrolyzable GTP-pendent mobilization, ie, mobilization of specific granules
g-S to induce exocytosis in permeabilized neutrophils172,173

without concomitant and more extensive mobilization of gel-
and by localization of distinct G-proteins to granules.174

atinase granules. This indicates that differences in the mobili-
Patch clamp capacitance measurements provide a powerfulzation of the granule subsets are due to quantitative differ-
tool to analyze granule exocytosis. Using this technique,ences and not to qualitative differences in the machinery that
incorporation of granule membrane into the plasma mem-controls exocytosis of the individual granule subsets.
brane is quantitated as increase in the electrical capacitanceElevation of intracellular Ca2/ is known to elicit exo-
of the plasma membrane.175 This technique has documentedcytosis of storage granules in a variety of cells,47,149-152 but
the role of GTP and Ca2/ in control of granule exocytosisthe molecular mechanism by which this occurs is unknown.
and holds promise for further delineation of the molecularDifferences in sensitivity toward intracellular Ca2/ as a sig-
mechanism of exocytosis.176

nal to elicit mobilization were observed among the different
The differences among different granule subsets in theirgranule subsets49,51,153 and secretory vesicles, in correspon-

ability to become exocytosed have been shown to extent alsodence with the hierarchy of their mobilization. It has been
to orientation of exocytosis. Whereas peroxidase-negativeshown that a few cytosolic proteins translocate to granules
granule are often characterized as secretory granules thatin a Ca2/-dependent way (annexins I, II, III, IV, VI, and
mainly mediate extracellular release of their proteins,177,178

XI).154-160 No clear-cut qualitative differences were observed
peroxidase-positive granules have been characterized as spe-between binding of different annexins to the different gran-
cialized lysosomal structures4,11 that do not participate sig-ule subsets, although annexin III was suggested to bind pref-
nificantly in extracellular release, but form a digestive organ-erentially to specific granules.156 Furthermore, the Ca2/ con-
elle for phagocytosed particles.178,179

centrations that elicited binding of annexins were found to
The notion that azurophil granules are specialized lyso-differ among the different granule subsets.155 A non-annexin

somes has recently been challenged by the observation thatCa2/-binding protein, later identified as grancalcin,161 was
the membrane of azurophil granules is devoid of the charac-found to be translocated selectively to secretory vesicles.154

teristic lysosomal membrane proteins (LAMPs),180,181 whichHowever, the role, if any, of these proteins in regulation of
instead are found in multilamellar and multivesicular bodiesexocytosis is unclear.
in the neutrophil, probably defining these organelles as theRecently, the studies of intracellular transport (from ER
true lysosomal structures of neutrophils.181,182

to Golgi and within Golgi) have been extended to exocytosis,
and a unifying hypothesis called the SNAP/SNARE-hypoth-

TARGETING OF PROTEINS TO INDIVIDUAL GRANULEesis has been forwarded according to which specific targeting
SUBSETSof granules and vesicles is provided by specific interaction

of v-SNAREs (present on the membrane of donor organelles) The mechanism for controlling the protein profile of the
individual granule subsets, including the proteins that deter-with their cognate t-SNAREs (present on the target mem-

brane). According to this hypothesis, fusion is mediated by mine their later exocytosis, must be highly efficient to ac-
count for the differences in granule composition and for thethe combined action of the cytosolic factors NSF (N-ethyl
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hierarchy in exocytosis presented above. Two essentially lumenal domain that is essential for routing to secretory
granules.197 P-selectin, as opposed to E-selectin, is targetedunrelated steps are involved in targeting of proteins to gran-

ules. The first step is sorting between transport vesicles that to its intracellular localization in endothelial cells by specific
signals present in the cytosolic carboxy-terminal tail.198,199mediate constitutive exocytosis of secretory proteins and in-

sertion of membrane proteins into the plasma membrane and Such have not been reported regarding the localization of
flavocytochrome b558 and CD11b/CD18, proteins that arevesicles that will form storage granules capable of undergo-

ing regulated exocytosis. The second step is sorting between localized to the membrane of peroxidase-negative granules.
Thus, it has not been addressed whether there is need fordifferent subsets of storage granules.

