Internalization of Bound Fibrinogen Modulates Platelet Aggregation

By June D. Wencel-Drake, Christel Boudignon-Proudhon, Michael G. Dieter, Anne B. Criss, and Leslie V. Parise

In agonist-stimulated platelets, the integrin \(\alpha_{IIb}\beta_3\) (glycoprotein \(\text{IIb-IIIa}\)) is converted from an inactive to an active fibrinogen receptor, thereby mediating platelet aggregation. With time after agonist addition, at least two events occur: fibrinogen becomes irreversibly bound to the platelet and, when stirring is delayed, platelets lose the ability to aggregate despite the presence of maximally bound fibrinogen. Because we previously identified an actively internalized pool of \(\alpha_{IIb}\beta_3\) in platelets, we explored the possibility that both of these events might result from the internalization of fibrinogen bound to active \(\alpha_{IIb}\beta_3\). Under conditions of irreversible fibrinogen binding, fluorescence microscopy showed that biotinylated fibrinogen is rapidly internalized by activated platelets to a surface-inaccessible, intracellular pool. Flow cytometric analysis showed that the observed loss in accessibility to extracellular probes immediately precedes a loss in ability of the platelets to aggregate. Moreover, prevention of irreversible fibrinogen binding results in a prevention of internalization and a retention of aggregation capacity. Thus, the internalization of fibrinogen from the activated platelet surface appears to contribute not only to the irreversible phase of fibrinogen binding, but also to the downregulation of platelet adhesiveness. Fibrinogen internalization is therefore likely to represent a fundamental regulatory mechanism that modulates platelet function.

© 1996 by The American Society of Hematology.

From the Departments of Medical Laboratory Sciences and Pharmacology, University of Illinois at Chicago, Chicago, IL; and the Department of Pharmacology and Center for Thrombosis and Hemostasis, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Submitted October 12, 1994; accepted August 22, 1995.

Supported in part by a grant-in-aid from the American Heart Association of Metropolitan Chicago (J.W.-D.) and by NIH Grants No. HL38405 and HL45100 (L.V.P.).

Address reprint requests to June D. Wencel-Drake, PhD, University of Illinois at Chicago, 808 S Wood St, M/C 518, Chicago, IL 60612.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1996 by The American Society of Hematology.

602-612
with biotin, fibrinogen was first dialyzed into a buffer of 0.1 moVL NaHCO₃ and 0.1 moVL NaCl, pH 8.2. The concentration of fibrinogen was adjusted to 1.5 mg/ml and sulfo-NHS-biotin was added dry at 0.2 mg/ml of solution. The solution was mixed on an orbital mixer (Adam's Nutator) for 30 minutes at RT. Uncoupled biotin was separated from biotinylated-fibrinogen on a PD-10 column (Pharmacia) blocked with BSA and pre-equilibrated in Ca²⁺/Mg²⁺-free Tyrode’s-HEPES buffer lacking BSA. The extent of biotinylation was determined by Method I, as described by the manufacturer. Acetone precipitation of fibrinogen showed that 17 to 25 mol of biotin was present per 1 mol of fibrinogen. The concentration of biotinylated fibrinogen was determined on Coomassie-blue stained sodium dodecyl sulfate (SDS) gels by densitometry, relative to fibrinogen standards. For flow cytometry studies, fibrinogen was conjugated with fluorescein isothiocyanate (FITC) using FITC-celite as previously described.¹⁵ Fibrinogen (labeled and unlabeled) was centrifuged for 10 minutes in a microfuge (Haeke Buchler Instruments, Inc, Saddle Brook, NJ) at 10,500g before use. In two to three experiments that directly compared the irreversible binding properties of ¹²⁵I-biotinylated fibrinogen to ¹²⁵I-fibrinogen, we found that 39.5% and 60.8% of ¹²⁵I-biotinylated fibrinogen versus 39.2% and 62.2% of ¹²⁵I-fibrinogen became irreversibly bound at 10 minutes and 60 minutes, respectively. These data confirm previous observations that biotinylated fibrinogen retains properties of the native molecule.¹⁸

Fibrinogen binding. Binding of ¹²⁵I-fibrinogen to platelets was performed in a manner similar to that described by Marguerie and Flowl.¹² Briefly, gel-filtered platelets (5 × 10¹¹/0.1 mL final concentration) were added last to an incubation mixture containing ¹²⁵I-fibrinogen (0.1 to 0.35 mg/ml) in a Tyrode’s buffer that included 2.5 nmoVL CaCl₂, 1.25 nmoVL MgCl₂, and 0.6% BSA with ADP (70 μmoVL), and the platelets were incubated at RT without stirring for various times as indicated in the figure legends. Total platelet bound fibrinogen was quantified by centrifuging the platelets (40 minutes to render them permeable. Permeable or intact platelets were rinsed with Tris-buffered saline containing 0.1% BSA and were incubated for 20 minutes at RT with rhodamine-avidin (Vector Laboratories Inc, Burlingame, CA). Staining specificity was assessed in control samples incubated with free biotin only or with biotinylated fibrinogen in the presence of a 90-fold excess of unlabeled fibrinogen. Based on previous experience, the limit of detection of surface-bound molecules by immunofluorescence microscopy (ie, bound fibrinogen) is approximately 2,000 molecules/platelet (J.D. Wencel-Drake, unpublished observations).

