Interleukin-6 Promotes Multiple Myeloma Cell Growth Via Phosphorylation of Retinoblastoma Protein

By Mitsuyoshi Urashima, Atsushi Ogata, Dharminder Chauhan, Maria B. Vidiales, Gerrard Teoh, Yasutaka Hoashi, Robert L. Schlossman, James A. DeCaprio, and Kenneth C. Anderson

Interleukin-6 (IL-6) mediates autocrine and paracrine growth of multiple myeloma (MM) cells and inhibits tumor cell apoptosis. Abnormalities of retinoblastoma protein (pRB) and mutations of RB gene have been reported in up to 70% of MM patients and 80% of MM-derived cell lines. Because dephosphorylated (activated) pRB blocks transition from G1 to S phase of the cell cycle whereas phosphorylated (inactive) pRB releases this growth arrest, we characterized the role of pRB in IL-6-mediated MM cell growth. Both phosphorylated and dephosphorylated pRB were expressed in all serum-starved MM patient cells and MM-derived cell lines, but pRB was predominantly in its phosphorylated form. In MM cells that proliferated in response to IL-6, exogenous IL-6 downregulated dephosphorylated pRB and decreased dephosphorylated pRB-E2F complexes. Importantly, culture of MM cells with RA antisense, but not RB sense, oligonucleotide (ODN) triggered IL-6 secretion and proliferation in MM cells; however, proliferation was only partially inhibited by neutralizing anti–IL-6 monoclonal antibody (MoAb). In contrast to MM cells, normal splenic B cells express dephosphorylated pRB. Although CD40 ligand (CD40L) triggers a shift from dephosphorylated to phosphorylated pRB and proliferation of B cells, the addition of exogenous IL-6 to CD40L-treated B cells does not alter either pRB or proliferation, as observed in MM cells. These results suggest that phosphorylated pRB is constitutively expressed in MM cells and that IL-6 further shifts pRB from its dephosphorylated to its phosphorylated form, thereby promoting MM cell growth via two mechanisms: by decreasing the amount of E2F bound by dephosphorylated pRB due to reduced dephosphorylated pRB, thereby releasing growth arrest; and by upregulating IL-6 secretion by MM cells and related IL-6-mediated autocrine tumor cell growth.

© 1996 by The American Society of Hematology.

For example, plasmacytomas can grow in wild type mice, but not in IL-6 knock out littermates, confirming the essential role of IL-6. However, C57BL/6 IL-6 transgenic mice develop massive plasmacytosis without plasmacytomas whereas BALB/C IL-6 transgenic mice develop transplantable monoclonal plasmacytomas. These animal studies confirm that IL-6 can enhance susceptibility to either plasmacytosis and Ab formation or the development and growth of plasmacytomas, depending on the genetic background.

Mutations of the retinoblastoma (RB) gene contribute to cellular transformation in many types of malignancies. Specifically, normal retinoblastoma protein (pRB) suppresses the transition from G1 to S phase of the cell cycle by inhibiting E2F-mediated transactivation of a variety of genes involved in initiating DNA synthesis, i.e., c-myc, b-myb, cdc2, dihydrofolate reductase, and thymidine kinase. pRB function is regulated by phosphorylation: hypo or dephosphorylated (activated) pRB binds E2F and induces G1 growth arrest; in contrast, phosphorylated (inactivated) pRB cannot bind E2F, thereby facilitating entry of cells into S phase. To date mutations in RB gene or abnormalities in pRB have been noted in up to 70% of MM patients and 80% of MM-derived cell lines. Moreover, we have recently

From the Divisions of Hematologic Malignancies and Neoplastic Disease Mechanisms, Dana-Farber Cancer Institute; and the Department of Medicine, Harvard Medical School Boston, MA; and the Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan.

Submitted January 25, 1996; accepted May 8, 1996.

Supported by National Institutes of Health, Grant No. CA 50947.

Address reprint requests to Kenneth C. Anderson, MD, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02215.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1996 by The American Society of Hematology.

