Characterization of a Bipotent Erythro-Megakaryocytic Progenitor in Human Bone Marrow

By Najet Debili, Laure Coulombel, Laure Croisille, André Katz, Josette Guichard, Janine Breton-Gorius, and William Vainchenker

The aim of the present study was to determine if the human erythroid (E) and megakaryocytic (MK) lineages were closely linked to the existence of a bipotent burst-forming unit (BFU) E/MK progenitor. In methylcellulose cultures, BFU-E/MK colonies were observed at day 12 and closely resembled mature BFU-E with the exception that the erythroid component was surrounded by MK. These colonies were quite different from the colony forming unit (CFU)-GEMM-derived colonies, which were composed of a larger number of erythroblasts and which developed later in culture. The existence of these bilineage colonies composed of 100 to 1,000 erythroblasts intermingled with a few MK and without granulocytic cells was confirmed by the plasma clot technique and immunoalkaline phosphatase labeling of the MK. To investigate if this bipotent progenitor belonged to the compartment of primitive progenitors, CD34+ marrow cells were subfractionated according to expression of the CD38 antigen. The bipotent BFU-E/MK progenitor as well as a large fraction of MK progenitors were found in the CD34+ CD38- or in the CD34+ CD38+ cell fractions. Growth of this bipotent BFU-E/MK progenitor required the combination of stem cell factor (SCF), interleukin-3 (IL-3), and Epo in serum free conditions. Addition of IL-6 had only a marginal effect, whereas megakaryocyte growth and development factor (MGDF) was not an absolute requirement, but slightly increased the plating efficiency of CFU-MK and of BFU-E/MK progenitors when combined with SCF, IL-3, and Epo. In contrast, when these cultures were performed in the presence of 30% fetal calf serum, no BFU-E/MK colonies were observed irrespective of the combination of growth factors used, including the presence of MGDF; however, inclusion of the MS-5 cell line restored the growth of this bipotent progenitor. In contrast, in cultures performed in the presence of human normal or aplastic plasma, MS-5 had only a slight effect on the cloning efficiency but improved MK cytoplasmic maturation and MK size, suggesting that the main effect of MS-5 is to diminish the inhibitory effect of the fetal calf serum on the MK differentiation.

The clonal origin of bipotent BFU-E/MK colonies was demonstrated in liquid culture of single CD34+ CD38low cells by immunophenotyping individual clones. At day 12, 30% of the clones contained erythroblasts (glycophorin A+) and some MK (CD14- or CD15+). At day 20, clones containing erythroblasts and MK were rare (5%). In contrast multilinage clones could be frequently detected at this time without passage from BFU-E/MK clones at day 12 to GEMM at day 20. These results suggest that a bipotent BFU-E/MK progenitor may be a nonrandom step in the hierarchical development of stem cells.

© 1996 by The American Society of Hematology.

THE HEMATOPOIETIC system is composed of heterogenous populations of cells that have been schematically divided into three compartments,1 ie, a stem cell, a progenitor cell, and a terminally differentiating cell compartment. Regulation of cell proliferation and differentiation in the progenitor compartment is mainly controlled by identified cytokines, but molecular mechanisms involved in the commitment of a pluripotent stem cell toward one cell lineage are presently unknown. Several lines of evidence, most of them based on the analysis of the composition of colony forming unit (CFU)-S or of the progeny of paired daughter cells, suggest that decisions at the level of early stem cells are stochastic. However, whether the restriction of stem cells potential occurs progressively through the production of intermediate oligopotent progenitors with all the various combinations of potentialities or only after one division with the generation of only monopotent progenitors is still unclear.1-6 Clone transfer experiments have demonstrated that a bipotent neutrophil/macrophage progenitor exists that retains bireponsiveness to both granulocyte macrophage colony stimulating factor (GM-CSF) and M-CSF.7 The existence of such a tight linkage between two cell lineages could be an exception along the hematopoietic differentiation pathway, but it cannot be excluded that other types of bipotent progenitors also exist. For several years, numerous similarities between the erythroid (E) and megakaryocytic (MK) cell lines have been emphasized. In humans, almost all leukemic cell lines described as erythroleukemic or megakaryoblastic express E- and MK-specific genes and this dual expression is found in the same cell.8,9 Similar observations have also been made in some acute leukemias.10 Indeed, it has been shown that the regulation of E- and MK-specific genes share many features11-14 and transgenic mice expressing thymidine kinase gene under the control of the GPIIb promoter have defective erythropoiesis and megakaryocyteopoiesis.15 It is thus possible that restriction toward the E or the MK pathways occurs relatively late in the hematopoietic hierarchy and that a bipotent BFU-E/MK can be identified.15-17 Mixed E-MK colonies have been described by several investigators in both humans and mice,18,19 but no detailed analysis of their properties have been provided. The present experiments used clonogenic assays and single cell cultures to document the existence of human bone marrow cells able to generate only erythroblasts and megakaryocytes, to determine their phenotype, relative frequency, and optimal growth requirements. This burst forming unit (BFU)-E/MK segregated in the CD34+/CD38low cell fraction, required 12 days to differentiate and produced exclusively erythroblasts and megakaryocytes.
MATERIALS AND METHODS

Bone Marrow Cells

Bone marrow was obtained from patients undergoing hip surgery after informed consent was obtained in accordance with the institutional guidelines of the Committee on Human Investigation. Cells were collected by vigorous shaking of bone fragments in Iscove's modified Dulbecco's medium (IMDM; GIBCO, Paisley, Scotland), supplemented with 100 μg/mL of deoxyribonuclease (DNase type I; Sigma, St Louis, MO), centrifuged once, counted, and separated on Ficoll-Hypaque (Seromed, Berlin, Germany). Light-density (<1.077 g/mL) marrow cells (LDMC) were recovered and after washing were used either for isolation of CD34+ cells by the immunomagnetic bead technique or flow cytometry.