Sorting between regulated and constitutive exocytotic specialized targeting or whether sufficient amounts of the
membrane proteins going through the Golgi will go passivelypathways. Very little is known with respect to mechanisms

that sort proteins into the constitutive or the regulated exocy- to the granules at the time of their formation.
Sorting between individual granule subsets. In view of thetotic pathways in general, let alone in myeloid cells. Sorting

of insulin and neuropeptides is (partly) controlled by pH and considerable heterogeneity of neutrophil granules, sorting of pro-
teins into different granules would require a very complex sortingCa2/-mediated aggregation,183-185 without involvement of

carrier proteins or membrane attachments.186 The well- mechanism if it was dependent on sorting information present
in the individual proteins. We have forwarded the hypothesisknown targeting of mannose 6-phosphate containing glyco-

proteins to lysosomes via the cation-dependent and cation- that there is no specific sorting of proteins to individual granule
subsets and that all granule proteins that are synthesized at theindependent mannose 6-phosphate receptors187 has not been

shown to be important for targeting of proteins to granules same time will localize to the same granules.28,200,201 This implies
that the differences in protein content that define the differentin neutrophils. Although MPO is decorated with mannose

6-phosphate that is recognized by the cation-independent subsets of granules result from differences in the biosynthetic
window of the various granule proteins in relation to maturation,mannose 6-phosphate receptor,33,181 this is not important for

sorting to azurophil granules.33,188 In addition, azurophil as depicted in Fig 4. This extends the original observation of
Dorothy F. Bainton that peroxidase-positive granules are formedgranules contain proteins that do not have the mannose 6-

phosphate label (eg, lysozyme189 and defensins190). Recently, at the promyelocyte stage, whereas peroxidase-negative granules
are formed at the myelocyte stage.5 We were able to show thatMPO was found associated with calreticulin as a chaper-

one,191 but the significance of this for sorting is unknown. the differences among peroxidase-negative granules with regard
to their content of gelatinase and lactoferrin could be explainedNo common primary protein structure has been identified in

proteins that are retained versus those that are constitutively by differences in the time of biosynthesis of these proteins, ie,
lactoferrin synthesis occurred in cells at the myelocyte/metamy-secreted. N-terminal hydrophobic domains have been sug-

gested as a sorting signal in some neuropeptides.192 elocyte stage, whereas maximal gelatinase synthesis occurred at
the metamyelocyte/band cell stage.28An essential question is whether retention signals are com-

mon for all cells, ie, is a protein that in neutrophils is retained Although the available information regarding the localiza-
tion of proteins and their time of biosynthesis is in agreementin granules also retained if transfected to other cell types?

If so, is this dependent on whether the cells have the capacity with this hypothesis,37,202-204 formal proof that no targeting
is required for sorting into individual granule subsets wasfor formation of granules? This has been studied with defen-

sins, the constituents of azurophil granules, as probe. It has achieved by our analysis of the granule protein NGAL.
NGAL is synthesized at the same stage as lactoferrin inbeen observed that defensins can localize to granules in non-

myeloid cells, indicating that sorting to storage granules oc- normal neutrophil precursors28 and colocalizes with lactofer-
rin in specific granules.126 When NGAL was transfected tocurs by mechanisms common to all cells.193 This is also

supported by transfection of other azurophil granule proteins HL-60 cells under control of a constitutively active cytomeg-
alovirus promoter, NGAL became synthesized at the sameto other myeloid cells.194,195 Yet, to prove the point, it is

necessary to show active sorting between two proteins syn- time as the endogenous granule protein MPO. NGAL was
efficiently retained in granules of these HL-60 cells andthesized in the same cell, but handled differently by the

sorting machinery. Because granules are so abundant in gran- colocalized with MPO in azurophil granules.201 However,
NGAL, so targeted to azurophil granules by changing itsulocytes and appear to be formed rapidly, at least as evalu-

ated in eosinophils,196 there may be little need for a sorting timing of expression, was slowly degraded in the proteolytic
milieu of the azurophil granules or their precursors.201 Thismechanism if the bulk of cargo will go to granules anyway.

This question must be addressed by examining whether all illustrates that, in addition to the need for sequential mobili-
zation of different granule proteins, the need for segregatingproteins that are routed through the Golgi go to granules

with the same efficiency or whether some are more effi- proteins that cannot coexist may be another reason for the
development of neutrophil granule heterogeneity.ciently retained than others.