Blood, Vol 88, No 6 (September 15), 1996: pp 2219-2227

2219
reported that transforming growth factor (TGF β) does not suppress phosphorylation of pRB and proliferation of MM cells, as occurs in normal B cells, consistent with the view that pRB may contribute to MM cell growth. In this regard, it is known that the majority of MM cells and derived cell lines express IL-6 receptors, and yet only a subset are dependent on IL-6 for growth; it is, therefore, possible that abnormalities in cell cycle regulatory proteins, ie, RB, may contribute to MM cell growth and progressive disease.

In the present report, we characterized the role of pRB in IL-6-mediated MM cell growth. Although both phosphorylated and dephosphorylated pRB were expressed in all serum-starved MM patient cells and MM-derived cell lines, pRB was predominantly in its phosphorylated form. Exogenous IL-6 downregulated dephosphorylated pRB and decreased dephosphorylated pRB to E2F complexes in MM cells. Culture of MM cells with RB antisense, but not RB sense, oligonucleotide (ODN) triggered IL-6 secretion and proliferation in MM cells; the latter was partially inhibited by neutralizing anti-IL-6 MoAb. These results suggest that both dephosphorylated and phosphorylated pRB are present, and that the former induces growth arrest, even though the latter predominates. However, in IL-6-responsive MM cells, IL-6 further shifts pRB from its dephosphorylated to its phosphorylated form, thereby promoting MM cell growth via two mechanisms: by decreasing binding of dephosphorylated pRB to E2F and releasing growth arrest, and by upregulating IL-6 secretion by MM cells and IL-6-mediated autocrine tumor cell growth.

MATERIALS AND METHODS

MM cells and MM-derived cell lines. Mononuclear cells (MCs) were isolated from three patients with MM by Ficoll-Hypaque (FH) density gradient centrifugation, incubated with HB7 (anti-CD38) MoAb-biotin-streptavidin and 2H4 (anti-CD45RA) MoAb-fluorescein isothiocyanate on ice. MM cells (96% ± 2% CD38+ CD45RA-) were isolated using an Epics C Cell Sorter (Coulter Electronics, Hialeah, FL), washed, and resuspended in RPMI-1640 media (Sigma Chemical CO, St Louis, MO) containing 10% fetal bovine serum. Culture of MM cells with RB antisense, but not RB sense, oligonucleotide (ODN) triggered IL-6 secretion and proliferation in MM cells; the latter was partially inhibited by neutralizing anti-IL-6 MoAb. These results suggest that both dephosphorylated and phosphorylated pRB are present, and that the former induces growth arrest, even though the latter predominates. However, in IL-6-responsive MM cells, IL-6 further shifts pRB from its dephosphorylated to its phosphorylated form, thereby promoting MM cell growth via two mechanisms: by decreasing binding of dephosphorylated pRB to E2F and releasing growth arrest, and by upregulating IL-6 secretion by MM cells and IL-6-mediated autocrine tumor cell growth.

B-cell preparation and culture. Normal spleen (n = 5) was obtained from operative specimens of patients not known to have any systemic or malignant diseases. Single cell suspensions from spleen were prepared by extrusion through sterile stainless steel mesh. Splenic MCs were isolated by centrifugation on FH density sedimentation, and adherent cells removed from MCs by double adherence to plastic petri dishes for 1 hour at 37°C. Further enrichment for B cells in spleen was done by rosetting with sheep red blood cells to deplete T cells. B cells were cultured in RPMI-1640 media containing 10% FBS, L-glut, and pen/strep, as previously described. Splenic B cells, which were B1 >90% (+), B2 >85% (+), CD38 negative, PCA-1 negative, gp 80 and gp130 IL-6 receptor (IL-6R) negative (n = 3), were cultured with soluble CD40L (1:4 dilution) for 7 days to trigger their differentiation to 8% B1 (+), B2 negative, 85% CD38 (+), 47% PCA-1 (+), 22% gp80 (+), and 55% gp130 (+), as in previous studies. Assays of DNA synthesis. DNA synthesis was measured as previously described. Cells (2 × 10⁶/well) were incubated in 96-well plates in the presence of media, IL-6 or CD40L, and DNA synthesis measured using [3H]-thymidine ([3H]-Tdr) uptake. Cells were pulsed with [3H]-Tdr (1 μCi/well) during the last 6 hours of 2-day and last 18 hours of 4-day cultures, harvested onto glass filters with an automatic cell harvester (Cambridge Technology, Cambridge, MA), and counted on a liquid scintillation counter (Packard Tri-Carb 4530, Downers Grove, IL). Stimulation index (SI) was calculated as [3H]-Tdr uptake of cells with IL-6/[3H]-Tdr uptake of cells with media alone.

