Evidence for Progenitors of Chronic Lymphocytic Leukemia B Cells That Undergo Intraclonal Differentiation and Diversification

By Mariella Dono, Shi ori Hashimoto, Franco Fais, Velia Trejo, Steven L. Allen, Stuart M. Lichtman, Philip Schulman, Vincent P. Vinciguerra, Brian Sellars, Peter K. Gregersen, Manlio Ferrarini, and Nicholas Chiorazzi

Peripheral blood mononuclear cells from five patients with IgG+ B-type chronic lymphocytic leukemia (B-CLL) were analyzed for the presence of clone-specific IgH chain variable region gene mRNA transcripts linked to Cμ and/or Ca. This was assessed by (1) comparing the lengths of portions of the V5-DJμ of the IgG+ CLL clones with those of the μ and α isotype-expressing B cells, (2) performing clone-specific endonuclease digestion studies, and (3) determining the DNA sequences of the μ and α isotype-expressing cDNA. Thus, when B-cell mRNA from these five patients were reverse transcribed with Cy-specific primers and then amplified by polymerase chain reaction, dominant cDNA were found with lengths corresponding to those of the IgG+ CLL B cell. In addition, in four cases, cDNA of lengths identical to those of the CLL B cell were detected when mRNA was reverse transcribed and amplified using Cμ- and/or Ca-specific primers, strongly suggesting clonal relatedness. These CLL-related μ- and α-expressing cDNA were present in greater amounts than unrelated (non-CLL) μ- and α-expressing cDNA from normal B cells that used genes of the same Vh family. When the sequences of these CLL-related μ- and Ca-expressing cDNA were compared with those of the IgG+ CLL clones, it was clear that they were derived from the same ancestral gene as the IgG-expressing CLL B cell, thus documenting their common origin. Finally, nucleotide point mutations were observed in the μ- and α-expressing cDNA of certain patients, indicating divergence with the CLL. These data suggest that IgG+ B cells, which are precursors of the leukemic B cells, exist in increased numbers in the blood of most patients with IgG+ CLL and that these cells may differentiate, accumulate V gene mutations, and undergo isotype switching in vivo. In addition, the data are consistent with a sequential-hit model for the evolution of CLL.

© 1996 by The American Society of Hematology.

Blood, Vol 87, No 4 (February 15), 1996 pp 1586-1594
Table 1. PCR Primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{4} (leader)a</td>
<td>5' GGAATTCATGAAACCGTTGTTCTTCCTCC</td>
</tr>
<tr>
<td>V\textsubscript{3} (leader)a</td>
<td>5' GGAATTCATGAACTTGTTGCTAAGGCGTGGTTT</td>
</tr>
<tr>
<td>V\textsubscript{4}-FR2</td>
<td>5' AGGGGCTGGAGGAATAGGAGG</td>
</tr>
<tr>
<td>J\textsubscript{\textsc{H}} consensus</td>
<td>5' CGGCGAGCGAGCCAGAGAAAG</td>
</tr>
<tr>
<td>IgG CV1</td>
<td>5' CAAGCTTGAGGCGGAGGCGGCTGAGCAAGGCGGG (rc)</td>
</tr>
<tr>
<td>IgM CV1c</td>
<td>5' CAAGCTTGAGGCGGAGGCGGCTGAGCAAGGCGGG (rc)</td>
</tr>
<tr>
<td>IgM CV2d</td>
<td>5' AGGACGAGGGGAAAGGTT</td>
</tr>
<tr>
<td>IgA CV1c</td>
<td>5' CAACGGCTGAGGCGGAGGCGGCTGAGCAAGGCGGG (rc)</td>
</tr>
<tr>
<td>IgA CV2d</td>
<td>5' GACCTTGGGCGGCGGCTGGGAGATGTC</td>
</tr>
</tbody>
</table>

Abbreviation: rc, reverse complement.
aUnderline denotes Hind\textsc{III} site.
bUnderline denotes EcoR\textsc{I} site.

and V\textsubscript{\mu} genes, used by these IgG+ CLL cells have been analyzed and reported previously.16

Monoclonal cell suspensions were obtained from heparinized peripheral blood by centrifugation through Ficoll-Isopaque density gradients (GIBCO BRL, Gaithersburg, MD) and the surface membrane phenotypes were determined.16 Aliquots of these cells were frozen using a programmable cell freezer and stored in liquid nitrogen. The studies reported here were performed with these frozen cultures and/or fresh cells, if available.