No studies have been presented to address the route of The degradation of NGAL in azurophil granules or their
precursors is in line with a number of observations that pointtransport of membrane proteins that eventually localize to

granules in granulocytes. In neuroendocrine cells, the tar- to the azurophil granule as the place of terminal processing
of many of its proteins. A variety of proteins localized togeting of peptidylglycyl a-amidating monooxygenase seems

to be mediated by two targeting signals: a carboxyterminal azurophil granules (MPO,32 defensins,37 cathepsin G, and
elastase38) are proteolytically modified to their mature formcytoplasmic domain that retains the protein in the TGN (as

opposed to being routed to the plasma membrane) and a after exit from the TGN. This is supported by the observation
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that defensins and MPO are not proteolytically modified in the budding and targeting mechanisms of the TGN. The
proteins that are needed for formation of regulated storagewhen targeted to storage granules of cells of nonmyeloid
granules have not been identified in myeloid cells.origin.193,205 Signals present in the N-terminus of defensins

The rare condition termed specific granule deficiency ishave been shown to be important for correct targeting to
characterized by defects in expression of defensins and ofgranules.206 This most likely illustrates that the N-terminal
matrix proteins of specific granules, but preservation of thepro-piece neutralizes the highly cationic C-terminus190 and
ability to form some membrane proteins that are normallyprevents the protein from becoming stuck to membranes
localized to specific granules.103 These membrane proteinsen route through the ER and Golgi and underscores the
colocalize with the plasma membrane in specific granuleimportance of final processing occurring in azurophil gran-
deficient neutrophils216 and, in this respect, these cells resem-ules and not before. The fact that pro-segments are described
ble differentiated HL-60 cells.for a variety of azurophil granule proteins, but not for granule

If, as we believe, targeting of proteins to granules is en-proteins localized to peroxidase-negative granules, may be
tirely dependent on the time of biosynthesis, then controla matter of semantics. A variety of the specific granule pro-
mechanisms must exist to secure that vesicles, budding offteins are only active after N-terminal trimming of a pro-
the TGN and carrying newly synthesized proteins, do notpiece has occurred (cathelicidin, gelatinase, and collagenase,
fuse with already formed granules. One such mechanismas previously discussed), but this only takes place after expo-
could be that granules bud off from Golgi at their finalsure to azurophil granule proteins or to external prote-
size with no further homotypic aggregation, although theases.97,113,140,141,207 Thus, it is possible that pro-segments play
observations that have been made on the size of granules do

a role for correct transport through the biosynthetic machin-
not support this, as previously mentioned. On the other hand,

ery, but maybe not for specific sorting, as was recently sug-
all cells that contain regulated storage granules must have a

gested.208 As mentioned in the legend and text to Fig 1, the mechanism to control the size of the granules, otherwise the
proteolytic processing in granules may even affect the shape cells would continue to put all proteins into an ever-growing
of the granules by generating osmotically active substances. granule. The targeting-by-timing hypothesis therefore does

not invoke further control mechanisms than are already
GRANULE-DEFICIENT GRANULOCYTES

needed in all cells that form granules. An indication that
HL-60 cells share with other human promyelocytic cell factors exist that limit the size of storage vesicles is given

lines, eg, NB4 cells, the inability to express endogenous pro- by the observation that such factors seem to be absent from
teins normally localized to specific granules, despite the fact cells of the promyelocytic mouse cell line 32D cl3, which
that the gene structure, including the 5*-untranslated regions accumulate granule proteins into large intracellular sacs,206

assumed to control transcription of these genes, are intact, and by the large granules of neutrophils, eosinophils, and
other cells from patients with the Chédiak-Higashi syn-where investigated.209-211 Yet, these cells retain the ability
drome,22,217,218 now shown to be defective in Lyst protein.219to express proteins normally localized in the membrane of

specific granules when driven into maturation by retinoic CONTROL OF GRANULE PROTEIN BIOSYNTHESIS
acid or dimethyl sulfoxide (DMSO).204,212 We therefore in-

The control of granule protein biosynthesis can be onvestigated the fate of the transfected specific granule protein
either the transcriptional or the translational level. WhereasNGAL in HL-60 cells when these were forced to maturation
the transcriptional control is exerted by transcription factors,by retinoic acid and DMSO and had stopped the synthesis
translational control is more elusive.220,221 Although growthof endogenous azurophil granule proteins.213 In these cells,
factors may exert translational control, translational controlnewly synthesized NGAL was not retained, but was routed
has not been shown to be relevant for expression of myeloidto the extracellular medium, and the endogenous specific
granule proteins.granule membrane protein, the flavocytochrome b558 was lo-

The stage of maturation of neutrophil precursors at whichcalized to the plasma membrane and not to granules. This is
biosynthesis of granule proteins starts is in agreement within contrast to the undifferentiated transfected cells, in which
the start of transcription of the relevant genes in the cases

