Differential Regulation of Proinflammatory and Hematopoietic Cytokines in Human Macrophages After Infection With Human Immunodeficiency Virus

By Ruth Esser, Wolfgang Glienke, Hagen von Briesen, Helga Rübsamen-Waigmann, and Reinhard Andreesen

Cells of the macrophage lineage (MAC) play an important role in human immunodeficiency virus (HIV) infection. However, the knowledge on the extent of macrophage involvement in the pathogenesis of HIV infection is still incomplete. In this study we examined the secretory repertoire of HIV-infected MAC with respect to the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8, and the hematopoietic growth factors M- and G- and granulocyte-macrophage colony stimulating factor (GM-CSF). Using a culture system on hydrophobic teflon membranes, blood-derived MO from healthy donors were infected with a monocytotropic HIV-1 isolate (HIV-1\textsubscript{O17m1}). We therefore contribute to the pathogenesis of HIV-mediated disease.

TNF-α and IL-1β are produced in response to normal immune stimuli such as immune complexes, lipopolysaccharides (LPS), and phospholipids. Both molecules are highly inflammatory, can cause fever and loss of appetite, and contribute to a catabolic state. The main physiological functions of the proinflammatory cytokine interleukin-6 (IL-6) are the induction of terminal differentiation of activated B cells into antibody producing cells and the induction of the hepatic acute phase response. IL-8 functions as a chemottractant for neutrophils, basophils, and T lymphocytes, affects the adhesion of neutrophils to the endothelium, and induces the transendothelial migration of neutrophils. Beside chemotactic activities IL-8 also activates neutrophils. The hematopoietic cytokines also regulate the proliferation and differentiation of hematopoietic progenitor cells. In addition to their proliferative role they contribute in maintaining cell viability, and functionally stimulate mature macrophages and granulocytic cells.

In the present study we investigated the secretory repertoire of MO/MAC after infection with HIV. Our data show a differential regulation of proinflammatory cytokines and hematopoietic growth factors. Although the proinflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-8 are elevated in HIV-infected cultures, MO/MAC down-regulate their hematopoietic activity, indicated by a decreased secretion of macrophage colony-stimulating factor (M-CSF), granulocyte-CSF (G-CSF), and granulocyte macrophage (GM-CSF).

MATERIALS AND METHODS

Isolation and culture of PBMC. Peripheral blood mononuclear cells (PBMC) were isolated from healthy donors by density gradient centrifugation, and cultured in supplemented RPMI 1640 with 5% heat-inactivated human AB serum cultured in hydrophobic teflon bags (3.10^8 PBMC/mL). The MO-derived MAC were subsequently separated by adherence in 24-well tissue culture plates (Costar, Cambridge, MA). They were further cultured in RPMI 1640 with 5% human AB serum. The adherent cell layer (1 to 2 x 10^6 MAC/well) consisted of up to 95% MAC as judged by morphology, nonspecific esterase staining and expression of CD14 antigen.

Virus isolate and infection of PBMC and MAC. Virus preparations were obtained by propagating the virus in PB T cells and harvesting the culture at the peak of reverse transcriptase activity.
The cell suspension (10^6 cells/mL) was stored in aliquots at -70°C until further use. Only mycoplasma-free virus stocks, tested with a mycoplasma tissue culture DNA probe assay (Gen-Probe, San Diego, CA) were used. Mock material was prepared from uninfected T cells corresponding the protocol for stock virus. The cytokine content of stock virus and mock material was analyzed: the cytokines IL-1β, IL-6, IL-8, and the hematopoietic growth factors M-CSF, G-CSF, GM-CSF could be detected in stock virus as well as in mock material in similar amounts. TNF-α could not be detected in stock virus nor in mock material (data not shown). The PBMC and MO-derived MAC, respectively, were infected with 1 ml stock virus (1×10^6 PBMC with reverse transcriptase activity of 500,000 to 800,000 cpm/mL/90°) per 10 mL cell suspension in teflon bags at different time of culture with the monocytotropic strain HIV-1_D11711. This isolate was derived from a perinatally infected child. It propagates with a high replication rate on MO/MAC. The virus inoculum and the lymphocytes were removed by washing the adherent cell layer several times with serum-free medium. The infection of the MO/MAC cultures were checked by using an HIV antigen enzyme-linked immunosorbent assay (ELISA) (Organon Teknika, Eppelheim, Germany) and by reverse transcriptase assay. HIV-antigen and reverse transcriptase activity was determined in the 24-hour supernatant.