RNA preparation and reverse transcription-polymerase chain reaction (RT-PCR) conditions. Total RNA was extracted with guanidium isothiocyanate-cesium chloride and RT-PCR, specific for the rearranged H chain variable region genes, was performed as follows. cDNA was synthesized using avian myeloblastosis virus reverse transcriptase (GIBCO BRL) from 1 \mu g of total RNA using 20 pmol of oligonucleotide primer specific for the constant (C) region of the human \mu, \gamma, and \alpha H chains (Table 1). Ig cDNA then was amplified by a two-step PCR technique using two sets of primer pairs (60 pmol each; Table 1). The first round of amplification used an upstream leader-specific V\textsubscript{H} primer and a downstream C\textsubscript{\textsc{H}}-specific primer. The second round used a FR2 V\textsubscript{H} family-specific primer with a nested antisense primer upstream of the first C\textsubscript{\textsc{H}} primer (Table 1). The primer pairs used in individual experiments varied, depending on the gene segments to be amplified (either FR2 \rightarrow J\textsubscript{\textsc{H}} or FR2 \rightarrow C\textsubscript{\mu}; vide infra). PCR was performed for 30 to 35 cycles with a Perkin Elmer Cetus 9600 apparatus (Emeryville, CA) as follows: denaturation at 94\textdegree C for 1 minute, annealing at 55\textdegree C for 1 minute, and extension at 72\textdegree C for 2 minutes. After the last cycle, the synthesis was extended for 10 minutes.

DNA cloning and sequencing. The products of the second, nested amplifications were purified with MagicPrep DNA purification columns (Promega, Madison, WI), ligated into TA vectors, and then transformed into InVaF+ competent bacteria (Invitrogen, San Diego, CA). Multiple colonies were chosen randomly and sequenced in both directions by the dideoxy-chain termination method,19 automated using fluorescent-labeled ddNTP and TAQ polymerase (1 System; Applied Biosystems, Foster City, CA).

Ig V\textsubscript{H} gene fingerprinting analyses. To assess the potential relatedness of specific rearranged V\textsubscript{H}DI\textsubscript{\textsc{H}} segments of individual B-CLL clones, the lengths of their Ig V\textsubscript{H} genes were approximated by the two-step PCR described above, except that the downstream J\textsubscript{\textsc{H}} primer was end-labeled with 32P (NEN) using T4 polynucleotide kinase (Promega). In these reactions, the primer was reduced to 3 pmol/reaction. After amplification, the radiolabeled products were electrophoresed through a 6\% acrylamide sequencing gel. The gel then was dried and exposed to X-ray film (Kodak, Rochester, NY) for 1 to 3 days at \textminus80\textdegree C to visualize the radiolabeled products.

In selected experiments, the nested V\textsubscript{H} family-specific primer was end-labeled and the amplifications were performed as described. These radiolabeled products then were digested with specific restriction endonucleases (Pst\textsc{II} and Sac\textsc{I}; GIBCO BRL) as recommended by the manufacturer and the fragments were electrophoresed and visualized as above. The relative amounts of these products were analyzed by comparing their incorporated radioactivity using a PhosphorImager (Molecular Dynamics, Sunnyvale, CA).

RESULTS

Identification of B-CLL patient-specific mRNA transcripts by comparing V\textsubscript{H}DI\textsubscript{\textsc{H}} segment lengths. Peripheral blood mononuclear cells from five patients were selected for the following studies based on sample availability. Four of these cases (no. 001, 033, 039, and 057) had rearranged V\textsubscript{\lambda4} family genes and one (no. 030) had a V\textsubscript{\mu3} gene (Table 2). Because of recombination and/or mutation, portions of the rearranged Ig H chain variable region genes of each patient were unique and distinct from their germline counterparts (Table 2).18 For patients no. 001, 030, and 033, these unique DNA sequences spanned all three gene segments (V\textsubscript{\mu}, D, and J\textsubscript{\textsc{H}}), whereas for patients no. 039 and 057 they were restricted to CDR3 and FR4.18 Nevertheless, for each patient, these gene sequences provided unequivocal markers of the individual patient’s B-CLL cell clone.