Antibodies

FITC-anti-CD41 (anti-GpIIb/IIIa; Immunotech, Luminy, France), FITC-anti-CD61 (GpIIb; Dako, Glostrup, Denmark), FITC-anti-glycophorin A (GPA) (Dako), R-PE anti-GPA (Immunotech), FITC-anti-CD15 (Lewis', granulocytic and monocytic differentiation, Dako), FITC anti-CD38 (10B6) (Immunotech), FITC-CD11b (Mac-1, granulocytic and monocytic differentiation, Immunotech), FITC-anti-HLA-DR (Immunotech), R-PE anti-CD41 (Dako), R-PE-HPCA-2 (CD34; Becton Dickinson, Mountain View, CA), and R-PE anti-CD14 (Gp55, granulocytic and monocytic differentiation, Becton Dickinson) were used either for cell sorting or analysis by flow cytometry. The unconjugated antibody Y2/51 (anti-CD61) was a generous gift from Dr D. Mason (Oxford, UK).

Isolation of CD34 by the Immunomagnetic Bead Technique

CD34+ cells were recovered from LDMC (2 × 10⁶ cells) by the immunomagnetic bead technique using the Dynal kit (Dynabeads M-450 CD34) according to the manufacturer's instructions (Dynal, Oslo, Norway). CD34+ cells were detached from the beads using the DETACHa BEAD solution (Dynal).

Cell Sorting

Subpopulations of CD34+ cells were sorted according to their expression of the CD38 antigen starting from LDMC or magnetic bead isolated CD34+ cells. Cells were incubated simultaneously with the R-PE-HPCA-2 (CD34) and FITC-10B6 (CD38). After one washing, cells were suspended in IMDM at a concentration of 5 × 10⁶ cells/mL and separated by cell sorting. In other experiments, triple staining with R-PE-HPCA-2, FITC-anti-CD38, and incubation with Hoechst 33342 dye (Sigma at a concentration of 5 μg/mL for 90 minutes at 37°C) was performed to study the cell cycle status of hematopoietic progenitors.

Cells were sorted on an ODAM, ATC 3000® cell sorter (ODAM/Brucker, Wissembourg, France) or a FacsVantage (Becton Dickinson) equipped with two argon ion lasers (INNOVA 70-4 and 90-5; Coherent Radiation, Palo Alto, CA) tuned to 488 and 360 nm, respectively, and operating at 500 mW. A morphologic gate including all the CD34+ cells was determined on two-parameter histograms (side scatter [SSC] versus electric measurement of the cell volume [ODAM] or the forward Scatter [FSC, FacsVantage]). Compensation for two-color labeled samples was set up with single stained samples. Negativity for the CD34 among the CD34+ cells was determined using control cells labeled with the PE-HPCA-2 and an irrelevant IgG1 monoclonal antibody (MoAb).

For limiting dilution experiments, CD34+ CD38low cells were directly sorted into 96-well tissue culture plates (Falcon, France) with an automatic cloning device unit.

Assessment of Hematopoietic Progenitor Cells

Quantitation of clonogenic progenitors in semi-solid assays. Erythroid (CFU-E and mature and immature BFU-E), granulocytic (CFU-GM), megakaryocytic (CFU-MK), and mixed (CFU-GE) progenitors were quantified using previously described methylcellulose assays. Each cellular fraction selected was plated at a concentration of 0.5 to 2 × 10³ cells/mL of complete methylcellulose medium (0.8% methylcellulose in IMDM, 30% fetal calf serum [FCS], 1% deionized bovine serum albumin [BSA] and 10⁻⁴ Mol/L [β-mercaptoethanol]). Cultures were also performed in the presence of sera from aplastic patients or in serum-free medium as previously reported. Briefly, the medium contained 1.5% deionized serum albumin (Cohn fraction V; Sigma Chemical Co), iron saturated human transferrin (300 μg/mL; Sigma), calcium chloride (28 ng/mL), a mixture of sonicated lipids, 7.5 × 10⁻⁴ mol/L α-thioglycerol, 100 ng/mL insulin, and 0.8% chemically pure methylcellulose in IMDM. The lipid mixture was produced by sonicating 7.8 mg cholesterol, 6.14 mg oleic acid, and 7.4 mg dipalmitoyl lecitin (all obtained from Sigma) in 10 mL of IMDM (without sodium bicarbonate) containing 1% albumin. Aliquots (20 μL/mL) of this mixture were

Fig 1. BFU-E/MK colonies in methylcellulose and plasma clot cultures. (A) A typical BFU-E/MK colony observed with an inverted microscope in cultures containing 30% FCS and MS-5 cells. This type of colony contained erythroblasts and megakaryocytes. The other cells observed on the figure correspond to MS-5 cells. (B) A similar colony in plasma clot. MK appeared in pink color after immunolabeling with an anti-CD61 MoAb. (C) A typical BFU-E/MK colony in cultures where FCS has been replaced by AP.
Table 1. Numbers of Hematopoietic Progenitor Cells in the Different Cell Fractions Sorted According to Their Expression of CD34 and CD38 Antigens and Plated in Methycellulose Colony Assays With Either FCS or AP

<table>
<thead>
<tr>
<th>Additive</th>
<th>Serum</th>
<th>MS-5</th>
<th>mBFU-E</th>
<th>imBFU-E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Pure Erythroid</td>
<td>E/MK</td>
</tr>
<tr>
<td>CD34+</td>
<td>FCS +</td>
<td>34</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AP +</td>
<td>32</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>CD34+/CD38-</td>
<td>FCS +</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AP +</td>
<td>15</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>CD34+/CD38+</td>
<td>FCS +</td>
<td>121</td>
<td>121</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AP +</td>
<td>115</td>
<td>115</td>
<td>0</td>
</tr>
</tbody>
</table>