HIV-1-p24 immunostaining. For detection of HIV-1-p24 antigen the cells were isolated, infected, and cultivated as described above. Instead of 24-well tissue culture plates the MO-derived MAC were separated by adherence in plastic chamber slides (Nunc, Wiesbaden, Germany) for later detection of HIV-1-p24. They were further cultured in RPMI 1640 with 5% human AB serum until they were fixed for immunocytochemistry at the indicated time points. After cultivation the cells were washed with phosphate-buffered saline (PBS), fixed with 4% paraformaldehyde in PBS and stored in 70% ethanol at -20°C until use. After washing with PBS the cells were exposed to 10% human serum for 30', followed by incubation with the monoclonal antibody anti HIV-1-p24 (clon Kal-1, Laboserv Diagnostica, Giessen, Germany) overnight at 4°C. As negative control (isotype control) IgG1 was used (Dianova, Hamburg, Germany). Afterwards the cells were exposed to peroxidase-conjugated goat antimouse Igs (Dako, Hamburg, Germany) for 30', peroxidase-conjugated rabbit antigoat immunoglobulins (Dako) for 30' and finally the peroxidase reaction was developed with incubation with DAB (DAB-kit Vectastain; Camon, Wiesbaden, Germany) which resulted in a brown reaction product. For quantitation positive and negative cells were counted using a 25X objective. Two hundred cells were counted two times for each slide and the mean was calculated.

Stimulation of macrophages. At indicated time points medium was exchanged and MAC were stimulated for 6 and 24 hours with or without 100 ng/mL LPS (Salmonella abortus equi, kindly provided by C. Galanos, Max-Planck-Institut, Freiburg, Germany). Three independent experiments with PBMC from three different donors were performed, each experiment was done in triplicate.

Cytokine assays. Cell supernatant were obtained, filtered through 0.22 μm membranes (Millipore, Eschborn, Germany), aliquoted and stored at -70°C. The supernatants were analyzed by ELISAs for IL-1β (R & D Systems, Minneapolis, MN; minimum detectable dose: 0.3 pg/mL), IL-6 (R & D Systems; minimum detectable dose: 0.35 pg/mL), IL-8 (R & D Systems; minimum detectable dose: 4.7 pg/mL), G-CSF (R & D Systems, minimum detectable dose: 7.2 pg/mL), GM-CSF (R & D Systems; minimum detectable dose: 1.5 pg/mL), TNF-α (Endogen, Boston, MA; minimum detectable dose: 5.0 pg/mL) and M-CSF (noncommercial ELISA kindly provided by E. Alderman, Genetics Institute). The amount cytokine measured with ELISA was related to the number of adherent MO/MAC in the culture counted in the well when the supernatant was harvested. Two hundred cells were counted in three different parts of the well and the mean was calculated. Variability in cell counting was insignificant.