Immunoprecipitation and Western immunoblotting. Immunoprecipitation and Western immunoblotting were performed as previously reported. For immunoprecipitation (IP) of pRB, as well as E2F, cells (1 × 10⁶ cells/sample) were cultured in RPMI-1640 media without FBS for 48 hours. These cells were then harvested before, as well as at 30 and 240 minutes after, culture with IL-6 (100 ng/mL). Cells were washed three times with phosphate buffered saline (PBS) and lysed for 30 minutes at 4°C in buffer: 10 mmol/L Tris-HCl (pH 7.6), 150 mmol/L NaCl, 0.5% Noidet P-40, 5 mmol/L EDTA, 1 mmol/L PMSF, 200 mmol/L NaVO₄, aprotinin, and 1 mmol/L NaF. Murine anti-pRB MoAb (Oncogene Science, Uniondale, NY) or rabbit anti-E2F polyclonal Ab (Santa Cruz Biotechnology, Santa Cruz CA) was added and incubated overnight at 4°C. Proteins were collected using protein G sepharose for murine Ab or protein A sepharose for rabbit Ab. Aliquots of each lysate were analyzed by 5.0% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein was transferred onto nitrocellulose membrane, and nonspecific binding was blocked by incubation with 5% skim milk. The membrane was probed with anti-pRB or with murine anti-E2F (Santa Cruz MoAb, incubated with antimouse Ig Abs conjugated with horseradish peroxidase (HRP) (Amersham, Arlington Heights, IL), and detected using the enhanced chemiluminescence (ECL) system (Amersham).

Sense and antisense oligonucleotides. A 15-base antisense ODN specific for a sequence of RB gene (5’-GGT TTT GGG CGG CAT-3’) previously effective in enhancing growth in keratinocytes, as well as complementary sense ODN (5’-ATG CCG CCC AAA ACC-3’), was added to cultures of MM cells. ODNs were synthesized by cyanethyl phosphoramidate methodology, purified by Sephadex column and ethanol precipitation, and resuspended in sterile water. They were added to MM cell cultures at concentrations between 0.1 and 10 μmol/L and replenished daily. Proliferation and IL-6 secretion were measured in MM cultures with RB sense or RB antisense ODN, in the presence or absence of neutralizing anti-IL-6 MoAb. Measurement of IL-6 secretion. IL-6 secretion by MM patient cells cultured in media or in the presence of RB sense or RB antisense ODNs was measured using an Enzyme linked immunosorbent assay (ELISA), as previously described. Briefly, (1) 96-well plates (Costar, Cambridge, MA) were coated with anti-IL-6 MoAb (mureine IgG1, Toray, Ohtsu-shi, Shiga, Japan); (2) wells were saturated with calfskin gelatin (BioRad, Melville, NY)-PBS for 1 hour; (3) serial dilutions (100 μL) of test sample supernatants were added in duplicate to plates; and (4) biotinylated detector anti-IL-6 MoAb (Genetics Institute, Cambridge, MA) was added and developed with avidin-peroxidase (Amersham), tetramethylbenzidine (Sigma), and...
IL-6 AND RB IN MULTIPLE MYELOMA