One thousand cells of the different subfractions of CD34+ cells were plated in methylcellulose colony assays in the presence of either 30% FCS or 10% AP and SCF + IL-3 + Epo as growth factor MS-5 cells were added at the concentration of 10,000 cells per dish. E/MK were enumerated in the mBFU-E and scored at day 10 to 12 and CFU-GEMM were enumerated in the iBFU and scored at days 20 to 25. Results are from one experiment. Numbers refer to the mean of two counts obtained in two separate plates.

added to the culture medium. Colony-stimulating factors were provided either as agar-leukocyte conditioned medium (agar-LCM; 10% vol/vol) or as recombinant human (rh) growth factors: rhStem cell factor (SCF) (50 ng/mL), G-CSF (20 ng/mL), and megakaryocyte growth and development factor (MGDF) (10 ng/mL) also called Mpl-ligand (Mpl-L), or thrombopoietin (TPO) (all three kindly provided by AMGEN, Thousand Oaks, CA), rhIL-6 (100 U/mL), rhGM-CSF (2 ng/mL) (kindly provided by Immunex, Seattle, WA) and human erythropoietin (rhEpo; 1 U/mL; Amer sham). Petri dishes were cultured at 37°C in a 5% CO2-95% air humidified incubator. Hematopoietic progenitors were scored at least twice at days 12 to 14 and 20 to 25.

Cultures were also performed by the plasma clot technique using either serum from aplastic patients (AP) or FCS or serum from platelet poor plasma (PPP) and a combination of cytokines.23 When MGDF became available, cultures were performed by the serum-free fibrin clot.23 Briefly, ingredients for serum-free cultures were the same as for methylcellulose cultures with the bovine citrated plasma being replaced by bovine plasma fibrinogen (1 mg/mL, Sigma), 0.01 mol/L e amino caproic acid, and horse thrombin (6 mU/mL, Stago). Cultures were incubated as described above and studied after 12 days. Colonies were quantified by an indirect immunophosphatase alkaline labeling technique using an anti-GpIIa MoAb (CD61, Y2-51). Dishes were scanned completely under an inverted microscope at 40 or 100 × magnification.

We have previously reported that addition of murine stromal cells from the MS-5 cell line to hematopoietic colony assays selectively stimulates the expression of very early clonogenic progenitor cells (immature BFU-E, CFU-GEMM) in synergy with growth factors.19 The MS-5 stromal cell line13 was kindly provided by K. Mori and maintained in aMEM supplemented with 10% FCS. Its growth-promoting effect was assessed by adding 10,000 MS-5 cells to both methylcellulose and plasma clot assays.

Single cell cultures. In limiting dilution experiments, individual CD34+CD38– cells were sorted into 96-well plates using serum-free medium and a combination of seven cytokines (SCF, IL-3, Epo, IL-6, G-CSF, GM-CSF, and MGDF) or of AP and six cytokines (all except MGDF). Plates were examined at day 11 to 13, day 18 to 20, and later after incubation at 37°C in an air atmosphere supplemented with 5% CO2.

Individual clones were cytocentrifuged or divided into two parts for flow cytometric analysis. The first half was doubly labeled with

Fig 2. Phenotype of the BFU-E/MK progenitor. This figure represents the results of two representative experiments in which CD34+ cells have been subfractionated in CD38+, CD38–, and CD38+ subfractions. Cultures were performed in plasma clot in triplicate in the presence of AP and the combination of SCF, IL-3, and Epo. MK were identified as in Fig 1B. CD38+ or CD38– cells (105) and CD38+ cells (8 × 104) were plated. Results are expressed as the number of colonies per 104 plated cells.
BIPOTENT ERYTHRO-MEGAKARYOCYTIC PROGENITOR

Fig 3. Kinetics of development of BFU-E, CFU-MK, and BFU-E/MK colonies from different CD34+ cell subfractions. Experiments were designed as in Fig 2 and cultures were studied at day 7, 12, and 18.

R-PE anti-CD41a and FITC anti-GPA MoAb or FITC anti-CD41 and R-PE anti-GPA. The second half was labeled with R-PE anti-CD14 and FITC anti-CD15 or FITC anti-CD11b. Cells were analyzed on a FACS sort.

Ultrastructural studies. Cultured cells were studied by electron microscopy (EM). They were washed twice in Hank’s medium at 4°C, fixed with 1.25% glutaraldehyde in Gey’s buffer for 10 minutes, washed, and incubated in diaminobenzidine medium. Cells were then post-fixed with osmium tetroxide, dehydrated, and embedded in epon. Thin sections were examined with a Philips CM 10 electron microscope (Philips, Eindhoven, Netherlands) after lead citrate staining.

RESULTS

Identification of a Bipotent Erythroid-Megakaryocytic (BFU-E/MK) Progenitor Cell

In preliminary experiments aimed at optimizing culture conditions for the growth of marrow-derived CD34+/CD38- primitive progenitors in methylcellulose, we observed that the addition of the murine MS-5 stromal cell line to Day 13 cultures synergized with added human cytokines (see below) to promote the development of primitive progenitors. Of note, we observed that at early time points (day 12) during the culture a fraction of small (<100 cells) hemoglobinized colonies contained MK (Fig 1A). The erythroid compartment of these colonies was similar in size and time required for maturation to that of mature BFU-E-derived colonies. Some typical colonies were studied by morphology and only contained E and MK cells. These progenitors were easily distinguished from standard CFU-GEMM and primitive BFU-E both by the size of the colonies generated and by the time (>18 to 20 days) required for their differentiation.