In studies using plasmin, platelets incubated with biotinylated fibrinogen were stimulated with 20 μmoVL ADP for 30 minutes at RT in the absence of stirring and allowed to internalize fibrinogen. After uptake, samples were centrifuged through sucrose and resuspended in BSA-free Tyrode’s-HEPES buffer with 1 nmoVL CaCl₂. Samples were subsequently treated with buffer or 2% NaN₃ for 15 minutes at RT, washed, and then exposed to either buffer or 0.5 U/mL plasmin for 30 minutes at RT. After fixation, platelets were permeabilized with lysophosphatidylcholine and counterstained with rhodamine avidin.

In double-label experiments, platelets incubated with biotinylated fibrinogen and MoAb15 (an anti-β₁ antibody that does not inhibit fibrinogen binding) were stimulated with 100 μmoVL thrombin receptor agonist peptide (TRP) corresponding to the tethered ligand sequence SFLLRNPNDFKYPF¹¹ for 30 minutes at RT in the absence of stirring and allowed to internalize fibrinogen. After uptake, samples were fixed and either left intact or permeabilized with lysophosphatidylcholine and counterstained with rhodamine avidin and fluorescein goat anti-mouse IgG (Sigma) and mounted on a droplet of FITC-Guard (Testog Inc, Chicago, IL). Platelets were viewed with a Jenaval phase/fluorescence microscope (Jenoptik, Jena, GmbH, Germany) equipped with an HBO 50-W mercury lamp, IVFI epifluorescence condenser with BF 485, BP 546 excitation filters, and BP 520-560, LP590 barrier filters. Platelets were photographed with Tri-X panchromatic film.

Flow cytometry. Unshed, washed platelets were stimulated with TRP (100 μmoVL) at 22°C in the presence of FITC-fibrinogen (1.47 μmoVL). At a variety of time points, samples were rapidly diluted 1:10 with 4°C buffer and immediately placed on ice to halt further redistribution of α₂β₃-FITC-fibrinogen complexes. Samples were analyzed on a Becton Dickinson FACStar analyzer (Becton Dickinson, San Jose, CA) formatted for single-color analysis. The fluorescence channel was set at logarithmic gain and was calibrated with 2-μm Calibrite Beads (Becton Dickinson). Acquisition was gated using a lower limit threshold that excluded background scatter. Values acquired reflect the mean fluorescence intensity for 10,000 events.

After analyses for log green fluorescence, rabbit antifluorescein was added to each tube, and the same samples were reanalyzed for residual unquenched fluorescence. Because the cells were diluted in ice-cold buffer and maintained at 4°C before FACs analysis, access of the quenching antibody is limited to extracellular/surface-associated fluorescein. We therefore have interpreted protection from quenching by antifluorescein as evidence of internalization.

To calculate the percentage of surface-associated FITC-fibrinogen, logarthmic FACs data, in arbitrary fluorescence units, were converted to linear values while being collected. The amount of quenched fluorescence was then calculated as the difference between total fluorescence and the residual unquenched fluorescence present.
after addition of antifluorescein antibody (see below). This value divided by the quenching efficiency yielded an estimation of the amount of surface-associated fluorescence. The percentage of surface-associated fluorescence was determined as the ratio of surface to total fluorescence. Quenching efficiency was established for each FITC-fibrinogen preparation by evaluating the ability of a standard addition of antifluorescein to quench FITC-fibrinogen added at \(t = 0 \) to resting platelets as well as the ability of antifluorescein to quench FITC-fibrinogen bound to stimulated, fixed platelets.

The percentage of surface-associated FITC-fibrinogen was calculated as follows: (1) Total − Unquenched = Amount Quenched; (2) Amount Quenched ÷ Quenching Efficiency = Amount on Surface. The quenching efficiency was calculated as follows: (3) \(\text{Amount on Surface ÷ Total} \times 100 = \text{Percent on Surface} \).

RESULTS

Contribution of fibrinogen internalization to irreversible fibrinogen binding. We previously identified a mobile pool of \(\alpha_{ii}, \beta_{i} \), that appears to be internalized in resting platelets via the formation of endocytic vesicles,\(^{17,22} \) These results led us to evaluate the localization of fibrinogen bound to \(\alpha_{ii}, \beta_{i} \) on activated platelets. We activated platelets with ADP in the presence of \(^{125} \)I-fibrinogen, followed by the addition of excess EDTA or control buffer. As shown in Fig 1, the proportion of irreversibly bound fibrinogen increased with time so that, within 1 hour, a majority of the bound fibrinogen was not displaced by EDTA, in agreement with previous studies.\(^{10,11,23,24} \) The cellular localization of the irreversibly bound fibrinogen was determined by fluorescence microscopy. For localization studies, biotinylated fibrinogen, which exhibits irreversible binding properties similar to that of \(^{125} \)I-fibrinogen (see the Materials and Methods), was used to distinguish it from endogenous \(\alpha \)-granule fibrinogen. To localize bound fibrinogen by immunofluorescence microscopy, conditions of total and irreversible binding established in

![Fig 1](image)

Fig 1. Time course of specific and irreversible fibrinogen binding. Gel-filtered platelets in the presence of \(^{125} \)I-fibrinogen (330 nmol/L) were activated with ADP (70 \(\mu \)mol/L) in the absence of stirring for the times indicated. Irreversible binding was defined as the amount of binding that remained after an additional 30 minutes of incubation of some samples with EDTA (12 nmol/L). Nonspecific binding was determined from samples in which EDTA was added at time 0. Data shown are specific binding (total − nonspecific) and are the average of three samples from four experiments ± SEM.