To determine whether these patient-specific V\textsubscript{H}DI\textsubscript{\textsc{H}} genes were associated with Ig H chain isotypes other than IgG, we used the Ig V gene fingerprinting approach.31,22 This technique allowed comparisons of V\textsubscript{H}DI\textsubscript{\textsc{H}} cDNA lengths generated from \mu and \alpha isotype-expressing mRNA transcripts with those generated from the \gamma-expressing B-CLL cell. This was accomplished with primers (Table 1) designed to specifically amplify the FR2 \rightarrow J\textsubscript{\textsc{H}} regions of B cells using genes of the same V\textsubscript{\mu} family as the B-CLL cell but associated with either C\textsubscript{\mu} or C\textsubscript{\alpha}. The nucleotide lengths of these products then were compared with those of the corresponding IgG+ B-CLL clone as radiolabeled bands on a polyacrylamide sequenci-g gel (Fig 1).

In four of the five patient samples tested (no. 030, 033, 039, and 057), dominant bands with lengths identical to those of the IgG+ B-CLL, but associated with \mu and/or \alpha H chains, were detected. Because this technique takes advantage of the fact that B cells are heterogeneous, and relatively unique, in their rearranged V\textsubscript{H}DI\textsubscript{\textsc{H}} lengths, the demonstration that cDNA products amplified from the \gamma-expressing B-CLL cell mRNA transcripts and from \mu- and \alpha-expressing transcripts are of identical length is highly suggestive of a common clonal origin.

As controls, Ig cDNA were amplified from the mRNA of blood B cells from normal individuals using the same sets of primer pairs. These PCR products ran in the gel as a ladder of approximately equal intensities, indicating the heterogeneity and relatively uniform distribution of V\textsubscript{H}DI\textsubscript{\textsc{H}} lengths in normal circulating B cells (Fig 1; far right lane). Note that this pattern of bands was detectable in some of the B-CLL lanes (eg, patients no. 057 and 039; Fig 1), indicating the presence of normal, nonleukemic B cells in the blood of these patients. These normal B cell bands were more frequent in those lanes containing products initially amplified with the C\textsubscript{\alpha} primer (Fig 1). In some cases, the CLL-related band was almost the only band visible, sug-
gesting that B cells of this clone were dominant and that normal B cells expressing these isotypes were scarce. This was most readily appreciated in the IgM cDNA lanes (eg, no. 039), although it is also apparent in certain IgA lanes.

It should be noted that bands of the same size as the IgG⁺ B-CLL cell could not be consistently amplified from the µ- and α-expressing transcripts of patient no. 001, indicating that this phenomenon was not universal.

Confirmation of clonal relatedness by restriction endonuclease sensitivity. As mentioned, the finding of similar VH,DJH lengths among the γ-, µ-, and α-containing transcripts strongly suggests, but does not prove, that they arise from the same B-cell clone. To further confirm the clonal relatedness of the PCR products, therefore, we took advantage of the fact that the diversification events that altered the germline DJH segments used by the B-CLL clone had created clone-specific endonuclease restriction sites in CDR3 that were not present in the germline DNA. These somatically generated sequences would not be shared by other B cells, even if they used the same germline gene segments. For example, in patient no. 039 a number of nucleotide changes in the DM1 D segment resulted in the acquisition of a site recognized by the enzyme Pvu II (underlined in Fig 3) that we used as a target for clone-specific endonuclease digestion.