These progenitors were also identified in plasma-clot assays (Fig 1B) and the presence of MK in these mixed colonies was confirmed by immunolabeling with an anti-CD41 or an anti-CD61 MoAb. Usually 2 to 30 MK were counted together with 500 to 1,000 erythroblasts. No other cell type was detected by morphologic criteria. These colonies were not a simple overlap of two types of colonies since they were still observed at low cell concentration where even a single colony was grown. This result was confirmed by single cell assay (see below). These progenitors were designated BFU-E/MK.

In another series of experiments, we precisely defined the properties of this progenitor cell with respect to its CD34/CD38 phenotype and response to cytokines. We also tried to define its place in the hierarchy of hematopoietic progenitor cells by investigating if this bilineage association was purely random or reflects a preferential association between E and MK differentiation.

Phenotype of the Erythroid-Megakaryocytic Progenitor Cell

Expression of CD34 and CD38 antigens on the BFU-E/MK progenitor was done by plating different subpopulations of marrow cells in plasma clot and methylcellulose assays. When bone marrow cells were simultaneously labeled with anti-CD34 and anti-CD38 antibodies, two discrete populations were clearly identified among CD34+ cells: cells brightly stained with CD38 antibodies (referred to as CD38+ cells), which represent 70% of the CD34+ cell population, and cells expressing lower levels of the CD38 antigen.
for the CD41 marker (C) and the other on an immature erythroid
1288 DEBlI ET AL
than 99% of the cells were labeled by both antibodies. CD15 and
These clones contained a great majority of GPA' cells and a minority
CD14 labeling was negative on these two colonies. Two isotypes
scatter properties that distinguish them from erythroblasts. More
than 99% of the cells were labeled by both antibodies. CD34' cells have very high forward and side
controls IgGl FITC and IgGl PE) are shown, one on a clone negative
for the CD41 marker (C) and the other on an immature erythroid
cell expressing low level of GPA (D).
CD34'/CD38-, were sorted and analyzed for their content
in BFU-E/MK progenitors, simultaneously in plasma clot
and methylcellulose assays. As shown in Table 1 and Fig 2, BFU-E/MK identified in
plasma clot and methylcellulose assays were present in the CD34+/CD38- or CD34+/CD38+ fraction and were not
found in the CD38- fraction. This contrasted with the distribution of mature BFU-E, 90% of which were detected in the
CD38- fraction, an observation that fits with previous observations showing that expression of CD38 discriminates
between mature (CD38+) and immature (CD38-) progenitor cells.31 If one considers as a single category colonies
hemoglobinized at days 10 to 12, a significant proportion of these (19% to 60%) contained MK, whereas mature BFU-
E–derived colonies scored in assays initiated with CD38+ cells were exclusively erythroid. There was some variability
in the frequency of the BFU-E/MK–derived colonies among CD38- and CD38+ cells. In some, the BFU-E/MK progenitors
were predominantly in the CD38-, whereas in others they were found in the CD38+ cell fraction (Fig 2). Although
immature BFU-E (imBFU-E) were enriched in the CD38- and CD38+ cell fraction, approximately 40% of them were
contained in the CD38+ cell fraction. Therefore, taking into account only the expression of the CD38 antigen, BFU-E/
MK appears more immature than the imBFU-E. In plasma clot and methylcellulose, MK progenitors were also enriched
in the CD34+ CD38low cell population with significant heter-
genecity in the size of the colonies (from 3 to more than
100 MK). In the CD34+ CD38- cell fraction, 30% to 50% of the MK colonies were bipotent. In contrast, in the CD34+
CD38+ cell fraction MK progenitors gave rise to pure MK colonies.
Kinetics of development of MK-containing progenitors were next analyzed in plasma clot assays. As shown in Fig 3, the kinetics of BFU-E/MK and CFU-MK were comparable. MK colonies were the first colonies to be recognized, and at
day 7 of culture, MK colonies were almost the only type of hematopoietic colonies present with some colonies containing
up to 50 MK. CFU-MK were counted at day 12 and contained
up to a few hundred MK. BFU-E/MK–derived colonies developed with very similar kinetics; they were first detected at
day 7 of culture and their number was maximum at about day 12. Although the absolute number of BFU-E/MK–derived colonies was low, these mixed colonies represented up to 60% of the total number of pooled MK and E colonies. At day 18
of culture, CFU-MK– and BFU-E/MK–derived colonies were still present but began to lyse and were not detected
after day 20. In contrast, large E colonies that included granulo-
cytes, monocytes, and more rarely MK were detected at this
time. By day 18, in methylcellulose cultures, lysing BFU-
E/MK colonies and growing CFU-GEMM–derived colonies
were observed in the same dish, but they clearly corresponded
to two distinct types of colonies.