Fig 1 were mimicked using biotinylated fibrinogen. Platelets were then fixed and either left intact or permeabilized with Triton X-100 and subsequently stained with rhodamine-avidin to visualize the biotinylated fibrinogen. With resting platelets, there was no surface or intracellular staining of biotinylated fibrinogen. With resting platelets, there was no surface or intracellular staining of biotinylated fibrinogen (Fig 2a and b). Similarly, ADP-stimulated, fixed platelets showed no detectable rim staining pattern, for bound biotinylated fibrinogen (Fig 2c, e, and g), a rim pattern being characteristic of surface localization. In contrast, parallel samples permeabilized with Triton X-100 showed a time-dependent increase in intracellular labeling (Fig 2d, f, and h), suggesting that bound fibrinogen was internalized. As early as 1 minute, biotinylated fibrinogen appeared intracellularly in discreet pinpoints of labeling (Fig 2f and h). When EDTA was added 60 minutes after platelet activation to remove reversibly bound biotinylated fibrinogen, the fluorescent staining pattern of permeabilized platelets was
similar to that observed for total biotinylated fibrinogen binding (Fig 3b v Fig 2h). When the binding of biotinylated fibrinogen was initiated in the presence of a 90-fold excess of unmodified fibrinogen, no surface or intraplatelet staining was observed (Fig 3c and d), further confirming the specificity of the observed staining. Moreover, platelets incubated with free biotin remained unlabeled, showing that the observed staining pattern did not result from nonspecific uptake of biotin (Fig 3e and f). Finally, proteins from platelets with irreversibly bound biotinylated fibrinogen were electrophoresed on reduced SDS-polyacrylamide gels, transferred onto nitrocellulose, and probed with HRP-avidin. These analyses showed no apparent difference in electrophoretic mobility between unbound biotinylated fibrinogen and platelet-associated biotinylated fibrinogen, confirming that the biotinylated fibrinogen was not proteolytically modified (data not shown). These data raise the possibility that irreversible fibrinogen binding may occur as a result of fibrinogen sequestration to an intracellular pool, thereby rendering it inaccessible to antibodies, inhibitory peptides, or EDTA.

Conversely, Peerschke11,21 has suggested that fibrinogen bound to activated platelets remains on the surface because it is accessible to digestion by plasmin. However, plasmin has been shown to activate platelets, inducing \(\alpha\)-granule secretion and redistribution of \(\alpha_{IIb}\beta_3 \),25-28 and thus may induce the re-expression of internalized fibrinogen on the platelet surface. To test this possibility, gel-filtered platelets augmented with 200 mmol/L biotinylated fibrinogen were activated with 20 \(\mu\)mol/L ADP for 30 minutes at RT to stimulate fibrinogen binding and internalization. After an additional incubation in the presence or absence of plasmin (0.5 U/mL) for 30 minutes at RT, platelets were fixed, permeabilized, and counterstained with rhodamine avidin. In the absence of plasmin, the typical staining pattern for internalized biotinylated fibrinogen was observed (Fig 4a). Treatment of parallel samples with plasmin before fixation essentially eliminated the previously observed intracellular staining (Fig 4b). However, metabolic inactivation of platelets with Na\textsubscript{3}NO\textsubscript{3} after internalization of biotinylated fibrinogen but before plasmin treatment, resulted in a retention of intracellular biotinylated fibrinogen (Fig 4d). These data suggest that the ability of plasmin to cleave irreversibly bound/internalized fibrinogen in live (metabolically active) cells most likely stems from the secondary ability of the enzyme to induce the redistribution of fibrinogen and/or \(\alpha_{IIb}\beta_3 \)-fibrinogen complexes to the platelet surface, where fibrinogen becomes accessible for digestion.

Internalization of fibrinogen bound to \(\alpha_{IIb}\beta_3 \) correlates with loss of platelet aggregation. We next examined the possibility that rapid intracellular sequestration of fibrinogen in activated platelets could explain the observation that platelets stimulated with an agonist before initiation of stirring exhibit a time-dependent loss in their aggregation response despite the presence of maximally bound fibrinogen.3,9 To investigate whether internalization of bound fibrinogen is responsible for the decreased ability of agonist-stimulated platelets to aggregate when initiation of stirring is delayed, we first established a time course for loss of the aggregation response. Platelets were stimulated with a thrombin receptor agonist peptide (TRP) corresponding to the tethered ligand sequence (SFLLRNPNKDYEPEF).21 TRP (100 \(\mu\)mol/L) was added to unstirred platelets, after which stirring was initiated at varying times and the aggregation response was recorded. As illustrated in Fig 5a, the aggregation response was lost with time, confirming that TRP elicits a similar response to that reported for ADP, epinephrine, and thrombin.3,9 The observed failure of platelets to aggregate to TRP was not due to a lack of platelet viability with prolonged in vitro incubation times because subsequent stimulation of the same platelets with a different agonist (ADP) elicited an aggregation response (Fig 5b). A different agonist (ADP) was used to assess viability because a second stimulation by TRP in the presence of stirring failed to elicit an aggregation response, as expected, due to desensitization of the thrombin receptor9 (Fig 4b).