NGAL was localized to azurophil granules, as previously
in which this has been investigated (MPO,202,211,222-224 defen-

discussed. This illustrates that a shift of routing from the
sins,211,224-228 lactoferrin,211,224,229,230 vitamin B12-binding pro-

regulated secretory pathway to the constitutive secretory tein,211,224 CD11b,204 and alkaline phosphatase202), although
pathway takes place, when HL-60 cells mature. This indi- no distinct temporal difference between gelatinase and lacto-
cates that the ability to maintain a regulated secretory path- ferrin mRNA expression was observed during maturation in
way is dependent on continued synthesis of proteins that are a mouse myeloid cell.231 It is not quite clear whether there
needed for formation of regulated storage granules. This is is a complete correlation between stop of protein biosynthe-
consistent with the observation that formation of transport sis and downregulation of mRNA. This indicates that start
vesicles that mediate constitutive secretion continues after of protein synthesis is controlled by transcription, whereas
cycloheximide treatment, whereas formation of transport the termination of protein synthesis, at least for some granule
vesicles that mediate regulated secretion is blocked.214 It has proteins, may be under translational control.
recently been observed that transfection of fibroblasts with

TRANSCRIPTION FACTORS INVOLVED IN CONTROL OFsynaptotagmin is able to transform constitutive secretion to
GRANULE PROTEIN EXPRESSIONregulated secretion.215 It appears, therefore, that the differ-

ence between regulated and constitutive secretion may rely Of the largely myeloid-specific granule proteins listed in
Table 1, the following have been cloned at the genomicon a few proteins and is not due to fundamental differences
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level and their 5*-upstream or flanking sequences have been the myelocytic stage of differentiation and then remains con-
stant.276,277 This is reflected by the observation that manycharacterized: MPO,232 elastase,233,234 cathepsin G,233,235,236

proteinase 3,237 lysozyme,238 defensin,239 lactoferrin,210 genes contain a functionally important PU.1 site, both some
with an early onset of transcription (elastase,234 PU.1,278 GM-gp91phox,240-243 p22phox,244 CD11b,245-247 CD18,248-250 vitamin

B12-binding protein,251 hCAP-18/FALL-39,132 NGAL (Cow- CSF receptor,279 and G-CSF receptor280) and some with a
later onset of transcription during granulocytic differentia-land and Borregaard, EMBL database accession no.

X99133), gelatinase,252,253 and alkaline phosphatase.254 Puta- tion (CD11b,247,281 CD18,249,282 and FcgRI283,284). Based on
its pattern of expression, it can be concluded that PU.1 istive binding sites for a variety of transcription factors have

been identified in these promoter regions, but only a few likely to confer hematopoietic specificity to gene expression,
but by itself is unable to exert a granulocytic- or stage-promoter regions have been characterized by functional anal-

ysis (expression and gel shift analysis, and experiments of specific expression of the target genes. The latter has in some
instances been shown to be achieved by co-operativety withnature [CGD states241,255]). These include MPO,256,257 cathep-

sin G,236 lysozyme,238 elastase,234,258 CD11b,246,247,259,260 other lineage- and/or stage-restricted transcription factors, as
in the case of the elastase213 and GM-CSF receptor promot-CD18,248-250 gp91phox,242,243,261 and gelatinase.253

GATA-1. The transcription factor GATA-1 is upregu- ers.279

C/EBPa. The C/EBP family of transcription factors con-lated in the very early stages of commitment of the hemato-
poietic progenitor cells as a result of induction of cell divi- tains at least 6 members, of which three (C/EBPa,

-b, and -d) are restricted to the myeloid cells within thesion.262 This results in a gradual increase in the concentration
of GATA-1 over a period of 1 to 2 days,263 followed by an hematopoietic lineages.285 C/EBPa and C/EBPd expression

is intense in immature myeloid cells and increases until theabrupt downregulation and the disappearance of GATA-1
within 4 to 5 days from cells committed to the myelomono- onset of the promyelocytic stage of differentiation and then

declines rapidly, whereas the expression of C/EBPb is lowcytic lineage.262 A GATA-1 site capable of binding the
GATA-1 factor is found in the genes for lactoferrin and for in immature cells, but increases steadily during the course

of granulocytic maturation to reach a maximum in the maturethe Mac-1 subunit CD11b, but it has not been shown that
these sites are of any importance for the control of expression granulocytic cell.285 A number of genes have been shown

to carry a functionally important C/EBP site such as theof these genes.210,247

AML (PEBP2/CBP). The AML (PEBP2/CBP) transcrip- elastase,213 min-1,273,274 G-CSF receptor,286 and GM-CSF re-
ceptor genes.279 Co-operativity with c-Myb has been showntion factors are a family of heterodimeric proteins consisting

of a common b-subunit and a specific DNA-binding a-sub- for the elastase,213 GM-CSF,279 and min-1 promoters.273,274

For the elastase promoter, additional co-operativity has alsounit, of which three different types are known in humans.264

This is further varied by different splice variants of the indi- been observed with PU.1.213

CCAAT displacement protein (CDP). CDP is a repressorvidual a-unit transcripts.264,265 A functionally important
PEBP2/CBP site has been identified in the promoters of of the ubiquitous CCAAT-binding transcription factor CP1.