Single Cell Cultures
The existence of a bipotent BFU-E/MK progenitor was clearly established in single cell cultures. Furthermore, this
approach also allowed us to validate previous observations, which suggests that even late in differentiation the E and
MK programs are preferentially associated. CD34+/CD38low cells from five different bone marrows were directly sorted
into wells of 96-well microtiter plates. After sorting, we
checked that a single cell was present in more than 95% of
the wells. Five hundred wells were initiated per experiment in
IMDM supplemented in three experiments with 10% AP
and a combination of six cytokines (SCF, Epo, IL-3, GM-
CSF, G-CSF, and IL-6) and in the other two in serum-free
medium supplemented with the same cytokines plus MGDF.
This combination of cytokines was chosen to ensure optimal
differentiation in E, MK and granulo/macrophagic pathway.
Cultures were studied after 10 to 12, 18 to 20, and in two
experiments after 30 days at 37°C, 5% CO2. Clones were
selected that contained at least 100 cells and only those
were analyzed. Those represented 8% ± 2% and 20% ± 6% of the
initial wells at days 12 and 20, respectively. In a preliminary
experiment, individual clones were pipetted off, cytocentrif-
ged, and morphologically analyzed. However, this procedure
resulted in partial loss of MK during cytocentrification,
and in subsequent experiments clones were analyzed by flow
cytometry. Each clone was divided into two equal cell frac-
tions. Part of the cells was labeled simultaneously with anti-
bodies against GPA and either CD61 or CD41 and the other
half with antibodies directed against CD14 and either CD15
or CD11b. Under these conditions, at day 12, 61% of the
93 analyzed clones contained some erythroblasts (ranging
from 15% to 100% of the total population) and thus arose
from a progenitor capable of erythroid differentiation (Fig 4). Twenty-one percent of the clones (pooled experiments) contained only GPA+ cells, while 30% of the clones contained both GPA+ cells and cells highly labeled with the antibodies against the CD61 or CD41 antigen (Fig 5). These cells positive for MK markers had high forward and side scatter properties characteristic of cultured MK, which allow easy discrimination between erythroblasts and MK on the basis of light scatter properties. In all these clones, GPA+ cells represent more than 85% and MK 1% to 8% of the events analyzed (Fig 5). None of the cells present in these clones expressed granulocytic markers (CD14 and CD15). Clones containing granulocytes and MK without erythroblasts or granulocytes and erythroblasts without MK were also observed but at a low frequency (3% and 4%, respectively). Since we selected only wells containing over 100 cells, pure small MK clones could not be detected by flow cytometry. However, these were detected by microscopic observation and their MK nature was further documented by CD41 immunolabeling (data not shown).

At day 18 to 20 of culture, 20% of the total number of wells contained more than 100 cells and 56% of the 91 analyzed clones contained cells that expressed either CD14 or CD15 or both. A minority of the clones (8%) only contained GPA+ cells. BFU-E/MK clones were also uncommon (5%) with very few MK (<2%). In contrast, clones containing GPA+, CD14+, CD15+, and CD41+ cells were much more frequent (22%) suggesting that they were derived from CFU-GEMM. These clones contained on average 5-fold more cells than those studied at day 12. Later in culture (around day 30), all the clones analyzed contained CD14+ and CD15+ cells but no GPA+ or CD41+ cells.

Two BFU-E/MK clones identified at day 12 were subsequently studied at day 18, and no granulocytic cells could be detected.

Definition of Optimal Conditions for the Detection of BFU-E/MK Progenitors

The BFU-E/MK requirement for cytokines was first assessed in plasma clot cultures, which are optimized for the expression of MK differentiation. Cultures were ended at days 10 to 12 and stained with an anti-CD61 MoAb as

<table>
<thead>
<tr>
<th>Progenitor Cells per 1,000 CD34+/CD38- Cells</th>
<th>Cytokines</th>
<th>BFU-E</th>
<th>CFU-MK</th>
<th>BFU-E/MK</th>
<th>CFU-GM</th>
<th>G/MK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGDF</td>
<td>32 ± 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epof</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-3, Epo</td>
<td>36.3 ± 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGDF, IL-3, Epo</td>
<td>38.3 ± 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCF</td>
<td>29.3 ± 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGDF, SCF, Epo</td>
<td>8.6 ± 0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGDF, IL-3, SCF, Epo</td>
<td>13.3 ± 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-3, SCF, IL-6</td>
<td>13.3 ± 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGDF, IL-3, SCF, Epo, IL-6</td>
<td>17.3 ± 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-3, Epo, SCF, IL-6, G-CSF</td>
<td>17.3 ± 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGDF, IL-3, Epo, SCF, IL-6, G-CSF</td>
<td>17.3 ± 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CD34+/CD38- cells (ie, CD38+ + CD38- cells) (1,000 per plate) were plated in serum-free semi-solid medium with the indicated combinations of cytokines. Colonies were scored at days 10 to 12 after immunolabeling of the plates with anti-CD61 antibody as described (see Materials and Methods). Numbers represent the mean ± SD of counts performed in three different plates. Results are from one experiment.

Table 3. Effect of the Addition of MS-5 Cells on the Growth of Different Types of Progenitor Cells in Methycellulose Assays

<table>
<thead>
<tr>
<th>Additive</th>
<th>mBFU-E</th>
<th>n</th>
<th>MS-5</th>
<th>Total</th>
<th>Pure Erythroid</th>
<th>E/MK</th>
<th>Total</th>
<th>Pure Erythroid</th>
<th>CFU-GEMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-LCM + Epo</td>
<td>34 ± 17</td>
<td>3</td>
<td>0</td>
<td>32 ± 17</td>
<td>0</td>
<td></td>
<td>3 ± 2</td>
<td>3 ± 2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>27 ± 7</td>
<td>5</td>
<td>21 ± 4</td>
<td>6 ± 1</td>
<td>20 ± 7</td>
<td>13 ± 5</td>
<td>7 ± 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>23 ± 7</td>
<td>6</td>
<td>18 ± 5</td>
<td>5 ± 15</td>
<td>31 ± 7</td>
<td>20 ± 6</td>
<td>11 ± 2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One thousand CD34+/CD38- cells (ie, CD38+ + CD38- cells) were plated in methycellulose colony assays in the presence of either A-LCM + Epo or SCF + IL-3 + Epo as growth factors and 30% FCS. MS-5 cells were added at the concentration of 10,000 cells per dish. E/MK were enumerated in the mBFU-E and scored at day 12 and CFU-GEMM in the mBFU-E and scored at days 20 to 25. Duplicate plates were initiated in each condition. Numbers refer to the mean ± SEM of counts obtained in the indicated number of experiments (n).
Fig 6.
Fig 6. Ultrastructural studies of an MK cultured from CD34+/CD38- cells in liquid culture in the presence of MS-5 cells, a combination of SCF, IL-3, and AP. CD34+/CD38-low cells were grown in liquid culture in the presence of a confluent layer of MS-5. At day 6, a nearly pure MK population was present, whereas later in cultures (day 14 and after) other cell types were predominant. (A) A rosette with a large MK surrounded by two MS-5 cells. Note that MK develops blebs in the contact with MS-5 cells. Magnification x 2,900. (B) Enlargement of the MK cytoplasm. There is a harmonious distribution of demarcation membranes and α-granules. Magnification x 19,800. (C) Zone of contact between MK and an MS-5 cell. MS-5 cells possess numerous large granules and cisternae of endoplasmic reticulum. The cell membrane extends its pseudopods between the large blebs of MK, which are always devoid of organelles. Note the tight contact between the two cells. Magnification x 7,700.