Table 1. Effects of IL-6 on Cell Proliferation

<table>
<thead>
<tr>
<th>Concentrations of IL-6 (ng/mL)</th>
<th>XG-1</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>OCI-My5</th>
<th>U-266</th>
<th>U-1958</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0 ± 0.2</td>
<td>1.0 ± 0.1</td>
<td>1.0 ± 0.0</td>
</tr>
<tr>
<td>1</td>
<td>2.0 ± 0.3</td>
<td>2.8 ± 0.2</td>
<td>2.1 ± 0.1</td>
<td>2.34 ± 0.1</td>
<td>2.1 ± 0.1</td>
<td>1.4 ± 0.1</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>10</td>
<td>3.3 ± 0.3</td>
<td>3.1 ± 0.3</td>
<td>2.9 ± 0.2</td>
<td>3.22 ± 0.1</td>
<td>3.0 ± 0.2</td>
<td>1.6 ± 0.3</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>100</td>
<td>5.4 ± 1.0</td>
<td>4.8 ± 0.3</td>
<td>3.3 ± 0.2</td>
<td>2.54 ± 0.1</td>
<td>1.9 ± 0.3</td>
<td>1.6 ± 0.1</td>
<td>1.6 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>CMK</th>
<th>ARH-77</th>
<th>RPMI-8226</th>
<th>IM-9</th>
<th>JKB</th>
<th>B Cells</th>
<th>CD40L + B Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation Index*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.0 ± 0.1</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>1</td>
<td>1.1 ± 0.1</td>
<td>1.0 ± 0.1</td>
<td>1.0 ± 0.1</td>
<td>1.1 ± 0.0</td>
<td>1.1 ± 0.1</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>10</td>
<td>1.5 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>1.2 ± 0.0</td>
<td>1.1 ± 0.0</td>
<td>1.1 ± 0.1</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.2</td>
</tr>
<tr>
<td>100</td>
<td>1.9 ± 0.1</td>
<td>1.3 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>1.2 ± 0.0</td>
<td>1.1 ± 0.1</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.1</td>
</tr>
</tbody>
</table>

Data shown are mean ± SD from three independent experiments.

* Stimulation index (SI) = \(^{3}H\)-Tdr uptake of cells with IL-6/^{3}H-Tdr uptake of cells in media alone.

RESULTS

Effects of IL-6 on DNA synthesis by MM cells/MM-derived cell lines, B cells, and CD40L-treated B cells. MM patient cells/MM cell lines were cultured in RPMI-1640 media free of FBS. DNA synthesis was measured using \(^{3}H\)-Tdr uptake during the last 6 hours of day 2 cultures (Table 1). Proliferation of IL-6-dependent XG-1 cells and of patient MM cells was directly correlated with IL-6 concentration. For XG-1 cells and MM cells from patients 1, 2, and 3, culture with 100 ng/mL of IL-6 increased \(^{3}H\)-Tdr uptake: SI 11 ± 0.05, SI 4.6 P < .005, SI 3.3 P < .005, and 25.4 P < .001, respectively. IL-6 (100 ng/mL) also stimulated low level but reproducible proliferation of other MM cell lines: SI 1.5 P < .05, SI 1.6 P < .01, and SI 1.9 P < .01 for U-266, U-1958, and OCI-My5 MM cells, respectively. Significant proliferation of RPMI-8226, IM-9, and ARH-77 MM cells to IL-6 was not observed under any conditions. The CMK megakaryocytic cell line also proliferated in response to IL-6 (100 ng/mL) SI 1.9 P < .01. In contrast, JKB ALL cells did not increase DNA synthesis in response to IL-6. CD40L stimulated proliferation of splenic B cells (SI 3.1, P < .05), but IL-6 did not alter \(^{3}H\)-Tdr uptake in either splenic B cells or CD40L-treated splenic B cells (data not shown).

