Isolation of the Full-Length Murine Erythropoietin Receptor Using a Baculovirus Expression System

By Jerry L. Spivak, Lena S. Avedissian, Jacalyn H. Pierce, Donna Williams, W. David Hankins, and Roy A. Jensen

The full-length murine erythropoietin receptor was expressed in Spodoptera frugiperda (Sf9) cells using a recombinant baculovirus vector. Erythropoietin receptor protein production was maximal 48 hours after infection, as determined by metabolic labeling and immunoblotting; receptor protein varied in molecular mass from 62 to 76 kDa. Erythropoietin receptors produced in Sf9 cells could be solubilized using CHAPS in a form capable of binding erythropoietin, and the solubilized receptor bound to immobilized Concanavalin A (Con A) and wheat germ agglutinin, as well as to immobilized recombinant human erythropoietin. Analysis of the distribution of erythropoietin receptors in Sf9 plasma membrane and cytosol fractions using lectin affinity chromatography revealed that membrane-bound receptor had a higher apparent molecular mass and contained the bulk of receptors that bound to wheat germ agglutinin. The receptor was purified by sequential affinity chromatography on Con A-Sepharose and immobilized erythropoietin. Erythropoietin receptors expressed in Sf9 cells were inserted into the plasma membrane in the correct orientation, bound \(^{129}\)I-erythropoietin with a single affinity (kD, 330 pmol/L), and were internalized after ligand binding. However, kD varied inversely with the number of cell surface receptors. Solubilized erythropoietin receptors in whole-cell lysates and isolated plasma membranes exhibited high-affinity binding, with kD values of 92 and 57 pmol/L, respectively. Erythropoietin bound to the surface of infected Sf9 cells could be cross-linked to two proteins with molecular masses of 90 and 85 kDa using the homobifunctional cross-linker, disuccinimidyl suberate (DSS). Similar results were obtained with solubilized receptors in whole-cell lysates, and both proteins could be immunoprecipitated by an antiserum to the erythropoietin receptor carboxyl-terminal domain.

© 1998 by The American Society of Hematology.

From the Division of Hematology, Johns Hopkins University School of Medicine, Baltimore; and the Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD. Submitted November 7, 1994; accepted September 6, 1995. Supported by National Institutes of Health Grant No. DK16702. Address reprint requests to Jerry L. Spivak, MD, Traylor 924, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1996 by The American Society of Hematology.
from Bio-Rad Laboratories (Richmond, CA), Concanaevalin A (Con A)—Sepharose from Pharmacia (Piscataway, NJ), and wheat germ agglutinin-agarose, α-methyl mannoside, N-acetyl glucosamine, CHAPS, Tween 20, Nonidet P-40, bovine serum albumin (BSA), and polyethylene glycol 6000 (PEG) from Sigma (St Louis, MO). Grace’s complete medium containing 0.33% lactalbumin hydrolysate and 0.33% yeastolate, and fetal bovine serum were from Paragon Biotech Inc (Baltimore, MD). Nitrocellulose paper was purchased from Bio-Rad and PVDF membranes from Millipore Corp (Bedford, MA). Disuccinimidyl suberate (DSS) and iodogen were from Pierce (Rockford, IL). Autographa californica nuclear polyhedrosis virus (AcMNPV) and the baculovirus transfer vector, pVL941, were obtained from Dr M. Summers of Texas A&M University, and cDNA for the murine erythropoietin receptor was obtained from Alan D’Andrea (Children’s Hospital, Boston, MA).

Cells. SF9 cells obtained from either the American Type Culture Collection (Rockville, MD) or Paragon were cultured at 27°C in Grace’s complete medium supplemented with 10% heat-inactivated fetal bovine serum and gentamicin (50 μg/mL) either in monolayers or in spinner flasks stirred at 70 to 80 rpm. Cell viability was determined by trypan blue exclusion. For metabolic labeling, 3 × 10^6 SF9 cells were incubated in 2 mL methionine-free Grace’s medium at 27°C. After 1 hour, the medium was replaced with an equal volume of methionine-free medium containing 100 μCi/ml Tran 35S-Label and incubation was continued for 3 hours, at which time the cells were washed twice with methionine-free Grace’s medium and harvested by centrifugation at 400 × g at room temperature for polyacrylamide gel electrophoresis and fluorography.