Methylcellulose assays were also performed with CD34+/CD38-low cells in the presence of 30% FCS, a concentration that is optimum for E development but selectively inhibits MK development. Addition of A-LCM or the combination of SCF, IL-3, and Epo did not neutralize this inhibition. In contrast, the addition of MS-5 cells to the assay (independently of the cytokine combination) dramatically counteracted FCS effect both on CFU-MK and BFU-E/MK (Table 3 and Fig 1C). Thus, on average eight CFU-MK were scored per 1,000 CD34+/CD38-low cells (Table 1). Most interestingly, even though the number of small E colonies scored as mBFU-E in the CD38-low fraction did not change when MS-5 cells were added (Table 3), 20% to 25% of these now clearly included MK, which suggests that a proportion of E progenitors were in fact not restricted to the erythroid lineage. The observation that 90% of the mBFU-E are in the CD38-low fraction and generate only E cells independently of the presence of MS-5 cells reconfirmed the idea that the BFU-E/MK progenitor represents a unique step in the hierarchy of progenitors. However, expression of the MK potential requires specific conditions, and in the absence of MS-5 cells, this progenitor would be scored as a mature BFU-E only capable of differentiating along the E pathway.

Cell Cycle Status of the BFU-E/MK Progenitor

Results from the experiments described above suggest that BFU-E/MK progenitors are more immature than the CD38-low E-restricted progenitors based on their lack of expression of CD38 and ability to differentiate into two lineages. A third indicator of primitiveness is quiescence. In this series of experiments, we determined the cell cycle status of BFU-E/MK by three-color labeling using R-PE anti-CD34 MoAb, FITC anti-CD38 MoAb, and Hoechst dye as shown in Fig 7A and B. In an attempt to increase the sensitivity of the procedure and detect subpopulations within the GO/G1 population, which may correspond to more primitive populations, incubation with the Hoechst
stain was shortened, whereas usually 2 hours is required to reach the equilibrium. With this procedure, three CD34+ populations were identified, Hoechst−, which may identify more primitive progenitors, Hoechst+ (2n), and Hoechst++ (S/G2/M) (Fig 7, B and C). There was a clear correlation between the expression of CD38 and the uptake of the Hoechst dye (Fig 7B). Among the CD38++ subset, all cells were Hoechst− or Hoechst+ and only 1% to 4% of the cells were in the Hoechst++ (S/G2/M) fraction. In contrast, 10% to 15% of the CD38− cells was in the S/G2/M phase. Since a similarly low proportion of CD38++ cells was in the S/G2/M phase when the Hoechst staining period was prolonged for 2 hours, the number of cycling cells was not underestimated. In addition, this result is in agreement with a recent report using propidium iodide to stain DNA. Cell sorting experiments were held in which CD34+ CD38− Hoechst++, CD34+ CD38− Hoechst+ (G0/G1), and CD34+ CD38− Hoechst++ (S/G2/M) cells were assayed for their content in progenitors. The results showed that most BFU-E/MK progenitors were in the Hoechst+ or Hoechst++ fractions and only 0.32% and 0.95% of BFU-E/MK and CFU-MK of the CD38− population were in the S/G2/M phase of the cell cycle, respectively. Cloning efficiency of BFU-E/MK was much higher in the CD34+ CD38− G0/G1 cell population than in the two other cell fractions (1.2% versus 0.28% and 0.25%) (Fig 8). Further functional analysis of these different Hoechst fractions for their content of other clonogenic progenitors of varying maturity showed that 20% of the mBFU-E contained in the CD38+ cell fraction were in the S/G2/M phase of the cell cycle. In contrast, only 1.2% of the mBFU-E and less than 0.5% of the CFU-GEMM contained in the CD38− cell fraction were in S phase.

DISCUSSION

Observations of mixed MK-E bursts in mice and also in humans have provided the initial basis suggesting the
existence of a bipotent progenitor restricted to both MK and E lineages. Further studies have suggested that divergence of both lineages was a late event in the hierarchy of stem cell differentiation although no direct evidence supported this hypothesis. Since then, considerable evidence in support of such a common pathway has been obtained from studies that showed that several transcription factors such as GATA-1, Tal-1, and NFE-2 are shared by both lineages. Detailed data on the phenotype and growth properties of this bipotent progenitor are lacking partly because most of the studies were performed before the isolation of the different hematopoietic growth factors and the development of cell purification techniques. Since then further similarities in the response to Epo and MGDF of committed progenitors from both lineages and shared expression of Epo-R also strengthened the hypothesis. In this study we provide strong evidence that a bipotent MK-E burst exists in human marrow, which can be distinguished from its more mature progeny, CFU-MK and mature BFU-E and also from its immature ancestor CFU-GEMM, by its phenotype, cell-cycle status, and cytokine response.