Effects of IL-6 on phosphorylation of pRB in MM patient cells/MM cell lines, B cells, and CD40L-treated B cells. The effect of IL-6 on phosphorylation state of pRB was investigated using immunoprecipitation and Western immunoblotting. Phosphorylation slows electrophoretic mobility; therefore, the upper (115 kD) band corresponds to phosphorylated pRB and the lower (105 kD) band to de- or hypophosphorylated pRB. Multiple bands between 105 kD and 115 kD represent several forms of pRB that are phosphorylated at different sites or with different stoichiometry. Both phosphorylated and dephosphorylated pRB were observed, at 115 kD and 105 kD respectively, in all MM patient cells and MM-derived cell lines after serum starvation for 48 hours; however, phosphorylated pRB was predominant (Fig 1A). Even after serum starvation for 72 hours, phosphorylated pRB was strongly expressed at 115 kD in MM cell lines (data not shown). Culture with IL-6 (100 ng/mL) led to downregulation of dephosphorylated pRB in MM patient cells and MM cell lines in several patterns. In XG-1, U-266, OCI-My-5, and patient MM cells, as well as CMK leukemia cells, dephosphorylated pRB expression declined in lysates from cells cultured with IL-6 for 30 and 240 minutes. In contrast, dephosphorylated pRB expression persisted at 30 minutes and declined only at 240 minutes in cell lysates of U-1958 and patient 2 MM cells cultured with IL-6. In ARH-77, RPMI-8226, and IM-9 MM cells, there were several pRB bands in addition to phosphorylated pRB at 115 kD; IL-6 increased phosphorylated pRB and decreased dephosphorylated pRB in these MM cell lines. In contrast, pRB in JKB ALL cells was constitutively phosphorylated and unaffected by culture with IL-6.

pRB expression in splenic B cells cultured in media or triggered with CD40L was compared with that in MM cells. pRB in splenic B cells was predominantly in the dephosphorylated form (Fig 1B). In contrast to MM cells (Fig 1A), treatment with IL-6 did not alter pRB phosphorylation state in B cells. CD40L upregulated phosphorylated pRB at 115 kD and downregulated dephosphorylated pRB at 105 kD in splenic B cells (Fig 1B); IL-6 had no effect on pRB phosphorylation in CD40L-treated B cells.

Effects of IL-6 on binding of pRB to E2F protein in MM patient cells/MM cell lines. Because dephosphorylated pRB directly binds E2F and the complex of pRB and E2F binds to a variety of gene promotors resulting in growth arrest, we determined whether downregulation of dephosphorylated pRB in MM cells correlates with pRB decreased binding to E2F protein (Fig 2). Lysates of patient 1 MM cells starved of FBS for 48 hours were immunoprecipitated with an anti-pRB MoAb (Coulter) and precipitated with Protein A-sepharose. Western analysis with a monoclonal antibody against E2F was performed.
Fig 1. Effects of IL-6 on phosphorylation of pRB in MM patient cells. MM-derived cell lines, B cells, and CD40L-treated B cells. (A) After culture in RPMI-1640 media free of FBS for 48 hours, patient MM cells, MM-derived cell lines (XG-1, U-266, OCI-My5, U-1958, ARH-77, RPMI-8226, and IM-9), CMK megakaryocytic leukemia cells, and JKB ALL cells (1 x 10^6/sample) were harvested before and at 30 minutes and 240 minutes after addition of IL-6 (100 ng/mL).

with anti-pRB MoAb and immunoblotted with the same MoAb and served as a positive control for phosphorylated pRB (ppRB) and dephosphorylated pRB (dpRB). Dephosphorylated pRB was immunoprecipitated with anti-E2F polyclonal Ab in XG-1, U-266, OCI-My5 and patient 1 MM cells, CMK megakaryocytic cells, and JKB ALL cells after serum starvation for 48 hours. In the presence of IL-6 (100 ng/mL) for 1 hour, binding of dephosphorylated pRB to E2F was downregulated in patient MM cells and MM-derived cell lines, as well as in IL-6 responsive CMK cells, but not in IL-6 nonresponsive JKB ALL cells. E2F expression was not altered in the presence or absence of IL-6 in these cell lines.