To investigate a possible relationship between the time-dependent loss of the aggregation response and internalization of bound fibrinogen in unstirred, stimulated platelets, we used flow cytometry (FACS). For these studies, fibrinogen was directly conjugated with FITC. Previous detailed studies by Hantgan29 have shown that FITC labeling of fibrinogen does not alter its clottability or fibrin assembly function or the rate, extent and specificity of binding to platelets. In preliminary studies, FITC-fibrinogen (0.79
µmol/L) was incubated with citrated PRP for 30 minutes at 22°C in the presence or absence of TRP and examined by FACS to confirm the specificity of binding. As shown in Fig 6, FITC-fibrinogen underwent activation-dependent binding to platelets in response to 100 µmol/L TRP. Similar results were obtained after stimulation with either ADP (70 µmol/L) or phorbol myristate acetate (PMA; 20 nmol/L). Additionally, preincubation with either EDTA (12 mmol/L) or GRGDSP (1 mmol/L) resulted in 95% and 80% inhibition of FITC-fibrinogen binding, respectively.

Having shown specific FITC-fibrinogen binding, we next performed a time course of stimulation of FITC-fibrinogen binding and FACS analyses of FITC-fibrinogen distribution in unstirred platelets. Because FACS lasers readily penetrate intact cells and thus excite both surface and intracellular FITC-fibrinogen, our experimental strategy relied on the use of a rabbit antifluorescein IgG to rapidly quench surface/extracellular fluorescence, thereby distinguishing between surface and internalized FITC-fibrinogen. In these studies, unstirred, washed platelets were stimulated with TRP (100 µmol/L) at 22°C in the presence of FITC-fibrinogen (1.47 µmol/L). At the indicated time points, samples were rapidly diluted 1:100 with 4°C buffer and immediately placed on ice to halt further redistribution of αIIIβ3-FITC-fibrinogen complexes. After FACS analyses for fluorescence fluorescence, rabbit antifluorescein was added to each tube and the same samples were reanalyzed for residual unquenched fluorescence. Because αIIIβ3 internalization is inhibited at 4°C,17,22 access of the quenching antibody is limited to surface-associated fluorescence. As expected, FITC-fibrinogen bound to unstirred TRP-activated platelets with time (Fig 7, O). Despite fibrinogen binding to these platelets, parallel samples preincubated with TRP for similar time points before the initiation of stirring showed a time-dependent loss of the aggregation response (∙). These data suggest that the loss of aggregation response does not result from the dissociation of bound fibrinogen. Because we have hypothesized that internalization of bound fibrinogen modifies the platelet aggregation response, we determined the relative amount of FITC-fibrinogen present on the platelet surface. A plot of the percentage of surface-associated, antibody-accessible FITC-fibrinogen (calculated as described in the Materials and Methods) showed a loss of FITC-fibrinogen from the platelet surface that preceded the observed loss of aggregation (∙). These data suggest that, 60 minutes after the initiation of stimulation in the absence of stirring, fibrinogen is maximally bound, yet platelets fail to aggregate once stirring is initiated. The demonstration that the loss of FITC-fibrinogen from the platelet surface is followed by a loss of aggregation capacity suggests that internalization of fibrinogen bound to αIIIβ3 serves to modulate platelet function.

These data also suggest that as much as 50% of fibrinogen bound to αIIIβ3 can be removed from the platelet surface before the extent of platelet aggregation is significantly affected. This finding is in keeping with aggregation data obtained from studies of platelets from patients with type I Glanzmann’s thrombasthenia, an inherited disorder in which homozygotes with little or no αIIIβ3 show minimal or absent platelet aggregation. However, heterozygotes, which express only 50% to 60% of the normal amounts of αIIIβ3, exhibit normal aggregation responses.11,12 Similarly, it has been proposed that 50%, but not 10%, of the normal levels of αIIIβ3 is required for platelet plug formation and other platelet-associated hemostatic responses.12 Thus, these studies and the present work suggest that platelets have an excess of αIIIβ3 that is well above the amount required to support full aggregation and that there is a threshold level of fibrinogen-bound αIIIβ3 that must be removed from the platelet surface before affecting the extent of aggregation.