Therefore, the radiolabeled cDNA generated with the Cy, Cµ, and Cα primers from patient no. 039 were either digested with Pvu II or were left untreated. When these two sets of products were electrophoresed through a 6% acrylamide gel (Fig 2A), the undigested fragments again comigrated at a position commensurate with their calculated size (252 bp). The lanes containing the enzyme-digested products of all three H chain transcripts showed a marked diminution in the amount of material migrating at 252 bp (15%, 5%, and 23% of the original counts in the γ-, µ, and α undigested lanes, respectively, as determined by a phosphorimager; Fig 2B). In addition, a new set of dominant bands appeared at 192 bp, consistent with the predicted size of the enzyme digested products (Fig 2A). Note that the additional cDNA bands generated from the normal α-expressing blood B-cell transcripts were not altered by the enzyme treatment, indicating that the enzymatic digestion was clone-specific. A similar experiment was performed for patient no. 030 using Sac I with comparable results (data not shown).

DNA sequence analyses of Vh,DJh gene segments amplified with Cµ and Cα primers. Because the V γ gene sequences of the IgG-producing B-CLL clones were known, we cloned and sequenced the cDNA amplified with the Cµ and Cα primers to definitively establish their clonal relatedness with the IgG⁺ B-CLL cells of the various patients.

Three classes of sequences were identified (summarized in Table 3). The first was identical to those of the IgG⁺ B-CLL; the second was very similar and clearly derived from the same ancestral gene but with occasional single nucleotide differences. In contrast, the third class was completely different from those of the IgG⁺ B-CLL B cell (albeit derived from genes of the same Vh family). Thus, the B cells expressing genes of the first two

Table 2. Molecular Characteristics of the Ig Vh Genes of the IgG⁺ CDS⁺ B Cells

<table>
<thead>
<tr>
<th>Patient</th>
<th>Vh Family</th>
<th>Most Homologous</th>
<th>Percentage of</th>
<th>Likely Germline</th>
<th>Lengths*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Germline Vh Gene</td>
<td>Vh Gene Difference</td>
<td>D Segment</td>
<td>Jα (CDR3; FR2 → Jα)</td>
</tr>
<tr>
<td>CLL 001</td>
<td>4</td>
<td>4.21</td>
<td>5%</td>
<td>D21/9</td>
<td>64bp; 255bp</td>
</tr>
<tr>
<td>CLL 033</td>
<td>4</td>
<td>4.21</td>
<td>8%</td>
<td>DLR2</td>
<td>69bp; 267bp</td>
</tr>
<tr>
<td>CLL 039</td>
<td>4</td>
<td>4.18</td>
<td>1%</td>
<td>DM11</td>
<td>57bp; 252bp</td>
</tr>
<tr>
<td>CLL 057</td>
<td>4</td>
<td>4.18</td>
<td>1%</td>
<td>DN1</td>
<td>56bp; 255bp</td>
</tr>
<tr>
<td>CLL 030</td>
<td>3</td>
<td>H11</td>
<td>6%</td>
<td>Indeterminant</td>
<td>42bp; 251bp</td>
</tr>
</tbody>
</table>

Data from Hashimoto et al.16,20

* Lengths of CDR3 calculated from the cysteine residue near the 3’ end of FR3 to the tryptophan at the beginning of FR4; lengths of FR2 → Jα calculated from the beginning of the respective FR2 primer to the end of the consensus Jα primer. The absolute lengths of FR2 → Jα vary because of differences in both gene segment lengths and primer locations.

Fig 1. Ig Vh gene fingerprinting analyses. A 6% acrylamide gel showing the presence of Vh,DJh cDNA with lengths identical to those of the leukemic cells associated with multiple H chain isotypes. In each patient sample, the dominant bands in the first lane (G; noted by arrow) correspond to the products generated from the total cellular RNA with the downstream Cy primer (CLL population). The major bands in the second (M) and third (A) lanes correspond to the products generated with the Cµ and Cα primers, respectively. The less prominent, yet distinct bands seen in some of the lanes represent products generated from the nonleukemic B cells. These are similar to those generated from mRNA of normal B cells using the Vh3-FR2 and Cµ primers (M; far right lane).
transcripts were quantified by a PhosphorImager. A similar experi-
ment was performed for patient no. 030 using SAC1 with comparable
results (data not shown).