Production of the recombinant baculovirus vector. The cDNA for the murine erythropoietin receptor was cloned into the unique BamHI site of pVL941. Recombinant baculovirus was produced by cotransfecting 2 × 10^8 SF9 cells with 1 μg AcMNPV DNA and 2 μg of the pVL941 construct using calcium phosphate coprecipitation. Culture supernatants were harvested after 5 to 7 days and screened for homologous recombinant by visual inspection of plaques. Recombinants were confirmed by dot-blot hybridization using a 32P-labeled cDNA probe. Purified recombinant baculovirus was obtained by three cycles of plaque purification. For infection of SF9 cells, viral stocks were generated with a titer of 10^6 plaque-forming units/mL.

Erythropoietin receptor production. For production of erythropoietin receptor protein, SF9 cells at a concentration of 1 × 10^6 in monolayer culture or 2 × 10^6/mL in suspension culture were infected at a multiplicity of infection of 10 with the recombinant baculovirus. Preliminary time-course studies of total cell protein content and qualitative analysis of protein production using metabolically labeled cells indicated that receptor protein production was maximal 48 hours after infection (Table 1). At this time, aliquots of cells were obtained for counting and assay of cell viability, which was usually at least 90%, and cells were harvested by centrifugation at 400g for 5 minutes at room temperature. The cell pellet was resuspended at a concentration of 10^7 cells/mL in ice-cold lysis buffer (10 mM Tris hydrochloride, pH 7.4, containing 10% glycerol, 0.6% CHAPS, 0.5 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl fluoride (PMSF), 5 μg/mL aprotinin, 8 μg/mL pepstatin, and 2 μg/mL leupeptin) and rocked for 1 hour at 4°C. The suspension was centrifuged at 4°C for 15 minutes at 10,000g, and the pellet was discarded. The receptor could also be solubilized in a biologically active form using Triton X-100, but better yields were obtained with CHAPS (data not shown) and the amount of detergent could be reduced to 0.03% without affecting receptor solubility.

Examination of concentrated culture supernatant by polyacrylamide gel electrophoresis and Western blotting failed to reveal any soluble receptor protein (data not shown).

Chromatography of the solubilized erythropoietin receptor. For affinity chromatography using Con A—Sepharose, the beads were equilibrated with 10 mM Tris hydrochloride, pH 7.5, and 150 mM NaCl (TBS) containing 1 mM CaCl2 and 1 mM MnCl2. Two milliliters of whole-cell lysate adjusted to a concentration of 1.5 mg/mL with lysis buffer was preclarified with 100 μL packed glycine-blocked Sepharose beads and then mixed with 100 μL packed Con A—Sepharose beads at 4°C for 12 hours. The beads were washed five times with 1 mL TBS, and adherent proteins were eluted with 0.5 mM α-methyl mannoside in TBS containing 1 mM EDTA, 0.5 mM EDTA, 0.06% CHAPS, and 1 mM L-PMSF. For binding studies with wheat germ agglutinin-agarose, the derivatized beads were equilibrated with 150 mM NaCl and 50 mM L-HEPES, pH 7.5. One milligram of lysate protein in 1 mL lysis buffer preclarified with glycine-blocked Sepharose beads was mixed with 200 μL derivatized packed beads at 4°C for 12 hours. The beads were washed five times with 1 mL 150-mM NaCl and 50-mM L-HEPES, pH 7.5, and adherent proteins were eluted with 0.3 mM N-acetyl glucosamine in 150 mM NaCl and 50 mM L-HEPES, pH 7.5, containing 1 mM L-EDTA, 0.06% CHAPS, and 1 mM L-PMSF. Glycerol was added to each eluate to a final concentration of 10%.

For affinity chromatography with immobilized erythropoietin, recombinant human erythropoietin (1 mg/mL gel) was coupled to Affigel-15 according to the manufacturer’s instructions. Coupling efficiency was 60% as measured by absorbance at 280 nm or by using a trace amount of 125I-labeled erythropoietin. For binding studies, either 100 μg lysate protein in 40 μL lysis buffer or 100 μg Con A eluate in 300 μL TBS was mixed with 250 μL packed erythropoietin-agarose beads for 12 hours at 4°C. The beads were washed five times with 1 mL 150-mM NaCl and 50-mM L-HEPES, pH 7.5, and adherent proteins were eluted by exposure to 0.5 mM L-KSCN for 2 hours.