If one assumes that colony size and time taken to generate erythroblasts and mature MK both reflect the state of differentiation of the progenitor, BFU-E/MK appeared to be closer to mature BFU-E than to immature BFU-E or CFU-GEMM, based on the fact that mixed colonies were small containing at most 1,000 erythroblasts and a variable number of MK from 2 to 30. The number of BFU-E/MK was maximal after a period of 12 days in culture and colonies lysed a few days later. In contrast, 16 to 18 days must elapse before primitive BFU-E and CFU-GEMM can express their full potential and complete differentiation. If the kinetics of colony formation classifies BFU-E/MK as close to mBFU-E, they differ from these both by their phenotype and cell cycle status. In contrast to day 12 BFU-E, 90% of which express both CD34 and CD38 antigens, BFU-E/MK were in the CD34*CD38* (either CD38' or CD38') fraction and the great majority (>90%) of BFU-E/MK were in G0/G1 phase of the cell cycle, two properties that usually characterize immature progenitors. Noteworthy, this was also true for a fraction of CFU-MK, therefore suggesting that CD38 may not be expressed by cells of the megakaryocytic lineage to the same extent as on other myeloid precursors.

Definite proof that the potential of BFU-E/MK was restricted to E and MK lineages only was obtained in single cell experiments. The frequency of BFU-E/MK was estimated from the proportion of wells that contained more than 100 cells and only GPA+ and CD41+ cells after 12 days in culture. An estimated 2% to 3% of total wells initiated with CD34+CD38- contained BFU-E/MK based on these criteria, which represented 0.3% to 1% of normal marrow CD34+ cells. By comparison, the frequency of clones containing at least three lineages and thought to originate from standard CFU-GEMM was 4.4% in the CD34+CD38- and 1% in the initial CD34+ cell fraction. Despite the fact that these numbers might be underestimated, as only clones containing >100 cells were analyzed by flow cytometry at day 12, they were in agreement with frequencies of BFU-E/MK calculated from colony assays. Finally, it remains to be determined whether some lineage markers (especially CD41 as suggested by a recent report) could be expressed on E/MK progenitors. Our preliminary results do not favor this hypothesis as the CD34+CD41+ cell population was essentially enriched in MK progenitors.

In vitro appraisal of the real potential of progenitors is hampered by two difficulties. The first pertains to the fact that specific culture conditions and cytokine combinations that optimally support the differentiation of progenitor cells committed to one lineage may be inhibitory for progenitor cells committed to other lineages. Thus, myeloid and B lymphoid differentiations in long-term cultures require conditions that are mutually exclusive, but this is also true in colony assays where IL-3 has recently been shown to inhibit the emergence of B220+ cells in colonies. In this study, bipotent E/MK progenitors were not detected in the standard conditions of methylcellulose colony assays optimized for the growth of primitive BFU-E, ie, 30% FCS plus SCF, IL-3, and Epo. In the presence of FCS, the addition of MS-5 stromal cell line was absolutely required for the growth of E/MK progenitor and CFU-MK and no combination of cytokines could replace these stromal cells. In contrast, when normal plasma or AP were substituted for FCS, MS-5 cells improved terminal MK differentiation but had no significant effect on the number of MK and E/MK colonies. The inhibitory activity present in serum that inhibits MK growth is most likely accounted for by TGF-β, two potential mechanisms, which might act in concert, may be hypothesized to explain the effect of MS-5 cells: (1) adsorption of inhibitory molecules on proteoglycans synthesized by stromal cells may result in their neutralization, a mechanism well documented for TGF-β; (2) alternatively, stromal cells may secrete cytokines able to counteract this suppressive effect as recently reported for bFGF. Whether this is accounted for by MGDF is as yet unclear; recent experiments showed that MS-5, which has reported for other stromal cells, synthesizes low amounts of MGDF (F. Wendling, manuscript in preparation). However, exogenous MGDF added to colony assays with 30% FCS in the absence of MS-5 supported the growth neither of BFU-E/MK nor CFU-MK. In serum-free plasma clot assays, MGDF alone optimally recruited CFU-MK but could not replace SCF or IL-3 in the E/MK progenitor assay. This, together with the observation that addition of MGDF to the combination of SCF, IL-3, and Epo increased the cloning efficiency of E/MK progenitors suggests that optimal development of E/MK progenitors requires combinations of cytokines that probably act sequentially on progenitors at different maturation stages. Further experiments will be required to characterize MS-5-derived molecules that affect MK maturation.

Two additional parameters may lead to underestimation of the real potential of progenitors in culture: asynchrony in the acquisition of specific differentiation markers identifying commitment to different lineages during the course of clone formation and discrepancy in the number of cells representative of each lineage. For example, emergence of lymphoid cells in colonies grown from lymphohematopoietic progenitor in the mouse is a very late event. Three arguments, however, rule out that E/MK clones were in fact multilineage

From www.bloodjournal.org by guest on October 27, 2017. For personal use only.
clones: (1) a similar phenotype was observed in clones that
were sequentially studied at days 12 and 18; (2) time course
studies in methylcellulose colony assays indicated that E/MK
and CFU-GEMM represent two successive nonoverlapping
waves of progenitor cells; (3) the sensitivity of immunolabel-
ing of individual colonies, which allows the recognition of
one to two MK cells within a colony.

Recent advances in the characterization of molecules asso-
ciated with commitment to E and MK differentiation also
strengthen the hypothesis of a tight linkage between both
lineages. Expression of several transcripion factors such as
GATA-1, Tal-1, and NFE-2 is primarily found in both lin-
eges,12,14,16,17,46-48 and at least in vitro, GATA-1 plays a piv-
oral role for expression of both E and MK genes.59 However,
recent experiments suggesting that GATA-1 is only required
during the late stages of the E differentiation49 and the lack
of a major defect in megakaryocytopoiesis in GATA-1
knock-out mice,50 question the real requirement of GATA-
1 expression for early E and MK development. Whether
GATA-1 has an inductive role in the commitment of pluripo-
tent stem cells as recently suggested in an avian cell line47
or if its lineage-specific effects may be related to its restricted
pattern of expression17,57,58 is still an unsolved question. Our
results suggest that in the near future, it may be possible to
have access to cellular models that directly allow us to ad-
dress these questions in specific cell subpopulations.