To evaluate whether internalization of bound fibrinogen in unstirred, stimulated platelets results in a net loss of αIIIβ3 from the surface, gel-filtered platelets augmented with unlabeled fibrinogen were activated with 10 µmol/L ADP for various times at RT to allow fibrinogen binding and internalization. Because fibrinogen is well above the amount required to support full aggregation, platelets were activated with a concentration of ADP that is well above the amount required to support full aggregation (100 µmol/L ADP for 30 minutes at RT in the absence of stirring and allowed to internalize fibrinogen. After uptake, samples were either treated with buffer or 2% NaN3 for 15 minutes at RT, washed, and then exposed to either buffer or 0.5 U/mL plasmin for 30 minutes at RT. After fixation and permeabilization with lysophosphatidylcholine, platelets were counterstained with rhodamine-avidin. Original magnification x 1,500.

Fig 4. Effects of plasmin on internalized biotinylated fibrinogen. Platelets incubated with biotinylated fibrinogen (Biotin-Fbg) were stimulated with 20 µmol/L ADP for 30 minutes at RT in the absence of stirring and allowed to internalize fibrinogen. After uptake, samples were either treated with buffer or 2% NaN3 for 15 minutes at RT, washed, and then exposed to either buffer or 0.5 U/mL plasmin for 30 minutes at RT. After fixation and permeabilization with lysophosphatidylcholine, platelets were counterstained with rhodamine-avidin. Original magnification x 1,500.
FIBRINOGEN CYCLING REGULATES AGGREGATION

Fig 5. (a) Time-course of loss of aggregation response. In the absence of stirring, washed platelets augmented with 1.47 μmol/L fibrinogen were incubated with thrombin receptor peptide (100 μmol/L TRP; double arrows) for 5, 20, and 60 minutes, at which time stirring was initiated. Maximal aggregation was determined in parallel control samples in which TRP was added immediately before the initiation of stirring (single arrow, 0 time point sample). (b) Effect of ADP on platelets desensitized with TRP. Unstirred platelets were incubated in the presence of 100 μmol/L TRP for 30 minutes (trace B). After initiation of stirring at t = 0, platelets were exposed to a second dose of TRP (100 μmol/L) at t = 4.25 minutes and a subsequent dose of ADP (70 μmol/L) at t = 6.25 minutes. The submaximal response to ADP may result from partial desensitization of the ADP receptor by TRP-stimulated secretion of ADP. In control samples (trace A), TRP was added immediately before the initiation of stirring (single arrow). Similar results were obtained when unstirred platelets were first stimulated with ADP and subsequently stimulated with TRP in the presence of stirring (data not shown).

Fig 6. Activation-dependent binding of FITC-fibrinogen. Fluorescence histograms of resting (REST) overlaid with TRP-stimulated (TRP) platelets in plasma.

Fig 7. Comparison of FITC-fibrinogen binding and surface expression with aggregation. Unstirred, washed platelets augmented with FITC-fibrinogen were stimulated with TRP at 22°C for a variety of times, after which samples were rapidly diluted 1:10 with 4°C buffer and immediately placed on ice to halt further redistribution of αIIIβ3-FITC-fibrinogen complexes. After analyses for fluorescein fluorescence, rabbit antifluorescein was added to each tube, and the same samples were reanalyzed for residual unquenched fluorescence. Curves correspond to (1) a time course of total FITC-fibrinogen binding to unstimulated, TRP-activated platelets C; and (2) a time course of the percentage of surface-associated FITC-fibrinogen A; calculated as described in the Materials and Methods. It should be noted that, at t = 0, less than 10% binding of FITC-fibrinogen was observed, all of which represents surface bound fibrinogen. Parallel unstirred samples were stimulated with TRP for a variety of times at 22°C in an aggregometer, after which stirring was initiated and the aggregation response was recorded. The third curve reflects a time course of percent of total platelet aggregation response after initiation of stirring.

At the times indicated, platelets were rapidly chilled to inhibit internalization and allowed to bind 125I-AP-3 (a monoclonal anti-β3 that does not inhibit fibrinogen binding) for 1 hour at 4°C. As seen in Fig 8, specific binding of 125I-AP-3 did not decrease with time, suggesting that the number of αIIIβ3 molecules on the platelet surface remains relatively constant. Additionally, double-label immunofluorescence experiments using biotinylated fibrinogen and MoAb15 (an anti-β3 antibody that does not inhibit fibrinogen binding) showed that surface αIIIβ3 is readily internalized by activated platelets and colocalizes with internalized fibrinogen (Fig 9).
staining for biotinylated fibrinogen observed in Fig 9b and d, despite excess extracellular biotinylated fibrinogen, suggests that αβ₃, returning to the surface is either unactivated or deactivated. Although the lack of staining could be due to occupancy of αβ₃ by endogenous (unlabeled) fibrinogen, the fact that these platelets fail to aggregate once stirring is initiated (data not shown) makes this interpretation less likely. Thus, cycling of bound fibrinogen from the platelet surface to an intracellular pool is apparently responsible for the loss of aggregation response in unstirred, stimulated platelets as well as the development of irreversible fibrinogen binding.