Cell fractionation. To examine the distribution of erythropoietin receptor protein in infected SF9 cells, the cells were fractionated into cytosolic and membrane components using the technique of Lin et al.34 Although it was designed for mammalian cells, SF9 cells behaved comparably. Forty-eight hours after infection, SF9 cells were washed, collected by centrifugation, suspended in 10 vol (wt/vol) 50-mM L-mannitol and 5-mM L-HEPES, pH 7.4, and homogenized by repeated passage through a 25-gauge needle. CaCl2 was added to a final concentration of 10 mM/L, and after vortexing vigorously for 1 minute, the mixture was centrifuged for 1 minute at 15,600g. The supernatant was centrifuged at 430,000g in a Beckman TL-100 ultracentrifuge (Fullerton, CA) for 6 minutes, and the pellet containing plasma membranes was resuspended in 50 mM/L Tris hydrochloride and 1 mM EDTA, pH 8.0. To validate this procedure for SF9 cells, infected and noninfected SF9 cells were incubated with 125I-erythropoietin for 3 hours in the presence or absence of NaN3 and then exposed to DSS to cross-link ligand bound to the cell surface as described below. After cross-linking, cells
were counted in a gamma scintillation counter and then plasma membranes were prepared as described earlier and subjected to scintillation counting. Recovery of \(^{125}\)I-erythropoietin on noninfected cell plasma membranes was negligible (0.6%), whereas 83% of the ligand was recovered with plasma membranes of infected Sf9 cells exposed to \(\text{NaN}_3\). Only 29% of the ligand was recovered with plasma membranes of cells not exposed to \(\text{NaN}_3\).

Western blotting of erythropoietin-receptor protein. Sodium dodecyl sulfate (SDS)polyacrylamide gel electrophoresis of protein samples was performed according to the technique of Laemmli. Briefly, the membrane was soaked at 4°C in 7 mol/L guanidine hydrochloride, 50 mmol/L Tris hydrochloride, 50 mmol/L DTT, and 2 mmol/L EDTA, pH 8.3, for 1 hour and incubated overnight at 4°C in 100 mmol/L NaCl, 50 mmol/L Tris hydrochloride, 2 mmol/L EDTA, 2 mmol/L DTT, 0.1% (wt/vol) Nonidet P-40, and 1% (wt/vol) BSA, pH 7.5. The membrane was washed with 1% BSA in 10 mmol/L Tris hydrochloride, 150 mmol/L NaCl, pH 8.0, and 1% Tween 20 and exposed to \(^{125}\)I-erythropoietin for 3 hours at room temperature. The membrane was then washed with 10 mmol/L Tris hydrochloride, pH 8.0, 150 mmol/L NaCl, and 1% Tween 20, and autoradiography was performed at −80°C using Kodak XAR film (Eastman Kodak, Rochester, NY).

Ligand binding studies. Ligand binding studies were performed on whole cells or whole-cell lysates. For whole-cell–ligand equilibrium binding studies, preliminary studies indicated that ligand binding was more satisfactory when Sf9 cells were attached to a surface instead of being in suspension. Sf9 cells in suspension and infected 24 hours previously at a multiplicity of infection of 10 were plated at a concentration of 10⁵ well in a 96-well microtiter dish. After 24 hours, the cell monolayers were washed and incubated with selected concentrations of \(^{125}\)I-labeled erythropoietin in a final volume of 50 μL Grace’s medium with 10% fetal calf serum on ice for 5 hours. For determination of nonspecific binding, a 40- to 100-fold excess of unlabeled erythropoietin was added simultaneously to selected wells. At the end of the incubation period, the medium was removed and cells were washed three times with 100 μL PBS. The medium and washes were pooled, and cells were harvested by lysis in 100 μL 0.1 mol/L NaOH and 0.05% SDS. The lysates, medium, and pooled washes were counted in a gamma scintillation counter. In this assay, binding of \(^{125}\)I-erythropoietin to uninfected Sf9 cells was negligible (data not shown).