(A) The cDNA generated with the Cy, Cp, and Ca primer sets from
patient no. 039 were either digested or not with Pvu II (restriction
site underlined in Fig 3) and then electrophoresed through
a 6% acrylamide gel. Note that the CLL-related bands were specifi-
cally digested, whereas the additional cDNA bands generated from
the normal α-expressing blood B-cell transcripts were not altered by
the enzyme treatment. IBI The bands corresponding to the untreated
classes were derived from the same B-cell clone as the B-CLL,
whereas those of the third class were most likely derived from
the residual normal B cells in the blood and were not related to
the CLL clone. Figures 3 and 4 list examples of those B-CLL-
related sequences derived from patients no. 039 and 057 that
showed point differences from the B-CLL; identical sequences
are not presented. The nucleotide sequences for patients no. 001
and 033 are not shown because, in the former case, no cDNA
clones expressing the μ or α H chain gene could be isolated,
whereas in the latter all the related clones (4 IgM and 4 IgA)
exhibited complete identity with those of the IgG⁺ B-CLL B cells.

The frequencies of these three classes of clones varied
from patient to patient, as did the degrees of similarity with
the corresponding IgG⁺ B-CLL cell (Table 3). For example,
in patient no. 039, 10 IgM-expressing cDNA were analyzed,
and 9 of these were members of the IgG-expressing B-CLL
clone (8 identical and 1 clonally related; Table 3 and Fig 3).
However, of the 10 IgA cDNA studied, only 5 were related to
the B-CLL clone (4 identical and 1 clonally related). These
data suggested that, in the blood of this patient, an
expanded population of IgM-producing B cells existed that
were clonally related to the leukemic cell. This observation
is in agreement with the PCR data shown in Fig 1 that fail to show bands, other than the dominant B-CLL band, amplified with the Cμ primer.

In contrast, the IgM- and IgA-expressing cDNA from patient
no. 057 were more heterogeneous (Table 3 and Fig 4). In fact,
although significant numbers of μ- and α-expressing clones were
analyzed, none was identical to that of the IgG-expressing B-
CLL. However, 4 of 10 IgM and 4 of 10 IgA cDNA clones
displayed significant similarity in the FR2-Jμ sequence with the
IgG⁺ B-CLL B-cell, indicating clonal relatedness.

Finally, in patient no. 030, only cDNA expressing the
CLL-specific VμDJμ in association with a μ gene segment could be identified (Table 3), even though the PCR data
showed the presence of an IgG-related species. The reason
for this discrepancy is unclear. Of the eight IgM⁺ cDNA
sequenced, two were clonally related to the IgG-expressing
B-CLL cell, one of these (M208) showed complete sequence
identity with the CLL and the other (M133) was slightly
different (data not shown).

Table 3. cDNA Clones Detected

<table>
<thead>
<tr>
<th></th>
<th>IgM-Bearing</th>
<th>IgG-Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clonally Related</td>
<td>Not Related</td>
</tr>
<tr>
<td>Identical</td>
<td>Very Similar</td>
<td>Completely Different</td>
</tr>
<tr>
<td>CLL 001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLL 030</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CLL 033</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CLL 039</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>CLL 057</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Classes were derived from the same B-cell clone as the B-CLL,
whereas the third class were most likely derived from
the residual normal B cells in the blood and were not related to
the CLL clone. Figures 3 and 4 list examples of those B-CLL-
related sequences derived from patients no. 039 and 057 that
showed point differences from the B-CLL; identical sequences
are not presented. The nucleotide sequences for patients no. 001
and 033 are not shown because, in the former case, no cDNA
clones expressing the μ or α H chain gene could be isolated,
whereas in the latter all the related clones (4 IgM and 4 IgA)
exhibited complete identity with those of the IgG⁺ B-CLL B cells.

The frequencies of these three classes of clones varied
from patient to patient, as did the degrees of similarity with
the corresponding IgG⁺ B-CLL cell (Table 3). For example,
expressers analyzed were identical to the known IgG+ B-CLL sequence (data not shown).