Such an assay, which allows simultaneous identification of
a high number of bipotent progenitors as well as their
monopotent progeny, will also be useful to characterize
growth requirements of each compartment, with particular
emphasis on the response to Epo and MGDF. The E and
MK lineages are the only two hematopoietic cell lineages
that are regulated by humoral factors (Epo and Mpl-L/TPO/
MGDF), the level of which is regulated by the mature cell
mass.54-56 Several lines of evidence suggest that the Epo-R
is expressed on MK60 and conversely it cannot be excluded that
the Mpl-R is present on a subset of E progenitors.52
However, preliminary attempts to identify Epo-R and Mpl-
R on BFU-E/MK progenitors by flow cytometry have failed
(data not shown), but this does not exclude the possibility
that E/MK progenitors express both the Epo-R and Mpl-R
at very low, albeit biologically active, levels.

NOTE ADDED IN PROOF

After acceptance of this report, a report also demonstrating
the existence of bipotent E and NK progenitors was pub-
ished.54

ACKNOWLEDGMENT

We thank S. Gillis (Immunix, Seattle, WA) for a gift of IL-3, IL-
6, and GM-CSF and P. Hunt (Amgen, Thousand Oaks, CA) for
the gift of megakaryocyte growth and development factor. We are grate-
ful to F. Lepetetre and B. Jirac for technical assistance. The Y2/51
MoAb was a gift from Dr D. Mason (Oxford, UK). We are grateful
to the surgeons for providing the bone marrow samples. We also
thank S. Burstein for improving the English manuscript.

REFERENCES

1. Metcalf D: The Hemopoietic Colony Stimulating Factors. Am-
sterdam, The Netherlands, Elsevier, 1984

2. Suda T, Suda J, Ogawa M: Disparate differentiation in mouse
hematopoietic colonies derived from paired progenitors. Proc Natl
Acad Sci USA 81:2520, 1984

3. Till JE, McCulloch EA, Siminovich L: A stochastic model of
stem cell proliferation based on the growth of spleen colony
forming cells. Proc Natl Acad Sci USA 51:29, 1964

4. Nicola N, Johnson GR: The production of committed hemopoi-
etic colony-forming cells from multipotential precursors in vitro.
Blood 60:1019, 1982

5. Ogawa M, Porter PN, Nakahata T: Renewal and commitment
to differentiation of hemopoietic stem cells: An interpretive

6. Ogawa M: Differentiation and proliferation of hematopoietic
stem cells. Blood 81:2844, 1993

7. Metcalf D, Burgess AW: Clonal analysis of progenitor cell
commitment to granulocyte or macrophage production. J Cell Phys-
iol 111:275, 1982

8. Papayanopoulou TH, Raines E, Collins S, Nakamoto B,
Tweedale M, Ross R: Constitutive and inducible secretion of platelet
derived growth factor analogs by human leukemic cell lines coex-
pressing erythroid and megakaryocyte markers. J Clin Invest 79:859,
1987

MC, Breton-Gorius J, Vainchenker W: Expression of platelet mem-
brane glycoproteins and alpha granule proteins by human erythroleu-
kemia cell line (HEL). EMBO J 3:453, 1984

10. Deblie N, Kieffer N, Mitjavila MT, Villeval J, Guichard J,
Teillet F, Henn A, Clementon KJ, Vainchenker W, Breton-Gorius
J: Expression of platelet glycoproteins by erythroid blasts in four

11. Lemarchandel V, Gysdays J, Mignotte V, Rahuel C, Roméo
PH: Gata and Ets cis-acting sequence mediate megakaryocyte-spe-

erythroid transcription factor in megakaryocytic and mast cell line-

13. Prandini MH, Uzan G, Martin F, Thevenon D, Marguerie G:
Characterization of a specific erythromegakaryocytic enhancer
within the glycoprotein IIb promoter. J Biol Chem 267:10370, 1992

14. Roméo P, Prandini MH, Jolvin V, Mignotte V, Premaat N,
Vainchenker W, Marguerie G, Uzan G: Megakaryocytic and erythro-
cytic lineages share specific transcription factors. Nature 344:447,
1990

15. Tronik-Le Roux D, Roulott V, Schweitzer A, Berthier R,
Marguerie G: Suppression of erythro-megakaryocytic differentiation
and the induction of reversible thrombocytopenia in mice transgenic
for the thymidine kinase gene targeted by the platelet glycoprotein

16. Orkin SH: GATA-binding transcription factors in hematoipo-

17. Orkin SH: Transcription factors and hematopoietic develop-

18. Longmore GD, Pharr P, Neumann D, Lodish F: Both megakaryocytopoiesis and erythropoiesis are induced in mice infected
with a retrovirus expressing an oncogenic erythropoietin receptor.
Blood 82:2386, 1993

19. McLeod DL, Shreve MM, Axelrad AA: Induction of mega-
karyocyte colonies with platelet formation in vitro. Nature 261:492,
1976

20. Vainchenker W, Guichard J, Breton-Gorius J: Growth of hu-
mans megakaryocyte colonies in culture from fetal, neonatal and adult
peripheral blood cells. Ultrastructural analysis. Blood Cells 5:25,
1979

21. Fleming WH, Alpern DJ, Uchida N, Ikuta K, Spangrude GJ,
Weissman IL: Functional heterogeneity is associated with the cell

Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow

N Debili, L Coulombel, L Croisille, A Katz, J Guichard, J Breton-Gorius and W Vainchenker