CDP has been shown to be involved in the regulation ofthe human GM-CSF266 and in the mouse MPO and elastase
genes.267,268 PEBP2/CBP is upregulated in the murine 32D the gp91phox gene240,242 and to play a regulatory role in the

transcriptional regulation of proteins localized to the matrixcl3 cells upon induction of differentiation (days 1 to 3) and
downregulated upon exit from the promyelocytic stage (days of specific granules.287 These granule proteins are all ex-

pressed at the myelocytic stage of neutrophil development.5 to 6).267 Besides the regulatory effects of upregulation and
downregulation of the AML (PEBP2/CBP) factors and the This may indicate that de-repression of gene expression, due

to downregulation of CDP over the course of granulocyticneed for co-operativity with other transcription factors for
optimal function, a positive and negative regulatory effect differentiation, is important for the stage-specific expression

of some granule proteins.of two differently spliced AML-1 transcripts has been ob-
served on differentiation of murine 32D cl3 cells.265 It is likely that it is the appearance (activation) or disap-

pearance (suppression) of one or more lineage- and develop-c-Myb. c-Myb is found to be highly expressed in imma-
ture hematopoietic cells and completely absent from mature mental-specific transcription factors that, alone or in combi-

nation, determines the developmental expression pattern ofgranulocytes.269-271 Overexpression of c-myb causes contin-
ued proliferation of progenitor cells and blocks differentia- neutrophil-specific genes in concert with ubiquitous tran-

scription factors (Fig 4). No single transcription factor hastion of the cells.272 In humans, only genes expressed at early
stages of granulocyte differentiation, such as elastase213,267 been shown to confer myeloid-specific expression of genes,

but PU.1, which is specific for hematopoietic cells, shouldand MPO,268 have been shown to carry a functional important
Myb site. Potential c-Myb sites have also been identified in be able to determine myeloid-specific gene expression in

combination with the C/EBPs, which are found in manythe early expressed proteinase-3 and azurocidin genes. Co-
operativity with C/EBP has been shown for the min-1 different cell types but, within the hematopoietic lineages,

only in myeloid cells. Early myeloid expression can then begene273,274 and with both C/EBP and PU.1 for the elastase
gene.213 achieved by the requirement of c-Myb and/or a PEBP2/

CBP binding for gene expression. Late granulocytic genePU.1. PU.1 is specific for the hematopoietic system and
highly expressed in B-lymphocytic, granulocytic, and mono- expression can be achieved by the disappearance of one or

more repressors, such as CDP, or the appearance of a yetcytic cells.275,276 PU.1 is present at all stages of granulocyte
differentiation.276,277 Its expression increases gradually up to unidentified positive regulatory protein during differentia-
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8. Leffell MS, Spitznagel JK: Association of lactoferrin with lyso-tion. Another possibility is that the C/EBP sites of some
zyme in granules of human polymorphonuclear leukocytes. Infectof the genes expressed at the early stages of granulocytic
Immun 6:761, 1972differentiation have a high affinity for C/EBPa and a low

9. West BC, Rosenthal AS, Gelb NA, Kimball HR: Separationaffinity for C/EBPb and that the opposite is the case for
and characterization of human neutrophil granules. Am J Patholgenes expressed at later stages. The expression patterns of
77:41, 1974

these granulocyte-specific genes may then simply reflect the 10. Gallin JI: Neutrophil specific granules: A fuse that ignites the
expression patterns of C/EBPa and C/EBPb. Although no inflammatory response. Clin Res 32:320, 1984
difference in specificity towards the recognized DNA core 11. Baggiolini M: The enzymes of the granules of polymorphonu-
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13. Welsh IRH, Spitznagel JK: Distribution of lysosomal en-ligand binding to the GM-CSF and G-CSF receptors may
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CONCLUSION
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160. Sjölin C, Dahlgren C: Isolation by calcium-dependent trans- 180. Dahlgren C, Carlsson SR, Karlsson A, Lundqvist H, Sjölin
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