Effect of RB antisense and sense ODNs on pRB expression, proliferation, and IL-6 secretion in patient MM cells. The effects of RB antisense and sense ODNs on pRB expres-
sion, proliferation and IL-6 secretion by MM cells from three patients were next examined. Both phosphorylated and dephosphorylated pRB expression decreased in lysates of cells cultured for 4 days in the presence of RB antisense ODN, but not RB sense ODN (Fig 3A). Proliferation, assessed by 3H-TdR uptake, was significantly increased in the presence of RB antisense ODN (10 μmol/L) relative to cultures in media for patient 1 (P < .02, n = 4), patient 2 (P < .02, n = 4), and patient 3 (P < .005, n = 3) (Fig 3B). In contrast, culture with RB sense ODN did not alter proliferation compared with cultures in media alone. The effects of culture with RB sense and antisense ODNs on IL-6 secretion by the same patient MM cells were assayed using an IL-6 ELISA (Fig 3C). IL-6 secretion by MM cells in media was 0.27 ± 0.04 ng/mL (patient 1), 0.13 ± 0.01 ng/mL (patient 2), and 0.08 ± 0.02 ng/mL (patient 3). When MM cells were cultured with 10 μmol/L of RB antisense ODN, IL-6 secretion increased to 1.21 ± 0.16 ng/mL (patient 1), 0.72 ± 0.12 ng/mL (patient 2), and 1.33 ± 0.15 ng/mL (patient 3), significantly greater than by MM cells cultured in media alone (P < .01 for patients 1 and 2, and P < .001 for patient 3) or by MM cells cultured with 10 μmol/L RB sense ODN (P < .05 for patients 1 and 2 and P < .01 for patient 3). At concentrations of RB antisense ODN ≤1 μmol/L, no significant differences in either proliferation or IL-6 secretion by MM cells were observed (data not shown).

Effects of anti-IL-6 MoAb on MM cell proliferation triggered by RB antisense ODN. We next examined whether the increased proliferation of MM cells observed in RB antisense cultures was, at least in part, mediated by IL-6. IL-6 responsive patient MM cells were cultured for 4 days with RB antisense or RB sense ODN, in the presence or absence of neutralizing anti-IL-6 MoAb. IL-6 (10 ng/mL) markedly increased proliferation of patient MM cells: SI 32.2 at day 4 in 10% FBS RPMI-1640 media, a response that was significantly blocked (73% reduction, P < .001, n = 3) by neutralizing anti-IL-6 MoAb (10 μg/mL), but not by control MoAb (Fig 4A). During the first 3 days of culture, there...
were no significant differences in proliferation of patient MM cells cultured with RB sense or RB antisense ODNs in the presence or absence of anti-IL-6 MoAb (Fig 4B). However, at day 4 of culture, RB antisense ODN significantly increased MM cell proliferation, compared with cultures in media alone (12.7-fold, \(P < .001, n = 3 \)) or with RB sense ODN (14.1-fold, \(P < .001, n = 3 \)). Neutralizing anti-IL-6 MoAb, but not control MoAb, partially inhibited proliferation triggered by RB antisense ODN (42.2% reduction, \(P < .02, n = 3 \)).

DISCUSSION

IL-6 is known to be both an autocrine and paracrine growth factor, as well as an antiapoptotic factor, for MM cells. Recent studies that show that retroviruses containing myc and raf oncogenes induce plasmacytomas in pristane-injected wild type, but not in IL-6 knockout, mice\(^2\) support this central role of IL-6 in the growth and development of plasma cell tumors. However, plasmacytosis without monoclonal plasmacytomas develops in IL-6 transgenic B6 mice,\(^6\) whereas monoclonal transplantable plasmacytomas occur in IL-6 transgenic BALB/c mice, demonstrating the import of genetic background on the biologic sequelae of excess IL-6.\(^2\) Moreover, in man, excess production of IL-6 is associated with a variety of diseases other than plasmacytomas or MM, ie, cardiac myxomas, autoimmune conditions, and Castleman’s disease,\(^1\) further suggesting the importance of other genetic factors.

In human MM, IL-6 triggers proliferation of tumor cells and is, therefore, a growth factor; however, not all MM cells and MM cell lines that bear IL-6 receptors respond to exogenous IL-6, and some can grow independently of IL-6. Recent studies have shed insight into potential differences in IL-6 signaling cascades in MM cells that proliferate and those that do not in response to IL-6. For example, our recent studies suggest that IL-6 triggers activation of the STAT 3 homodimer and STAT1-STAT3 heterodimer cascades without altering DNA synthesis of MM cells, whereas IL-6 triggers MM cell growth via the Ras dependent MAPK cascade.\(^5\) Clearly differences in IL-6 signal transduction cascades may underly the triggering by IL-6 of growth of MM cells versus differentiation of normal B cells, as well as the growth of only a subset of tumor cells.