However, the cDNA from patient no. 039 did exhibit some nucleotide differences (M5 and A32; Fig 3). In each of these, there is a single nucleotide difference at codon 70 of FR3 from the germline V\textsubscript{H} 4.18 sequence and from that carried by the IgG+ B-CLL cell. This suggests that the C → A mutation occurred in the IgM-expressing precursor and was passed on to the IgA-expressing descendants. In addition, because this mutation is present in the M5 and A32 clones but absent from the ancestral gene and from the B-CLL, it is likely that the B cell that evolved into the B-CLL clone developed an initial molecular abnormality at a maturational stage earlier than that reflected by the IgM clone. Subsequently, the IgA-expressing cDNA A32 developed three additional nucleotide differences, two involving codon 53 of CDR2 (TAT → CAG) and one involving codon 81 of FR3 (AAG → AAA). The difference at codon 53 resulted in an amino acid replacement of Tyr with Glu.

In contrast, the \(\mu \)- and \(\alpha \)-expressing cDNA of patient no. 057 exhibited much more diversity involving areas of CDR2, FR3, and CDR3 (Fig 4). Thus, clones M182 and A192 showed differences in CDR2 at codons 50 (AGT → AAT) and 61 (CCG → TCG); the former resulted in a Ser → Asn amino acid replacement and the latter a Pro → Ser change. In addition, clone A192 showed substitutions at codons 92 (GTC → CTG; replacement of Gly with Leu) of FR3 and at 100C (TAT → TAC) of CDR3. This latter difference from the IgG+ B-CLL cell corresponds to the germline 4.18 sequence and may therefore represent either a nonmutated residue or a new mutation that resulted in a reversion to the original germline sequence.

As noted, several of these nucleotide substitutions resulted in amino acid replacement changes that might impact on the antigen-binding capabilities of the \(\mu \)- and \(\alpha \)-expressing B cells as compared with their B-CLL relative. These amino acid changes in patients no. 039 and 057 may be especially significant because both patients’ CLL B cell use the \(V\text{H} \) 4.18 gene, which has been shown to rarely accumulate replacement mutations when found in B-CLL cells.\(^{18,23-25}\)

DISCUSSION

Our data suggest that patients with IgG+ B-CLL frequently harbor IgM-expressing B cells that are precursors of the CLL B cell and that may switch to IgA or IgG production. The presence of clonally related, isotype class switched members of a malignant clone has been detected in other lymphoproliferative disorders, including follicular\(^{26}\) and Burkitt’s\(^{27}\) lymphoma, Richter’s transformation,\(^{28,30}\) acute lymphocytic leukemia,\(^{31,32}\) and multiple myeloma (MM).\(^{11-15}\) However, this is the first demonstration of this phenomenon in B-CLL.

A key issue in these studies is whether the B-CLL-related
Cμ- and Ca-expressing mRNA transcripts are produced by a precursor B cell that is distinct from the IgG-expressing B-CLL cell or by the leukemic cell itself. Although examples of cells expressing multiple Ig H chain isotypes have been reported,35-37 several lines of evidence suggest that this is not the case in our patients. The most convincing of these are the facts (1) that within the same patient the μ-, α-, and γ-expressing transcripts can differ from each other by mutations in the VH-DJH segments, a finding incompatible with a common cellular derivation (Figs 3 and 4 and Table 3); and (2) that hybridomas made from these cells produce only one isotype.18 In further support of this contention, others have documented the existence of precursor B cells in the bone marrow and blood of MM patients14,38 that reside in the CD45+ B-cell subset and that are distinct from the mature MM cells that display a CD45+, CD38+ phenotype. We are presently attempting, using a three-color immunofluorescence approach, to identify the clonally related B cells in the blood of our B-CLL patients. Preliminary data suggest the presence of an expanded population of IgM+, CD5+ B cells in patient no. 039, although this population is much less abundant than the bona fide IgG+ B-CLL population detected by routine clinical techniques.

The presence of Ig variable region gene sequence diversity among the Cμ- and Ca-expressing clonally related members of the B-CLL families indicates that these B cells were still able to undergo the mutation process. This observation is in variance with those reported in MM14 and may indicate an innate difference between the B cells that become transformed into B-CLL versus MM, or a difference in the ability of the clonally related members to respond to antigen and/or T-cell help. In this regard, our previous studies18 suggested that antigen drive and selection may have been operative in the life span of the B cells overexpanded in certain of these B-CLL cases. It is possible that technical issues limited the likelihood of detecting somatic variants in MM, because in that study only the MM patient-specific regions of CDR3 were compared for the accumulation of somatic mutations. This issue requires more extensive evaluation of more patients with these diseases.