For solubilized whole-cell lysate or plasma membrane–ligand binding studies, 100 μg protein was incubated with \(^{125}\)I-labeled erythropoietin in a final volume of 100 μL in 50 mmol/L Tris hydrochloride, pH 7.5, at 4°C for 3 hours in 500-μL microfuge tubes, with addition of a 1,000-fold concentration of unlabeled erythropoietin to some tubes for assessment of nonspecific binding. Ligand-receptor complexes were separated from unbound protein by precipitation with PEG (final concentration, 10%) and 250 μg bovine γ-globulin at 4°C for 20 minutes at 10,000g. The precipitates were collected by centrifugation through dibutylphthalate oil at 10,000g for 10 minutes at 4°C for gamma scintillation counting. Binding isotherms were analyzed using the LIGAND program.

Cross-linking studies. \(^{125}\)I-labeled erythropoietin was cross-linked to Sf9 cells in monolayer cultures under the conditions used for ligand binding using the homobifunctional cross-linker, DSS. Based on preliminary studies, cross-linking was performed at 4°C using 500 μmol/L DSS for 30 minutes after cells had been exposed to \(^{125}\)I-erythropoietin alone or in the presence of a 100-fold excess of unlabeled erythropoietin for 5 hours. The reaction was quenched by removing the medium containing the cross-linker and washing the cells three times with 100 μL 150-mmol/L Tris hydrochloride, pH 8.0. The cells were harvested by dissolution in 0.1 mol/L NaOH and 0.05% PEG for polyacrylamide gel electrophoresis and autoradiography.

Solubilized receptors in whole-cell lysates were cross-linked to \(^{125}\)I-erythropoietin by exposure to 400 μmol/L DSS at 4°C for 1 hour after prior exposure to the hormone for 3 hours as described earlier. The reaction was quenched by addition of Tris hydrochloride, pH 8.0, to a final concentration of 150 mmol/L and cross-linked proteins were collected by PEG precipitation as described earlier.

Induction of recombinant erythropoietin. Recombinant erythropoietin was iodinated to a specific activity of 31 to 154 μCi/μg using the Iodogen technique. Biologic activity was preserved as established by an in vitro bioassay using an erythropoietin-dependent erythroleukemia cell line, and all preparations were analyzed by polyacrylamide gel electrophoresis to document purity and integrity of the labeled protein.

Protein assay. Protein content was assayed using the bicinchoninic acid technique (Pierce) with BSA as the protein standard.

RESULTS

Erythropoietin receptor synthesis by Sf9 cells. The kinetics of protein synthesis in Sf9 cells infected with recombinant baculovirus containing the erythropoietin receptor cDNA were analyzed by metabolic labeling for 3 hours with a mixture of \(^{35}\)S-methionine and \(^{35}\)S-cysteine at 24, 48, and 72 hours after infection. Fluorography of solubilized whole-cell lysates following polyacrylamide gel electrophoresis revealed nine proteins for which synthesis was increased in infected cells as compared with noninfected cells. Of particular interest was a group of proteins with molecular masses between 60 and 66 kD for which synthesis was maximal at 48 hours (Fig 1).

Both immunologic and functional assays were used to determine whether the erythropoietin receptor was represented among this group of proteins. Western blotting of whole-cell lysates from Sf9 cells harvested 48 hours after infection using polyclonal antisera reactive with either the amino- or carboxyl-terminus of the murine erythropoietin receptor revealed the presence of immunologically reactive proteins with molecular masses ranging from 62 to 76 kD that were not present in uninfected Sf9 cells (Fig 2). Additionally, a doublet of 39 to 37 kD was also present only in infected Sf9 cells that shared immunologic identity with the erythropoietin receptor. A similar pair of proteins has been observed in Ba/F3 and FCP-1 following transfection with murine erythropoietin receptor cDNA and is probably a consequence of proteolytic degradation.

The functional behavior of these proteins was analyzed by ligand blotting using a protein-renaturation assay. Whole-cell lysates from Sf9 cells harvested 48 hours after infection were subjected to polyacrylamide gel electrophoresis. A prominent band with a molecular mass of approximately 62 kD was present in infected Sf9 cell lysates as compared with
Autoradiography of the exposed membrane (Fig 3B) revealed a single band with a molecular mass of 62 kD, which was absent in uninfected Sf9 cell lysates. Interestingly, binding of erythropoietin to receptors immobilized on a PVDF membrane was so strong it could not be competed completely away (data not shown).

The functional behavior of the erythropoietin receptor expressed in Sf9 cells was also confirmed by binding of the receptor to recombinant human erythropoietin immobilized on Affigel-15, as shown in Fig 4.

Binding of 125I-erythropoietin by the erythropoietin receptor expressed in Sf9 cells. Sf9 cells infected with recombinant baculovirus containing cDNA for the full-length murine erythropoietin receptor inserted the receptor in a functional form and in the correct orientation in the plasma membrane. Intact infected Sf9 cells actively internalized 125I-erythropoietin (Fig 5A). However, in contrast to erythroid progenitor cells, receptor internalization following ligand binding was much slower. Figure 5B illustrates a typical equilibrium binding isotherm for Sf9 cells expressing full-length erythropoietin receptors 48 hours after infection. Scatchard analysis (Fig 5C) revealed a single binding affinity (kD, 330 pmol/L; range, 20 to 760). The wide variation in kD appeared to be a consequence of the number of surface receptors expressed, since, as shown in Fig 5D and confirmed by linear regression analysis, there was a strong inverse correlation (r = .90 and P < .001) between receptor kD and receptor copy number (range, 6 X 10^3 to 8 X 10^4/cell).
Based on the behavior of the solubilized receptor described above, it was possible to purify it by sequential affinity chromatography on Con A-Sepharose and erythropoietin-agarose as shown in Fig 8. Since there is no specific assay for determining receptor specific activity, the extent of purification and the yield through the Con A step cannot be quantified, but starting with 9 mg solubilized whole-cell lysate, 90 µg partially purified receptor protein could be recovered.

Distribution of the erythropoietin receptor in Sf9 cells. Since a smaller proportion of the receptor bound to wheat

Isolated plasma membranes and whole lysates of infected Sf9 cells also bound erythropoietin with a single affinity (Fig 6), but in contrast to cell-surface receptors for erythropoietin, the kD was much higher, 57 and 92 pmol/L, respectively. In a few experiments in which very high numbers of receptors were generated, low-affinity binding (172 nmol/L) was also observed with whole-cell lysates (data not shown). Whether this reflects the immature nature of these receptors is unknown, since pulse-chase studies to examine receptor processing were not performed.

Affinity chromatography of the solubilized erythropoietin receptor. Since the erythropoietin receptor is normally glycosylated, it was of interest to determine its glycosylation state during expression in Sf9 cells. The erythropoietin receptor produced in Sf9 cells bound to both immobilized Con A and wheat germ agglutinin (Fig 7A) and retained biologic activity after elution from the affinity resins (Fig 7B).
germ-agarose as compared with Con A-Sepharose, it seemed likely that this receptor represented a more mature protein. Accordingly, we analyzed distribution of the receptor with respect to glycosylation state in Sf9 cells 48 hours after infection. For this purpose, infected cells were first separated into cytosol and plasma membrane fractions, and solubilized proteins from these fractions were chromatographed on either Con A-Sepharose or wheat germ-agarose and analyzed by polyacrylamide gel electrophoresis and Western blotting. Membrane-bound receptors had a greater apparent molecular mass than cytosolic receptors, and the bulk of receptors that bound to immobilized wheat germ agglutinin were present in the plasma membrane fraction (Fig 9).

Cross-linking of 125I-erythropoietin to Sf9 cells expressing the erythropoietin receptor. Using the homobifunctional cross-linker, DSS, labeled erythropoietin was coupled to proteins on the surface of Sf9 cells, and, after cross-linking, migrated with molecular masses of approximately 100 and 125 kD (Fig 10). Similar observations have been made in COS cells transfected with the murine erythropoietin receptor. An identical result was obtained with the water-soluble...
Fig 6. Equilibrium binding of 125I-erythropoietin to (A) plasma membranes or (B) whole-cell lysates 48 hours after infection of SF9 cells with recombinant baculovirus. Aliquots of plasma membranes or whole-cell lysates were incubated with varying concentrations of 125I-erythropoietin in the presence or absence of excess unlabeled erythropoietin at 4°C for 3 hours. (C) Total 125I-erythropoietin binding; (D) specific binding; (E) nonspecific binding. SD for each data point was less than 10%. (C) Scatchard analysis of the data in (A). (D) Scatchard analysis of the data in (B).

To determine the identity of the two proteins cross-linked to erythropoietin, cross-linked complexes from whole-cell lysates were immunoprecipitated using antibodies to the carboxyl-terminal portion of the erythropoietin receptor and analyzed by polyacrylamide gel electrophoresis. Both the 100- and 125-kD complexes were immunoprecipitated, indicating that each complex contained erythropoietin receptor protein (Fig 11). Similar results were obtained with an N-terminal antiserum (data not shown).

DISCUSSION

SF9 cells infected with a recombinant baculovirus containing cDNA coding for the full-length murine erythropoietin receptor produced large quantities of receptor protein that could be solubilized using CHAPS in a form capable of binding erythropoietin. The erythropoietin receptor synthesized by these cells was glycosylated before insertion in the
ISOLATION OF THE ERYTHROPOIETIN RECEPTOR

Correct orientation into the plasma membrane, and underwent endocytosis after binding to its ligand. Scatchard analysis of binding isotherms using 125I-erythropoietin revealed that erythropoietin receptors expressed on the surface of infected Sf9 cells bound the hormone with a single affinity and a kD of 330 pmol/L. Solubilized receptors in whole-cell lysates and receptors in plasma membranes isolated from infected Sf9 cells exhibited higher-affinity binding (92 and 57 pmol/L, respectively) than cell-surface receptors. Whether the difference in assay methodologies could account for this is unknown. Binding affinities of membrane-bound and solubilized receptors were higher than found by Harris et al. for the extracytoplasmic domain of the human erythropoietin receptor immobilized as a fusion protein on glutathione-agarose (1.5 nmol/L), and by Yet and Jones for a soluble form of the extracytoplasmic domain of the human erythropoietin receptor (1.1 nmol/L). By contrast, COS cells transiently transfected with a plasmid containing the same cDNA used in our studies expressed erythropoietin receptors exhibiting two different binding affinities for erythropoietin, with kD values of 30 and 210 pmol/L, respectively.

With respect to erythropoietin receptors expressed on the surface of Sf9 cells, binding affinity varied inversely with receptor copy number. This could be due to steric hindrance or production of dysfunctional receptors. Alternatively, this could be a reflection of differences in the milieu of insect and mammalian plasma cell membranes. The actual difference in receptor copy number between experiments was probably due to differences in the efficiency of infection in different batches of cells and the timing of cell harvests, since the same lot of recombinant baculovirus was used for all infections for the data shown. However, the inverse reciprocal relationship between receptor copy number and affinity was not restricted to a single virus lot. Although erythropoietin receptors in intact Sf9 cells, Sf9 plasma membranes, or whole-cell lysates exhibited only a single binding affinity, receptor-ligand cross-linking with DSS yielded results similar to those obtained with COS cells transfected with erythropoietin receptor cDNA. In both situations, erythropoietin was cross-linked to proteins with molecular masses of 90 to 105 and 65 kD. By immunoprecipitation (Fig 11), we demonstrated that both of these proteins in Sf9 whole-cell lysates were recognized by erythropoietin receptor antibodies and thus presumably represent differentially modified erythropoietin receptor proteins. It is unlikely that either represents nonreceptor protein, since similar results were obtained by cross-linking with solubilized receptors and membrane-bound receptors and when EDAC was used in place of DSS (data not shown). In

![Fig 7](image-url)
Fig 8. Purification of the full-length murine erythropoietin receptor from solubilized whole-cell lysates of infected Sf9 cells. Whole-cell lysates from infected (lanes 1, 3, and 5) and noninfected (lanes 2, 4, and 6) cells were sequentially chromatographed on Con A-Sepharose (lanes 2 and 4) and erythropoietin-agarose beads (lanes 5 and 6), and eluted proteins were analyzed by SDS–10% polyacrylamide gel electrophoresis with Coomassie blue staining.

Sf9 cells the most abundant species was the 65-kD protein, whereas in COS cells the 90-kD protein was more abundant. However, the identity of proteins cross-linked to erythropoietin in COS cells has not been established. Finally, in experiments not reported here, 125I-erythropoietin incubated with erythropoietin-dependent, murine HCD-57 erythroleukemia cells could be cross-linked with DSS to proteins of 90 and 110 kD. The relation of these proteins to those cross-linked to erythropoietin on Sf9 cells is also unknown.

That there was heterogeneity with respect to receptor molecular weight was apparent from immunoblotting, ligand blotting, and affinity chromatography of the receptors on immobilized erythropoietin. Thus, although immunoblotting revealed a broad band of identity (Fig 2), with ligand blotting, only a narrow band of binding protein was apparent with a molecular mass of 62 kD (Fig 3B). Similarly, receptor protein that bound to erythropoietin-agarose also exhibited a restricted mobility on polyacrylamide gel electrophoresis with an apparent molecular mass of 62 kD (Fig 4). This suggests that of the erythropoietin receptors produced in Sf9 cells, the most abundant species was most prominent in the ligand binding assays. Similar observations have been made by Atkins et al using mammalian erythroid cell membranes.

Although spontaneous homodimerization of the murine erythropoietin receptor has been observed with mutant receptors bearing a cysteine at residue 129 of the extracytoplasmic domain, binding of erythropoietin to a soluble construct of the extracytoplasmic domain failed to induce oligomerization. The hydrodynamic characteristics of solubilized receptor-erythropoietin complexes from splenic membranes of mice infected with the anemia strain of the Friend virus also suggested the existence of erythropoietin-receptor
multimers, but cross-linking studies failed to confirm this. Similarly, cross-linking of erythropoietin bound to infected SF9 cells or solubilized whole-cell lysates failed to reveal multimeric receptor-ligand complexes. Thus, the physiologic correlates required for erythropoietin-receptor oligomerization remain to be established. However, taking everything together, the baculovirus expression system using SF9 cells provides a means of obtaining large quantities of full-length erythropoietin receptor protein that is easily solubilized and purified in a form that binds erythropoietin. Additionally, recombinant baculovirus–infected SF9 cells provide a model system to analyze in a eukaryotic cell the synthesis, processing, and turnover following ligand binding of the full-length erythropoietin receptor, as well as receptor-ligand interactions in solution.

Fig 10. Cross-linking of 125I-erythropoietin to surface proteins of intact infected SF9 cells. SF9 cells were incubated at 4°C for 5 hours with 7.6 ng 125I-erythropoietin in the absence (lane 1) or presence (lane 2) of 850 ng unlabeled erythropoietin before cross-linking with DSS (lanes 1 and 2). Lane 3, infected SF9 cells exposed to 125I-erythropoietin without cross-linking.

Fig 11. Immunoprecipitation of 125I-erythropoietin cross-linked complexes in SF9 whole-cell lysates. Infected and noninfected SF9 whole-cell lysates were incubated with 125I-erythropoietin for 24 hours followed by exposure to DSS. Carboxyl-terminal antibodies were used for immunoprecipitation, and immunoprecipitates were harvested with protein A–Sepharose and analyzed by SDS–7.5% polyacrylamide gel electrophoresis. Lane 1, infected SF9 cell lysate immunoprecipitated with carboxyl-terminal antibodies; lane 2, infected SF9 cell lysate immunoprecipitated with preimmune rabbit serum; lane 3, noninfected cell lysate immunoprecipitated with carboxyl-terminal antibodies.
ACKNOWLEDGMENT

The technical assistance of Mary Ann Isaacs and Evelyn Connor is acknowledged with gratitude.

REFERENCES
24. Dong YJ, Goldwasser E: Evidence for an accessory component that increases the affinity of the erythropoietin receptor. Exp Hematol 16:483, 1992

39. Fraker PJ, Speck JC: Protein and cell membrane iodinations with a sparingly soluble chloramide 1,3,4,6-tetrachloro-3a, 6a diphenylglycouril. Biochem Biophys Res Commun 80:849, 1978

Isolation of the full-length murine erythropoietin receptor using a baculovirus expression system

JL Spivak, LS Avedissian, JH Pierce, D Williams, WD Hankins and RA Jensen