In the present study, we set out to delineate the importance of the RB cell cycle regulatory protein, as abnormalities of pRB or mutations of RB gene have been noted in up to 70% to 80% of MM patients and derived cell lines.\(^3\) Specifically, mutations of the RB tumor suppressor gene have been frequently observed in patient MM cells as well as the XG-1, RPMI-8226, U-266, and IM-9 MM derived cell lines.\(^3\)-\(^5\)

![Image](image-url)

Fig 3. Effect of RB antisense and sense ODNs on pRB expression proliferation and IL-6 secretion in patient MM cells. (A) Patient MM cells (1 x 10⁷/sample) were cultured for 4 days in 10% FBS RPMI-1640 media alone or with 10 \(\mu \)mol/L RB sense ODN or RB antisense ODN. ODNs were replenished daily. Cell lysates were immunoprecipitated with anti-pRB MoAb and immunoblotted with the same MoAb. Patient MM cells (1 x 10⁷/mL) were cultured in 10% FBS RPMI-1640 media alone (Ⅰ) or with 10 \(\mu \)mol/L RB sense ODN (Ⅱ) or 10 \(\mu \)mol/L RB antisense ODN (Ⅲ); ODNs were replenished daily. (B) \(^3\)H-TdR uptake was measured during the last 18 hours of 4-day cultures. (C) IL-6 concentration (ng/mL) in supernatants of day 4 cultures were measured by ELISA. Data shown are mean ± SD from four independent experiments and were compared using two sample t tests.
These are monoallelic deletions and pRB, the product of RB gene, can be detected. In contrast, bialleic deletion of RB gene and absence of pRB was reported in U-266 MM cells, which both produce and respond to IL-6 (autocrine growth), but not in parental U-266 cells, which respond but do not produce IL-6 (paracrine growth). Interestingly either partial or complete deletions of chromosome 13, on which RB gene is located, or abnormalities involving 11q, on which bcl-1 is located, are frequent and associated with poor prognosis in MM. Moreover, cyclin D1, which can trigger phosphorylation of pRB, is located on the 110 kb telomeric of the bcl-1 major translocation cluster region; its overexpression has been reported in various kinds of cancers with 11q abnormalities, such as mantle cell lymphoma. In the current study, pRB was shown to be expressed both in patient MM cells and MM-derived cell lines, primarily in its phosphorylated form. Although serum starvation for 72 hours both decreased growth and increased expression of dephosphorylated pRB, phosphorylated pRB persisted. This is in contrast to normal splenic B cells in which pRB is dephosphorylated, with complete absence of phosphorylated pRB. Complexes of cyclin dependent kinase (CDK) 4, CDK 6, and cyclin D, and of CDK 2 and cyclin E regulate pRB phosphorylation; however, the mechanism whereby MM cells express primarily phosphorylated RB has not yet been delineated.

In our study, pRB was primarily in its phosphorylated form in MM cells/MM-derived cell lines; IL-6 triggered tumor cell proliferation and downregulation of dephosphorylated pRB. In contrast, dephosphorylated pRB was present in B cells; CD40L-induced proliferation and decreased dephosphorylated pRB expression. These observations suggest that dephosphorylated pRB, rather than phosphorylated pRB, affects B and MM cell proliferation. Dephosphorylated pRB binds E2F and the complex induces G1 growth arrest by inhibiting transcription of genes regulating cell replication. In our study, dephosphorylated pRB bound E2F protein in MM cells under conditions of serum starvation, whereas complexes of pRB-E2F decreased in the presence of IL-6, further confirming that IL-6 downregulates dephosphorylated pRB. Moreover, in the XG-1 IL-6-dependent MM cell line, phosphorylated pRB expression persisted in the absence of IL-6, although dephosphorylated pRB increased and growth decreased. These data suggest that IL-6 promotes MM cell proliferation by triggering pRB phosphorylation, thereby decreasing complexes of dephosphorylated pRB with E2F and allowing entry into the cell cycle, as expected. In previous studies of mouse M1 leukemia cells, IL-6 has been found to trigger dephosphorylation of pRB, decrease proliferation, and enhance differentiation. Our studies show that RB antisense, but not RB sense, ODN induced both IL-6 secretion and proliferation in patient MM cells. In this setting, the resultant reduced amounts of pRB, including dephosphorylated pRB, facilitate entry into the cell cycle as mentioned above. However, a component of the proliferation noted in RB antisense ODN-treated MM