RESULTS

Infection of human MO/MAC with HIV-1_D11711. In vitro cultures offer the opportunity to study the interaction of MO/MAC with HIV. For this investigations we used a culture system on hydrophobic teflon membranes for blood-borne MO/MAC, which was adapted for infection of MO/MAC with HIV in vitro. Both freshly isolated MO as well as MO-derived MAC from healthy donors were infected with the monocytotropic HIV-1 strain D11711. Successful infection of MO/MAC cultures was monitored by assay for viral antigen or reverse transcriptase activity in the supernatant. Figure 1 shows a representative time course of infection. Virus replication reached a maximum after 3 weeks and was constant for several weeks at a high level with approximately 80 ng/mL HIV-antigen produced within a 24-hour period (24-hour supernatant). A corresponding reverse transcriptase activity of 5.9×10^6 cpn/mL/90° was measured on day 22. Immunoperoxidase staining methods using anti-HIV-1-p24 antibodies revealed that early after infection no HIV-1-p24+ cells were detectable (Fig 1B). After 3 weeks, when a productive infection had been established 70% to 80% of MAC were HIV-1-p24+. When the con-
Constitutive and LPS-stimulated secretion of proinflammatory cytokines was analyzed in long-term cultured, virus-replicating cells at day 22 after start of culture. Constitutive secretion could only be detected for IL-8 (Fig 2). This constitutive production of IL-8 was increased in the HIV-infected cultures. On LPS-stimulation for 24-hour MAC released high amounts of TNF-α, IL-6, and further increased the secretion of IL-8 (Fig 2). Comparing the HIV-infected with the uninfected MO/MAC cultures a marked increase in secretion of TNF-α, IL-6, and IL-8 could be observed. IL-1β is downregulated during the initial phase of maturation and remains low in long-term cultured MO/MAC as described. An upregulated proinflammatory reaction could also be demonstrated early after infection when a productive infection has not yet been established. Figure 3 shows the LPS-stimulated secretion of proinflammatory cytokines at day 4. The maximum TNF-α secretion could be observed after 6 hours LPS stimulation (Fig 3A); the IL-8 amount is similar in the 6 hour and 24 hour supernatant (Fig 3D); IL-6 increased from 6 hours to 24 hours (Fig 3C) and low amounts of IL-1β were only detectable in the 24-hour supernatant (Fig 3B). The HIV-infected MO/MAC constantly showed an increased secretion of all four cytokines. Secretion of proinflammatory cytokines was analyzed during the course of cultivation and infection. Figure 4A shows the secretion of TNF-α and HIV-antigen production at day 4, 8, and 22 after start of culture (corresponding to day 3, 7, and 21 after infection with HIV). Early after infection when HIV-antigen production in the infected cultures could not be detected yet (day 4) or is still low (day 8) as well as in later stages when a productive

![Fig 2. Constitutive and LPS-stimulated secretion of proinflammatory cytokines in long-term cultured, virus-replicating cells at day 22 after start of culture. The cells were infected or mock-infected (uninfected control) with HIV-103TMB at day 1 after start of culture and stimulated for 24 hours with 100 ng/mL LPS (S abortus equi) at day 21. Data presented are the means ± SEM of a single representative experiment done in triplicate out of 3 experiments performed.](image)

![Fig 3. LPS-stimulated secretion (24 hours) of proinflammatory cytokines in MO early after start of culture at day 4. The cells were infected or mock-infected (uninfected control) with HIV-103TMB at day 1 and stimulated with 100 ng/mL LPS for 6 hour and 24 hour. Data presented are the means ± SEM of a single representative experiment done in triplicate out of 3 experiments performed.](image)
Fig 4. Timecourse analysis of LPS-stimulated secretion (24 hours) of TNF-α (A) and G-CSF (B) in HIV-infected MO. The cells were infected or mock-infected (uninfected control) with HIV-10111 at day 1 after start of culture. Viral replication in the infected cultures is shown by the mean of HIV-antigen measured in the supernatant of three parallel cultures. Data presented are the means ± SEM of a single representative experiment done in triplicate out of 3 experiments performed.

Infection has been established (day 22), secretion of TNF-α was increased in the infected cultures (Fig 4A). Similar results were obtained with IL-6 and IL-8 (data not shown). When MO-derived MAC were infected at day 6 after start of culture, again an elevated secretion of TNF-α, IL-6, and IL-8 in the HIV-infected MAC was observed (Fig 5).