Based on these results, we reasoned that agents that fail to support the development of irreversible binding should similarly fail to stimulate internalization of bound fibrinogen. Moreover, we predicted that, under these conditions, bound fibrinogen would remain on the platelet surface, where it would be available to participate in cell-cell contact after the initiation of stirring, thereby preventing the loss of aggregation response observed in unstirred, stimulated platelets. To test these hypotheses, delayed stirring experiments were repeated in the presence or absence of Zn²⁺, because previous studies have shown that stimulation of platelets with ADP or thrombin in the presence of Zn²⁺ fails to support the development of irreversible fibrinogen binding. As shown in Fig 10, unstirred platelets stimulated with TRP (100 µmol/L)
L) for 30 minutes in the absence of Zn$^{2+}$ typically fail to aggregate once stirring is initiated (lower trace). In contrast, inclusion of ZnCl$_2$ (0.6 mmol/L) in the incubation mixture resulted in a retention of aggregation response in unstirred, TRP-stimulated platelets (Fig 10, upper trace).

In parallel samples, we investigated the effect of Zn$^{2+}$ on the ability of unstirred, TRP-stimulated platelets to internalize biotinylated fibrinogen using immunofluorescence microscopy. In these studies, unstirred, gel-filtered platelets augmented with biotinylated fibrinogen (430 nmol/L) were stimulated with TRP (100 µmol/L) in the presence or absence of ZnCl$_2$ (0.6 mmol/L) for 30 minutes, at which time samples were fixed and either left intact or permeabilized with Triton X-100 and subsequently stained with rhodamine-avidin. In the absence of Zn$^{2+}$, intact platelets showed no detectable surface staining for biotinylated fibrinogen (Fig 11a), whereas permeabilized cells showed extensive intracellular staining for biotinylated fibrinogen (Fig 11b). In contrast, inclusion of Zn$^{2+}$ in the incubation mixture resulted in the appearance of surface labeling of intact cells for biotinylated fibrinogen (Fig 11c). Permeabilized platelets also show a rim staining pattern (Fig 11d) suggesting that biotinylated fibrinogen was largely excluded from the cell interior.

Taken collectively, these results suggest that the ability of platelets to internalize fibrinogen-bound $\alpha$$_{Ib}$, $\beta$$_3$ downregulates platelet aggregation. Conversely, the inhibition of internalization apparently results in the maintenance of aggregation capacity. Thus, these results suggest that internalization of fibrinogen-bound $\alpha$$_{Ib}$, $\beta$$_3$ represents a fundamental regulatory mechanism that modulates platelet function.

DISCUSSION

In the present study we have observed that bound fibrinogen is rapidly internalized by agonist-stimulated platelets. In addition, fibrinogen internalization correlates with (1) the development of irreversible fibrinogen binding to stimulated, unstirred platelets and (2) a loss in the ability of these platelets to aggregate on initiation of stirring, despite the presence of maximally bound fibrinogen. Thus, internalization of fibrinogen by activated platelets is likely to contribute to or account for both of these events. Based on these results, we propose that fibrinogen redistribution via internalization represents a regulatory mechanism enabling platelets to rapidly clear reactive, surface-associated ligand.

Stimulated fibrinogen binding is critical in platelet aggregation, a process central to hemostasis and thrombosis. Moreover, platelet aggregation can be regulated at the level of $\alpha$$_{Ib}$, $\beta$$_3$, activation or of fibrinogen binding to $\alpha$$_{Ib}$, $\beta$$_3$. The work reported here suggests a third potential level of regulation of platelet aggregation, ie, the internalization of platelet-bound fibrinogen. The observed inaccessibility of bound fibrinogen to rhodamine-avidin, except on membrane permeabilization, suggests that platelets redistribute bound fibrinogen to a membrane-bound intracellular pool. Moreover, the accumulation of fibrinogen into this inaccessible pool is time-dependent, as are the phenomena of irreversible fibrinogen binding and the progressive loss of aggregation capacity. Thus, whereas previous studies have suggested that the development of irreversible fibrinogen binding, loss of accessibility to antifibrinogen antibodies, and a related loss in aggregation capacity are due to a qualitative change in surface bound fibrinogen, other studies have provided an alternative interpretation, namely, that these phenomena could occur as the result of internalization of bound fibrinogen. However, it should be noted that our studies do not suggest that an irreversible interaction between platelet $\alpha$$_{Ib}$, $\beta$$_3$ and fibrinogen cannot or does not occur. Indeed, we and others have identified conditions in which either purified $\alpha$$_{Ib}$, $\beta$$_3$ and fibrinogen or α, $\beta$$_3$ and vitronectin or fibronectin interact with one another in an apparently irreversible manner. Nonetheless, the present study emphasizes that interpretations of data involving fibrinogen binding to acti-
vated platelets must take into account the dynamic nature of \(\alpha_{\text{IIb}} \beta_3 \) receptor cycling.

One possibility raised by the present studies is that internalization of bound fibrinogen may occur as a consequence of receptor-mediated endocytosis. Such internalization would readily explain the loss of fibrinogen dissociability and accessibility. Conversely, Peerschke\(^{11,23} \) has interpreted the accessibility of irreversibly bound fibrinogen to digestion by plasmin as evidence of surface localization. However, plasmin is known to activate platelets by inducing \(\alpha \)-granule secretion and redistribution of \(\alpha_{\text{IIb}} \beta_3 \).\(^{2,28} \) Furthermore, we have shown that irreversibly bound fibrinogen is susceptible to plasmin digestion only in metabolically active cells. Taken collectively, these data suggest that the ability of plasmin to cleave irreversibly bound/internalized fibrinogen most likely stems from the secondary ability of the enzyme to induce the redistribution of fibrinogen and/or \(\alpha_{\text{IIb}} \beta_3 \)-fibrinogen complexes to the platelet surface, where fibrinogen becomes accessible for digestion. Perhaps more importantly, these studies suggest that internalized fibrinogen can be recycled back to the platelet surface in response to secondary stimulation.