Fig 4. Effect of anti-IL-6 MoAb on MM cell proliferation triggered by RB antisense ODN. (A) Patient MM cells (1 x 10⁶/mL) were cultured in media alone (○); with IL-6 (10 ng/mL) (■); with IL-6 plus control MoAb (□); and with IL-6 and anti-IL-6 MoAb (△). (B) Patient MM cells were cultured in media alone (○); with RB antisense ODN (10 μmol/L) (●); with RB sense ODN (10 μmol/L) (▲); with RB antisense ODN (10 μmol/L) and anti-IL-6 MoAb (▲); as well as with RB antisense ODN and control MoAb (△). In all cases, DNA synthesis was measured using ³H-Tdr uptake during the last 18 hours of 24, 48, 72, 96, and 120-hour cultures. ODNs and MoAbs were replenished daily. Data shown are mean ± SD from three independent experiments and were compared using two sample t tests.
cells in our study was blocked by neutralizing MoAb to IL-6. These studies, therefore, suggest that inactivation of RB can contribute to autocrine IL-6-mediated growth in MM. Although not directly examined in this study, the increased IL-6 secretion induced by RB antisense ODN treatment of MM cells may be attributed, at least in part, to increased IL-6 transcription as it has been reported that wild type, but not mutated, RB can repress c-fos expression and AP-1 transcription activity in NIH3T3 cells via binding to a cis element (RB control element or RCE) in the c-fos promoter.52 RCE is highly analogous to a region between –126 and –101 of the IL-6 promoter, and pRB binds directly to IL-6 promoter and represses transcription.47,53,54 In addition, McLeod et al55 observed nuclear proteins in MM cell lines that were able to bind to NFeB, NF-IL-6, and AP-1 response elements and whose quantity positively correlated with IL-6 production by these cells. These and the current studies suggest that phosphorylated (inactivated) pRB in MM, due to its inability to bind to RCE, cannot inhibit IL-6 transcription; therefore IL-6 transcription and secretion may occur. Ongoing studies are delineating the transcriptional versus posttranscriptional components of the increases in IL-6 secretion observed in the present report. Finally, previous reports that CD40L upregulates IL-6 secretion and phosphorylation of pRB in normal B, as well as MM cells,38,50 are also consistent with a similar mechanism. Altered expression of pRB and related production of IL-6 by tumor cells has also been reported in 30% of patients with acute myeloblastic leukemia and 58% of patients with high grade non-Hodgkin’s lymphoma.57-59 consistent with IL-6-mediated sequelae from abnormalities in pRB in hematologic malignancies other than MM. Future studies in hematologic malignancies of the interactions between growth factors and abnormalities of cell cycle regulating proteins may not only enhance our understanding of tumor cell growth and progression, but also suggest novel therapeutic strategies.

REFERENCES

IL-6 AND RB IN MULTIPLE MYELOMA

46. Tricot G, Barlogie B, Jagannath S, Bracy D, Mattos S, Vesole DH, Nauke S, Sawyer JR: Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 1q and not with other karyotype abnormalities. Blood 86:4250, 1995

55. MacLead SL, Bellido TM, Epstein J, Manolagas SC, Barlogie B, Hardin JW: Transcription factor binding to IL-6 promoter correlates with IL-6 production by multiple myeloma cell lines. Proc Am Ass Canc Res 36:3187a, 1995 (abstr)

Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of retinoblastoma protein

M Urashima, A Ogata, D Chauhan, MB Vidriales, G Teoh, Y Hoshi, RL Schlossman, JA DeCaprio and KC Anderson