Secretion of hematopoietic growth factors. The stimulated secretion of hematopoietic growth factors was investigated early during MO to MAC maturation as the secretion of M-CSF is suppressed by LPS beyond day 6 in culture.23 Table 1 shows the secretion of hematopoietic growth factors by MO on day 2. Only control MO secreted M-CSF constitutively whereas in HIV-infected MO cultures no M-CSF could be detected without stimulation. When LPS was added, an increasing response to LPS during the time of stimulation was observed in the uninfected cultures whereas the HIV-infected MO showed no M-CSF secretion. No constitutive production of G-CSF and GM-CSF was seen neither in control nor in HIV-infected MO, respectively. On LPS stimulation G-CSF and GM-CSF were secreted by HIV-infected MO at a significantly lower amount compared to the uninfected control cells. Secretion of hematopoietic growth factors G-CSF and GM-CSF was also analyzed during the course of cultivation and infection. Figure 4B shows the secretion of G-CSF and HIV-antigen production at day 4, 8, and 22 after start of culture (corresponding to day 3, 7, and 21 after infection with HIV). As the upregulation of proinflammatory cytokines (shown for TNF-α in Fig 4A) the downregulation of hematopoietic growth factors (shown for G-CSF in Fig 4B) after infection with HIV could be observed early after infection when HIV-antigen production in the infected cultures could not be detected yet (day 4) or is still low (day 8) as well as in later stages when a productive infection has been established (day 22). Similar results were obtained with GM-CSF (data not shown). The response of LPS-induced hematopoietic growth factor production was even more pronounced in mature MAC (Fig 6).

DISCUSSION

We have shown that MO and MAC, which have been infected with HIV in vitro showed an increased secretion of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) in long-term cultured, virus-replicating cells, as well as early after infection when a productive infection has not yet been
established. Concomitant with this upregulation of proinflammatory cytokines, HIV-infected MO/MAC downregulate their hematopoietic activity, reflected by a decreased secretion of M-CSF, G-CSF, and GM-CSF.

Proinflammatory cytokines, which may increase host resistance to viral or bacterial infections when released in moderate amounts, are detrimental in the context of AIDS. HIV replication can be upregulated by proinflammatory cytokines like TNF-α, IL-1β, and IL-6. In addition alterations in the inflammatory gene expression caused by HIV infection could alter immune responses, cause tissue damage by increasing oxidant release from leukocytes, inducing expression of acute-phase proteins, leading to a cachectic state and even upregulate virus replication.

Our results about the secretion of proinflammatory cytokines by HIV-infected MO/MAC add to the controversy that arises from the conflicting results published. Several reports have shown induction of proinflammatory cytokines by in vitro infected MO/MAC by HIV infection. However, others have presented conflicting data and do not find an altered mRNA expression or cytokine release in MO infected with HIV in vitro. Roy et al. reported a decreased LPS-stimulated IL-1 secretion by HIV-infected MO. Several differences in experimental techniques may account for these discrepancies, eg, culture conditions, different HIV isolates, the use of cell lines rather than primary MAC, the point of time for infection as well as for cytokine analysis, etc. In our system MO and lymphocytes were cultivated together only for the first days but the virus inocculum and the lymphocytes were removed after the infection. This procedure has proven to yield very reproducible data comparing cells of the same donor. We found a variability between primary cells isolated from different donors concerning viral replication and level of cytokine secretion, but comparison of uninfected and infected cultures from cells of the same blood donation resulted in reproducible findings concerning the kind of effect (upregulation of proinflammatory cytokines and downregulation of hematopoietic growth factors). Furthermore, the infection of primary MO/MAC should yield responses that are much closer to the natural situation than studies with cell lines.

Mononuclear phagocytes are key effectors of the inflam-
matory component of the cellular immune response and, through cytokine production, interact with all phases of the immune system. During a normal immune response proinflammatory cytokines are involved in coordinating activities of T cells and B cells, as well as in directing cytokotoxicity. Therefore, reduced expression of any of these inflammatory proteins could lead to an impaired immune response whereas their overexpression may induce fever, cachexia and neurological symptoms. The fever and wasting syndrome seen in AIDS patients may be well related to enhanced production of TNF-α and IL-1. In addition, IL-1 and TNF-α may also be involved in the pathogenic mechanisms of Kaposi sarcoma. Furthermore the upregulated IL-6 secretion might explain the chronic B-cell activation and elevated Ig production in HIV-infected patients. Gastrointestinal disorder like chronic diarrhea and malabsorption syndrome are often observed in AIDS patients in the absence of any known pathogens. HIV infection of enterochromaffin cells in the intestinal mucosa might deregulate motility and digestive functions of the intestine. In addition, the possible involvement of MAC-derived cytokines in these disorders in the lamina propria should be considered. IL-8 as a chemoattractant may contribute to perivascular leukocytic accumulation observed in various tissues (kidney, heart, gastrointestinal tract, and central nervous system [CNS]) of HIV-infected patients. An elevated IL-8 production especially by alveolar macrophages of HIV patients with nonspecific interstitial pneumonitis was reported.

Conflicting results have also been published on the cytokine activity in vivo. Elevated serum levels of proinflammatory cytokines were detected in HIV-infected patients. In addition PB cells from HIV-infected patients cultured in vitro also release high levels of cytokines as do tissue macrophages. However, Jones et al. reported normal concentration of cytokines in serum. Also a decreased production of TNF-α by alveolar MAC or IL-1 by MO from patients with AIDS is reported there.

Apart from these conflicting results on the influence of HIV infection on proinflammatory cytokines there are also conflicting reports about the regulation of hematopoietic growth factor production during HIV infection. In contrast to our results Molina et al. described an unchanged GM-CSF production by in vitro HIV-infected MO/MAC. However, Molina et al. analyzed the total cytokine content (cell-associated and secreted). Probably the decrease of GM-CSF in the supernatant is based on a dysregulated secretion. Intraacellular detection by immunocytochemistry showed that GM-CSF and G-CSF are produced constitutively but released only upon stimulation (Esser et al., 1996, submitted). The results of Molina et al could be due to the unchanged, cell-associated GM-CSF. Conflicting results exist also on the production of GM-CSF in HIV-infected patients. Although some investigators described low levels of GM-CSF production, Hober et al. found normal or even high levels of GM-CSF. In contrast to in vitro studies the cause of cytokine dysregulation in HIV-infected patients could be more complex: donor-dependent factors as well as opportunistic infections can contribute to the dysregulated cytokine response.

In conclusion, our results show the differential regulatory effects of HIV on proinflammatory cytokines and hematopoietic growth factors. Such effects on cytokines could alter overall immune function as well as virus reactivation and pathogenesis, including virus-associated immunodeficiency states.

ACKNOWLEDGMENT

We gratefully acknowledge Silke Müller and Annegret Rehm for excellent technical assistance, E. Alderman for providing the M-CSF assay, and C. Galanos for LPS.

REFERENCES

7. Rübsamen-Waigmann H, Willems WR, Bertram V, von Briesen H: Reversal of HIV phenotype to fulminant replication on macrophages by HIV.

16. Larsen CG, Anderson AO, Appella E, Oppehenheim JI, Matsushima K: Neutrophil activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243:1464, 1989

27. Merrill JE, Koyanagi Y, Chen ISY: Interleukin-1 and tumor necrosis factor α can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 63:4404, 1989

38. Miles SA, Rezai AR, Salazar-Gonzalez JF, Meyden MV, Stevens RH, Logan DM, Mitsuysu RT, Toga T, Hirano T, Kishimoto...

42. Denis M, Ghadirian E: Dysregulation of interleukin 8, interleukin 10, and interleukin 12 release by alveolar macrophages from HIV type 1-infected subjects. AIDS Res Hum Retroviruses 10:1619, 1994

60. Rautonen N, Rautonen J, Martin NL, Wara DW: HIV-1 Tat induces cytokine synthesis by uninfected mononuclear cells. AIDS 8:1304, 1994

Differential regulation of proinflammatory and hematopoietic cytokines in human macrophages after infection with human immunodeficiency virus

R Esser, W Glienke, H von Briesen, H Rubsamen-Waigmann and R Andreesen