In related studies, megakaryocytes have been shown to internalize fibrinogen in an \(\alpha_{\text{IIb}} \beta_3 \)-dependent manner, resulting in the transport of fibrinogen to secretory \(\alpha \)-granules.\(^{18,38-41} \) In addition, the administration of biotinylated fibrinogen to guinea pigs results in the appearance of labeled fibrinogen in the \(\alpha \)-granules of megakaryocytes and platelets.\(^{18,40} \) Similarly, in humans, administration of fibrinogen to an a fibrinogenemic patient resulted in the elevation of platelet fibrinogen at a rate too rapid to be accounted for by megakaryocyte uptake of fibrinogen alone, thus implicating the direct uptake of fibrinogen by circulating platelets.\(^{34} \) The observation that platelets from patients with Glanzmann’s thrombasthenia, ie, platelets with little or no functional \(\alpha_{\text{IIb}} \beta_3 \), show a corresponding decrease or lack of platelet \(\alpha \)-granule fibrinogen additionally supports an \(\alpha_{\text{IIb}} \beta_3 \)-mediated pathway of endocytosis in platelets.\(^{42} \) Moreover, ultrastructural studies have shown that antibody-tagged \(\alpha_{\text{IIb}} \beta_3 \) redistributes to \(\alpha \)-granules of unstimulated platelets.\(^{43} \) Finally, recent studies in our laboratory using monoclonal anti-\(\alpha_{\text{IIb}} \beta_3 \) antibodies and a high-affinity RGD-containing ligand show that \(\alpha_{\text{IIb}} \beta_3 \) is internalized in resting platelets.\(^{17,22} \) Taken collectively, these studies and the present work strongly support the hypothesis that internalization of fibrinogen by platelets occurs via an \(\alpha_{\text{IIb}} \beta_3 \)-dependent endocytic mechanism.

Fibrinogen mediates platelet aggregation by bridging integrin \(\alpha_{\text{IIb}} \beta_3 \) molecules on adjacent platelets.\(^{44} \) Because internalized fibrinogen is inaccessible to antibody (\(R_s = 49 \, \text{Å}^2 \)) probes, it is almost certainly inaccessible to anti-\(\alpha_{\text{IIb}} \beta_3 \) antibodies and a high-affinity RGD-containing ligand that show \(\alpha_{\text{IIb}} \beta_3 \) is internalized in resting platelets.\(^{17,22} \) Taken collectively, these studies and the present work strongly support the hypothesis that internalization of fibrinogen by platelets occurs via an \(\alpha_{\text{IIb}} \beta_3 \)-dependent endocytic mechanism.

Our observation of fibrinogen internalization by activated platelets is consistent with an emerging model of functionally mobile integrin receptors. In recent studies on vascular integrins, it has been reported that \(\alpha_{\text{IIb}} \beta_3 \), \(\alpha_\text{Ib} \beta_2 \), and \(\alpha_\text{IIIb} \beta_3 \) (Mac-1) undergo endocytosis and cycling, whereas \(\alpha_\text{Ib} \beta_1 \), \(\alpha_\text{IIb} \beta_1 \), \(\alpha_\text{IIb} \beta_3 \), and \(\alpha_\text{IIb} \beta_3 \) (LFA-1) do so much more slowly.\(^{17,22,47-51} \) These studies suggest that the key determinant of whether an integrin cycles is an intrinsic property of the particular integrin rather than a particular cell type.\(^{48} \) Although the physiologic/pathologic significance of integrin cycling is not clearly understood, cycling of \(\alpha_\text{IIb} \beta_3 \) has been suggested to mediate cell migration and spreading\(^{47,50} \) and internalization of bacteria by nonphagocytic cells.\(^{52} \) In platelets, antibody- or RGD-peptide–tagged \(\alpha_{\text{IIb}} \beta_3 \) is actively internalized and cycles in resting cells.\(^{17,22} \) The present studies suggest that cycling of \(\alpha_{\text{IIb}} \beta_3 \) in activated platelets modulates the amount of surface-bound fibrinogen.