The preceding data may have implications for our understanding of the development of B-CLL and its complications. For instance, it will be important to determine whether switching of the IgM-expressing precursors to IgG+ B-CLL cells is an ongoing event that continuously expands and/or replenishes the B-CLL pool. Similarly, it will be of interest to determine whether the B-CLL-related IgM- and IgA-producing B cells secrete their Ig and whether the sera of these patients contain multiple monoclonal bands corresponding not only to the B-CLL IgG monoclonal antibody (MoAb) but also to the clonally related IgM and IgA MoAb. In this regard, it should be noted that others have reported the presence of two or more monoclonal paraproteins in various lymphoproliferative disorders, some of which have been shown to be derived from the same clone.39-43 In addition, it will be important to determine whether patients with typical IgM-producing B-CLL also develop in vivo switched cells that produce IgG and IgA antibodies. If so, this phe-
nomenon might have clinical relevance to those patients with B-CLL who develop autoimmune complications that are mediated by IgG antibodies, eg, autoimmune hemolytic anemia. We are in the process of addressing these issues. Preliminary data suggest that ~50% of IgM B-CLL patients exhibit mRNA transcripts encoding patient-specific V_{n},D_{J},H segments in association with Cy and/or Ca.

Finally, our data suggest that the B cell that eventually becomes the CLL clone proceeds through a multistep (at least 2) process that alters certain normal functions and not others. A proposed model of these events is shown in Fig 5. First, a normal IgM-producing B cell experiences event no. 1, which leads to an appreciable (Fig 1 and Table 3), but clinically in evident, clonal expansion. Thus, even at this pre-CLL stage, the clone appears to have a proliferative and/or survival advantage. However, despite this, the pre-CLL clone is/was able to accept appropriate signals and undergo isotype class switching and to develop Ig variable region gene mutations. Eventually, from among this pool of IgG expressers, one member then experiences a second event that results in a much more significant clonal expansion that is recognized clinically as manifest CLL (event no. 2; Fig 5). This multistep process is more easily appreciated in IgG+ B-CLL patients because the B cells that experience events no. 1 and 2 can be distinguished by their different membrane Ig isotypes. However, we presume that a similar process occurs in IgM+ B-CLL clones, although its demonstration will require different strategies.

Based on our present and prior studies, it appears that a difference exists in the ability of the CLL B cell versus its clonal relatives to develop new Ig variable gene mutations. Although several examples of diversification were seen in the clonally related members, only rare mutations were detected within the CLL B cells, even after several years of in vivo maturation. This difference suggests that the mutation machinery is operative in the pre-CLL B cells, but is significantly downregulated in overt CLL.

These observations also may be relevant to the different numbers of Ig V gene mutations detected in overt CLL B cells of the IgM versus IgG isotypes. Indeed, in the absence of a more profound molecular insult of the type seen in Richter's transformation, mutations in IgM-expressing B-CLL cells are much less frequent than in IgG-expressers. This suggests that the likelihood of mutations being observed in a B-CLL clone increases with the duration and quality of antigenic and accessory signals delivered and the maturation attained by the B cell before its complete transformation by event no. 2.

The nature of the events postulated above that provide the increased proliferative and/or survival capacity and the decreased mutation capability are unknown. However, one might speculate that these represent molecular defects that have occurred as a result of chronic in vivo (auto)antigenic stimulation, possibly as a consequence of their known frequent autoreactive potential.

REFERENCES

41. Grau E, Soler J, Puig J, Brunet S, Pujol-Moix N, Rodriguez JL, Domingo-Albos A: Coincident multiple myeloma and non-

From www.bloodjournal.org by guest on September 24, 2017. For personal use only.

Evidence for progenitors of chronic lymphocytic leukemia B cells that undergo intraclonal differentiation and diversification

M Dono, S Hashimoto, F Fais, V Trejo, SL Allen, SM Lichtman, P Schulman, VP Vinciguerra, B Sellars, PK Gregersen, M Ferrarini and N Chiorazzi