Although \(\alpha_{\text{IIb}} \beta_3 \) internalization occurs basally in resting platelets, fibrinogen internalization by \(\alpha_{\text{IIb}} \beta_3 \) would appear by necessity to require platelet activation, because a large body of evidence has established that soluble fibrinogen does not bind to \(\alpha_{\text{IIb}} \beta_3 \) on resting platelets.\(^1 \) Although it has recently been suggested that \(\alpha_{\text{IIb}} \beta_3 \) on unstimulated platelets may bind and internalize soluble fibrinogen in vivo,\(^{40} \) our observation that resting platelets readily internalize \(\alpha_{\text{IIb}} \beta_3 \),\(^{17,22} \) but fail to internalize biotinylated fibrinogen (Fig 2b) argues against this possibility. Another possibility is that fibrinogen uptake might occur via fluid-phase pinocytosis without the requirement of binding. If fluid-phase pinocytosis contributed significantly to fibrinogen uptake, then conditions that allow \(\alpha_{\text{IIb}} \beta_3 \) internalization in platelets (eg, incubation with an RGD ligand\(^1 \)) should also allow fibrinogen uptake. However, incubation of platelets with RGD peptides and 125I-fibrinogen completely inhibits any association of 125I-fibrinogen with platelets, thereby arguing against pinocytosis as an internalization mechanism.\(^{53} \) Thus, in the absence of pinocytosis, uptake of fibrinogen that occurs in vivo,\(^{18,38,39,55-55} \) most likely involves transient mild cycles of platelet activation that facilitate fibrinogen binding and uptake. The observation that in vivo, older platelets exhibit a loss of membrane as well as \(\alpha \)-granule contents,\(^{56} \) supports the concept of recurrent cycles of circulating platelet activa-
FIBRINOGEN CYCLING REGULATES AGGREGATION

...tion and recovery. Additionally, platelets have been shown to become activated by shear stress in in vitro flow systems and to recover from mild activation, as evidenced by their ability to undergo reversible activation or aggregation in vitro either spontaneously or more rapidly on exposure to naturally occurring platelet antagonists such as PG12 or nitric oxide. Consequently, fibrinogen uptake itself could aid in the process of platelet recovery from stimulation due to a rapid clearing of this adhesive protein from the platelet surface.

In conclusion, our results suggest that fibrinogen can be rapidly internalized by ADP-stimulated platelets to a nondissociable, antibody-inaccessible, intracellular pool. The correlation of internalization with a loss of aggregation response suggests that loss of aggregability of unstimulated platelets is due to fibrinogen internalization. Thus, αmβ3 internalization, which downregulates surface fibrinogen in circulating platelets appears to represent a novel antithrombotic mechanism.

ACKNOWLEDGMENT

The authors gratefully acknowledge valuable discussions with and critiques provided by Dr Mark H. Ginsberg (Scripps Research Institute, La Jolla, CA) and Dr Stephen C.-T. Lam (University of Illinois, Chicago, IL) and the generous gifts of MoAb15 from Dr Ginsberg and of AP-3 from Dr Peter J. Newman (The Blood Center of South-eastern Wisconsin, Milwaukee, WI). Apprase was the generous gift of Dr Raelene L. Kinlough-Rathbone.

REFERENCES

7. Motulsky HJ, Shattil SJ, Ferry N, Rozansky D, Insel PA: Desensitization of epinephrine-activated platelet aggregation does not alter binding to the α2-adrenergoreceptor or receptor coupling to adenylyl cyclase. Mol Pharmacol 29:1, 1986
35. Peerschke EIB: Irreversible fibrinogen binding is an integral property of GPIIb-IIIa. Blood 82:211a, 1993 (abstr, suppl 1)
36. Orlando RA, Cheres DA: Arginine-glycine-aspartic acid binding leading to molecular stabilization between integrin \(\alpha_\text{IIb} \beta_3 \) and its ligand. J Biol Chem 266:19543, 1991
40. Handagama P, Scarborough RM, Shuman MA, Bainton DF: Endocytosis of fibrinogen into megakaryocytes and platelet \(\alpha \)-granules is mediated by \(\alpha_\text{IIb} \beta_3 \) (glycoprotein IIb-IIIa). Blood 82:135, 1993
47. Szekan MM, Juliano RL: Internalization of the fibrinectin receptor is a constitutive process. J Cell Physiol 142:574, 1990
48. Bretscher MS: Circulating integrins: \(\alpha_\beta_1 \), \(\alpha_\beta_3 \), and Mac-1, but not \(\alpha_\text{IIb} \beta_3 \), \(\alpha_\text{IIa} \beta_1 \), or LFA-1. EMBO J 11:405, 1992
49. Panetti TS, McKeown-Longo PJ: The \(\alpha_\text{IIb} \) integrin receptor regulates receptor-mediated endocytosis of vitronectin. J Biol Chem 268:11492, 1993
50. Bretscher MS: Endocytosis and recycling of the fibrinectin in CHO cells. EMBO J 8:1341, 1989
51. Raub TJ, Kuentzel SL: Kinetic and morphological evidence for endocytosis of mammalian cell integrin receptors by using an anti-fibrinectin receptor \(\beta_1 \) subunit monoclonal antibody. Exp Cell Res 184:407, 1989
52. Ennis E, Isberg RR, Shimizu Y: Very late antigen 4-dependent adhesion and co-stimulation of resting human T cells by the bacterial \(\beta_1 \) integrin ligand invasin. J Exp Med 177:207, 1993
Internalization of bound fibrinogen modulates platelet aggregation

JD Wencel-Drake, C Boudignon-Proudhon, MG Dieter, AB Criss and LV Parise

Updated information and services can be found at:
http://www.bloodjournal.org/content/87/2/602.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml