Differences in Serum Cytokine Levels in Acute and Chronic Autoimmune Thrombocytopenic Purpura: Relationship to Platelet Phenotype and Antiplatelet T-Cell Reactivity

By John W. Semple, Youli Milev, Donna Cosgrave, Meera Mody, Adriana Hornstein, Victor Blanchette, and John Freedman

Patients with both acute and chronic autoimmune thrombocytopenic purpura (AITP) have in vitro lymphocyte defects in the form of platelet-stimulated proliferation and cytokine secretion. A blinded study was performed to determine if these defects are related to serum cytokine levels and/or platelet antigen expression. Compared with controls, 53% of children with chronic AITP, but only 9% of those with acute AITP, had increased serum interleukin-2 (IL-2), interferon-γ, and/or IL-10; however, none of the patients had detectable serum levels of IL-4 or IL-6, cytokine patterns suggesting an early CD4+ Th0 and Th1 cell activation. In children with chronic AITP, the levels of serum IL-2 correlated with in vitro platelet-stimulated IL-2 production. Few (17%) patients with AITP showed platelet activation, as measured by CD62 expression, or abnormal expression levels of platelet membrane glycoprotein (GP) IIB/IIa, but abnormal GPIIb levels were observed in one-third of children with AITP. In contrast to normal controls and patients with nonimmune thrombocytopenia, a significant number of children with acute (80%), chronic (71%), or chronic-complex (55%) AITP had GPIIb+ peripheral blood cells expressing HLA-DR. HLA-DR was variably coexpressed on distinct smaller and larger-sized GPIIb+ cell populations with CD41, CD45, CD14, CD80, and/or glycoporphin molecules. GPIIb+ cells isolated from spleens of patients with chronic AITP had high expression (49% ± 30%) of HLA-DR and splenic T cells had a high level of in vitro platelet-stimulated IL-2 secretion compared with controls. Platelet HLA-DR expression correlated inversely with platelet count, but not with therapy, serum cytokines, or in vitro lymphocyte antiplatelet reactivity. The results indicate that platelet HLA-DR expression is a common occurrence in patients with immune thrombocytopenia, whereas a large subpopulation of children with chronic AITP can be identified by increased serum cytokine levels and in vitro platelet-stimulated IL-2 secretion by lymphocytes, suggesting that differences exist in the immune pathogenesis of acute and chronic AITP, particularly at the level of platelet reactive T cells.

© 1996 by The American Society of Hematology.

MATERIALS AND METHODS

Patients. Eleven children with acute idiopathic AITP, 23 children with chronic idiopathic AITP, and 11 children with chronic-complex AITP were tested. Twelve normal children and 13 normal adults were also tested. Eleven patients (2 with acute, 6 with chronic, and 3 with chronic-complex AITP) were examined on multiple occasions. The above samples were all tested blinded as to category/diagnosis. Table 1 summarizes the clinical data for the blinded study groups. Acute AITP was defined as thrombocytopenic purpura of abrupt onset, often within several weeks of a history of infection, in the absence of other identifiable causes of increased platelet destruction. Chronic AITP was defined as thrombocytopenia (platelet count, but not with therapy, serum cytokines, or in vitro lymphocyte antiplatelet reactivity. The results indicate that platelet HLA-DR expression is a common occurrence in patients with immune thrombocytopenia, whereas a large subpopulation of children with chronic AITP can be identified by increased serum cytokine levels and in vitro platelet-stimulated IL-2 secretion by lymphocytes, suggesting that differences exist in the immune pathogenesis of acute and chronic AITP, particularly at the level of platelet reactive T cells.

© 1996 by The American Society of Hematology.

From the Division of Hematology, St Michael's Hospital, and The Hospital for Sick Children, Departments of Pharmacology, Pediatrics, and Medicine, University of Toronto, Toronto, Ontario, Canada.

Submitted June 5, 1995; accepted January 3, 1996.

Supported by grants from the Medical Research Council of Canada (MT-11676) and The Hospital for Sick Children Foundation (XG 92-058).

Address reprint requests to John W. Semple, PhD, Division of Hematology, St Michael's Hospital, 30 Bond St, Toronto, Ontario, Canada, M5B 1W8.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1996 by The American Society of Hematology.

0006-4971/96/8710-0002$3.00/0
count <150 x 10^9/L) persisting greater than 6 months, normal or increased marrow megakaryocytes, and no secondary immune or nonimmune abnormality that could account for the thrombocytopenic state. Chronic-complex AITP was defined as chronic AITP associated with immune neutropenia and/or hemolytic anemia, often associated with other autoimmune disorders, eg, systemic lupus erythematosus, diabetes mellitus, dysgammaglobulinemia, or thyroid dysfunction. In addition, samples from 12 adult patients with nonimmune thrombocytopenia secondary to chemotherapy for acute leukemia were examined and samples from 16 normal healthy adult laboratory volunteers were tested as daily controls.

Preparation of peripheral blood mononuclear cells (PBMC), spleen cells, and platelets. For PBMC, heparinized blood was layered on a 1.077 g/ml Percoll cushion and centrifugated at 2,500g for 30 minutes and PBMC were aspirated from the top of the gradient and washed twice. Five children with chronic AITP underwent splenectomy during the study. Portions of the spleens were minced and crushed and fragments were allowed to settle in RPMI-1640. The indicated FITC- or PE-labeled antibodies for 30 minutes in the dark at 22°C, washed, and analyzed using a FACScan flow cytometer (Becton Dickinson) equipped with an argon ion laser at 15 mW; 20,000 events were acquired. The number of antibody binding sites per cell was calculated with Simply Cellular beads (Flow Cytometry Standards Corp, San Juan, Puerto Rico) by translating the fluorescence intensity (MESF) of the labeled cells to the number of bound antibod
SERUM CYTOKINE LEVELS IN AITP

Il-2 (pg/ml)

0 200 400 600 800 1000 1200 1400 1600 1800

B

IL-10 (pg/mL)

0 100 200 300 400 500 600 700

C

IFN-γ (pg/mL)

0 100 200 300 400 500 600 700

A

Healthy Children Healthy Adults Acute AITP Chronic AITP Chronic Complex AITP

Fig 1. Scatter diagram showing the (A) IL-2, (B) IL-10, and (C) IFN-γ serum cytokine levels in the patient and control groups. Cytokine levels were determined by ELISA and assay sensitivities were determined to be as follows: IL-2, >62.5 pg/mL; IL-10, >31.25 pg/mL; and IFN-γ, >50 pg/mL. Results are expressed as the cytokine concentration (in picograms per milliliter) of the sera samples. IL-4 and IL-6 results were negative in all the patients and controls (ELISA sensitivities: IL-4, >12.5 pg/mL; IL-6, >6.25 pg/mL; data not shown).

In vitro antiplatelet T-cell reactivity. To assess whether PBMC from patients and controls produce IL-2 when stimulated with platelets in vitro, 7-day antigen-presenting cell (APC) assays were used. Figure 2 shows the levels of in vitro IL-2 secretion by platelet-stimulated PBMC from the patients. PBMC from 5 of 8 of children with acute AITP, the patients and controls. Figure 1 shows the levels of (A) IL-2, (B) INF-γ, and (C) IL-10 in both patients and controls. Only 1 of 11 patients with acute AITP had significantly elevated levels of cytokines, ie, IL-2 (1,750 pg/mL), IL-10 (320 pg/mL), and IFN-γ (500 pg/mL). However, in patients with chronic AITP, 9 of 17 patients had increased serum IL-2 (mean concentration, 360 pg/mL); 3 of the 9 also had elevated levels of IL-10 and 2 of these 3 patients had increased IFN-γ. Three other patients with chronic AITP only had elevated serum levels of IL-10. Three of seven patients with chronic-complex AITP had increased serum IL-2; 2 of these 3 patients also had elevated levels of IFN-γ and 1 of the 3 had detectible serum IL-10. The differences in the number of patients positive for serum IL-2 levels between acute and chronic AITP were significant (P < .001). Two children with chronic AITP were examined for serum cytokine levels on two occasions and were found to have consistent levels at both testing dates (eg, for IFN-γ, 300 and 340 pg/mL for one child and 110 and 130 pg/mL for the second child). IL-4 and IL-6 serum levels were undetectable in the serum of all patients and controls in this study.

To assess whether PBMC from patients and controls produce IL-2 when stimulated with platelets in vitro, 7-day antigen-presenting cell (APC) assays were used. Figure 2 shows the levels of in vitro IL-2 secretion by platelet-stimulated PBMC from the patients. PBMC from 5 of 8 of children with acute AITP,
from 12 of 19 of those with chronic AITP, and from 5 of 9 of those with chronic-complex AITP proliferated and secreted measurable IL-2 upon platelet stimulation. Of the in vitro responding cultures, patients with chronic AITP consistently had higher levels of IL-2 (mean, 3.6 U) in the culture supernatants, whereas lower amounts were seen in the APC cultures from those patients with acute AITP (mean, 0.7 U) or chronic-complex (mean, 0.6 U). In 6 of 10 adult patients with chronic AITP (not otherwise included in this analysis), PBMC secreted IL-2 upon in vitro platelet stimulation (mean, 6 U). Splenic mononuclear cells from 4 of 5 patients with chronic AITP had the highest in vitro platelet-stimulated IL-2 production (mean, 12 U/mL). Figure 2B shows that in vitro antiplatelet T lymphocyte IL-2 secretion significantly correlated with the presence of increased serum IL-2 (r = .975, P < .001).

Platelet phenotype. A number of patients in each group had abnormal platelet phenotype results, compared with the number tested. Increased platelet-associated (PA)-IgG was the most common Ig detected, being present in 73% and 65% of children with acute and chronic AITP, respectively, and in 82% of those with chronic-complex AITP. Increased PA-C3 was observed in approximately half of children with AITP and increased PA-IgM and PA-IgA were less frequently observed (40% and 5%, respectively).

Figure 3A shows the individual Δ values by which the level varied from daily normal controls; the mean number of GPIIbIIIa molecules per platelet for the daily normal controls was 47.1 ± 2.8 × 10^3 molecules/cell (N = 16). Few patients with AITP (6 of 40 children overall) showed abnormal levels of platelet surface GPIIbIIIa (CD41a). The overall mean ± SD levels (×10^3 molecules/platelet) of GPIIbIIIa were 47.1 ± 3.2 for acute AITP, 45.8 ± 6.9 for chronic AITP, and 49.4 ± 3.9 for chronic-complex AITP; these levels were not different from the levels observed in normal children (47.0 ± 3.2) or normal adults (48.4 ± 1.6). Figure 3B shows the individual Δ values; the mean number of GPIb molecules per platelet for the daily normal controls was 19.9 ± 1.4 × 10^3. Fifteen of 43 children with AITP overall had abnormal levels of GPIb (CD42b) and this was most common in those with acute AITP (5 of 11 children). Mean ± SD levels (×10^3) of GPIb were lower in normal children than in normal adults (18.2 ± 1.3 vs 20.2 ± 1.7, respectively; P < .005). The mean GPIb levels were 19.8 ± 4.9 for children with acute AITP, 20.9 ± 3.1 for those with chronic AITP, and 20.6 ± 2.7 for those with chronic-complex AITP; these were not different from normal adult values, but for chronic and chronic-complex AITP, the mean GPIb levels were increased from those of normal children (P < .02).

Platelet activation was assessed by CD62 (P-selectin; GMP140) expression. Immediate fixation in PFA was used to prevent in vitro platelet activation. Figure 3C shows the Δ values for platelets expressing CD62 for each individual; in normal children, the mean percentage of platelets expressing CD62 was 1.0% ± 1.5%. Only 17% of children with acute AITP and 13% of those with chronic AITP had an increase in platelets expressing CD62; an increase in platelets expressing CD62 was observed in 25% of children with chronic-complex AITP. Excluding 1 patient who had 35% of his platelets expressing CD62, the differences between patients with AITP and normal patients were not significant. When platelets were not fixed with PFA, 10% to 50% of the platelets from normal controls and from patients had increased expression of CD62.

Figure 3D shows the Δ values for the platelets expressing HLA-DR in children with AITP; in the daily normal controls, the mean proportion of platelets expressing HLA-DR was 0.08% ± 0.05%. Although in individual patients only small proportions of platelets expressed increased HLA-DR, most children with acute (80%), chronic (76%), or chronic-complex (55%) AITP exhibited a small but distinct increase in platelets expressing increased HLA-DR (defined as the mean channel fluorescence >2 SD above the mean for the daily normal controls). In normal children and in normal adults, 0.09% ± 0.06% and 0.13% ± 0.12%, respectively, of platelets expressed HLA-DR (P < .05). In contrast, there was a 10-fold increase (1.1% ± 0.9%) of platelets from patients with acute, chronic (0.9% ± 0.8%), and chronic-complex AITP (0.9% ± 1.1%) expressing increased HLA-DR. Nonetheless, the majority of platelets remained HLA-DR-. Compared with normal children, the increases observed in platelets expressing HLA-DR were significant (P < .002 v acute AITP, P < .01 v chronic AITP, and P < .02 v chronic-complex AITP). In 1 patient with acute AITP (not included in the calculations above), 24% of the platelets expressed HLA-DR. None of 12 patients with acute leukemia and non-immune thrombocytopenia showed an increased number of platelets expressing HLA-DR, compared with normal controls (data not shown).

Figure 4A through D shows a typical two-color flow cytometric analysis of PRP platelets derived from a healthy child (Fig 4A and C) and a child with chronic AITP (Fig 4B and D) with 0.07% and 5.0%, respectively, of GPIb+ platelets expressing increased HLA-DR. None of 12 patients with acute leukemia and non-immune thrombocytopenia showed an increased number of platelets expressing HLA-DR, compared with normal controls (data not shown).
gated populations of GPIb⁺ cells shown in Fig 4E. The increased peripheral blood GPIb⁺ cell-associated HLA-DR expression in patients with AITP was associated with the larger-sized GPIb⁺glycophorin⁺ cells (gate R2; 6%), the smaller-sized GPIb⁺ microparticles (gate R3; 4%), and the GPIb⁺ intact platelets (gate R1, 3%). The GPIb⁺ cells in gates 2 and 3 also variably coexpressed CD45 (4% and 2%, respectively), CD14 (5% and 33%, respectively), and CD80 (4% and 22%, respectively) molecules. The glycophorin-positive events in gate 2 represented approximately 2% of total red blood cells in the blood sample. The observations on the peripheral blood platelets from patients with AITP were also seen, in greater degree, in platelets derived from the spleens of patients with chronic AITP, eg, a mean of 50% of gate 1 intact platelets expressed HLA-DR. Table 2 indicates that, in the other gated populations within spleen-derived GPIb⁺ cells, there were, however, several significant differences in the coexpression of HLA-DR and CD45, CD14, CD80, and glycophorin compared with peripheral blood GPIb⁺ cells, eg, in splenic-derived cells in gate 2, 93% of the GPIb⁺/HLA-DR⁺ cells also expressed CD14, 80% coexpressed CD80, and 64% coexpressed glycophorin. Coexpression on single cells was confirmed by examining sorted populations using fluorescent microscopy.

Correlations between the results. Overall, there was an inverse correlation of platelet count with proportion of platelets expressing HLA-DR, as shown in Fig 5A (correlation coefficient [r] = −.5837, P < .01). In individual patients studied over time, as the platelet counts improved (with or without therapy), the number of platelets expressing HLA-DR was reduced (r = −.5531, P < .01; data not shown). On 9 of 10 occasions in which the platelet count increased, there was a decrease in platelet HLA-DR. On occasions in which the platelet count remained unchanged on subsequent testing, HLA-DR remained unchanged in 2 and increased in 1. One patient with chronic AITP (data not shown) was examined on 7 separate occasions (before and after IVIgG therapy, over the course of 7 months); the r value for relationship between HLA-DR expression and platelet counts in this patient was −.5730 (P = .023). Platelet HLA-DR expression was not correlated to serum IL-2 levels (r = −.11, P = not significant [NS]; Fig 5B), and it did not correlate with the other serum cytokine levels (data not shown).

In a number of cases, patients had received therapy within the month before testing. Therapies included IVIg, anti-D, and steroids in patients with acute AITP (N = 6); steroids, IVIg, and splenectomy in children with chronic AITP (N
Fig 4. Flow cytometric analysis of HLA-DR expression on platelet populations prepared from washed PRP or whole blood. The upper panels show an FSC versus SSC dot plot of PRP platelets derived from (A) a healthy child and (B) a child with chronic AITP. The middle panels (C and D) represent the corresponding dot plots for HLA-DR/GPIb fluorescence of the ungated PRP platelet populations. Twenty thousand events were acquired in (A) through (D) and fluorescent markers were set on FITC- and PE-isotypic control antibodies. The lower panels show a typical three-color analysis of GPIb' cells from the peripheral blood of a child with chronic AITP. (E) shows cells acquired through an FSC versus GPIb FL1 live gate. Gates (R1 through R3) were drawn around the clustered populations of cells. (F) shows the second (FL2: PE-antiglycophorin) and third (FL3: PerCP-anti-HLA-DR) colors of the ungated GPIb' cells from (E). A summary of three-color fluorescent results for each gated population is shown in Table 2. The numbers indicate the percentage of cells in each quadrant. For clarity, only 2,000 events in each panel are shown.

Table 2. Three-Color Analysis of Gated Platelet Populations

<table>
<thead>
<tr>
<th>Marker</th>
<th>Gate R1: Intact Platelets</th>
<th>Gate R2: Macroparticles</th>
<th>Gate R3: Microparticles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co</td>
<td>Pat</td>
<td>Pat Spl</td>
</tr>
<tr>
<td>GPIb*45'DR'</td>
<td>>99</td>
<td>97</td>
<td>NT</td>
</tr>
<tr>
<td>GPIb*45'DR'</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPIb*45'DR'</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GPIb*45'DR'</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>GPIb*14'DR'</td>
<td>>99</td>
<td>97</td>
<td>45</td>
</tr>
<tr>
<td>GPIb*14'DR'</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GPIb*14'DR'</td>
<td>1</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>GPIb*14'DR'</td>
<td>2</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>GPIb*80'DR'</td>
<td>>99</td>
<td>97</td>
<td>47</td>
</tr>
<tr>
<td>GPIb*80'DR'</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GPIb*80'DR'</td>
<td>1</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>GPIb*80'DR'</td>
<td>2</td>
<td>41</td>
<td>3</td>
</tr>
<tr>
<td>GPIb*GLY'DR'</td>
<td>>99</td>
<td>93</td>
<td>49</td>
</tr>
<tr>
<td>GPIb*GLY'DR'</td>
<td>5</td>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>GPIb*GLY'DR'</td>
<td>1</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>GPIb*GLY'DR'</td>
<td>2</td>
<td>41</td>
<td>0</td>
</tr>
</tbody>
</table>

Results are expressed as mean percentage of total cells within each gate (R1-R3) shown in Fig. 4E. Fifty thousand events were acquired for analysis. The relative size of the cells within each gate are shown in Fig 4E (there was no significant difference in GPIb' cell size in control or patient groups).

Abbreviations: Co, GPIb' cells from whole blood of healthy control children (N = 10); Pat, GPIb' cells from whole blood of children with chronic AITP (N = 6); Pat Spl, GPIb' splenic cells from children with chronic AITP (N = 4); NT, not tested.
cause Boshkov et al. in 1992 described a single patient with acute AITP who had increased platelet HLA-DR expression, which declined with response to therapy, we investigated platelet HLA-DR expression in patients with different forms of AITP. Because platelet dysfunction and IgG-mediated platelet activation have been described in AITP and these functional changes may be reflected by changes in platelet membrane antigen expression, we performed a blinded study in children with acute and chronic AITP to quantitatively assess changes in specific and nonspecific platelet surface molecules and to relate them to changes in serum cytokine levels and to in vitro platelet-stimulated activation by T lymphocytes.

Patients with acute AITP differed from those with the chronic form of the disorder in that, in the former, few patients had increased cytokines, whereas many (53%) of the latter had increased levels of serum IL-2, IFN-γ, and/or IL-10. None of the patients tested had detectable serum levels of IL-4 or IL-6. The increased serum IL-2 significantly correlated with in vitro platelet-stimulated IL-2 production by T-helper cells. Thus, a population of children with chronic AITP may have abnormal in vivo T-cell activation causing accumulation of serum cytokines. Cytokine secretion patterns can distinguish CD4+ T-helper cells into Th1 and Th2 cells. Th1 cells primarily secrete IL-2 and IFN-γ and mediate DTH-like responses, whereas Th2 cells can secrete IL-4, IL-5, IL-6, and/or IL-10 and are superior in helping humoral responses, particularly IgE. A third group of Th cells is termed Th0 cells and is thought to be less differentiated than Th1 and Th2 cells, because they can secrete most or all of the cytokines made by either cell type, particularly IL-2 and IL-10. Our results suggest that the pattern of cytokine levels in chronic AITP may reflect an early Th cell activation, i.e., primarily IL-2 secretion with some patients exhibiting Th0 or Th1 activation (IL2, IL-10, and/or IFN-γ). However, because IL-10 can be produced by other cell types and 3 of the patients with chronic AITP had elevated levels of only IL-10, it is unclear what the cellular source of this cytokine is in the patients with chronic AITP. Our in vivo results correlate with a recent report showing in vitro Th1 cytokine patterns in mitogen-stimulated CD2+ T cells from adult patients with chronic AITP.

IL-2 plays a pivotal role in human immune responses and increased serum IL-2 is reported in various autoimmune diseases. Hypersecretion of endogenous IL-2 may lead to autoagression by a number of mechanisms, eg, by bypassing the need for T-cell costimulation, by upregulating costimulatory CD80 molecules on B cells, or by the induction of other cytokines such as IFN-γ and IL-10. Increased IL-10 was also seen in a number of patients with AITP. IL-10 has potent immunosuppressive effects on human B cells and suppressive effects on monocytes/macrophages that leads to downregulation of inflammatory cytokines such as IL-6. We found no detectable levels of IL-6 in these patients. The ability of IL-10 to suppress the production of inflammatory cytokines suggest that it may have a strong anti-inflammatory role in vivo; although the role of IL-10 in chronic AITP is unclear, it may help in reducing antiplatelet reactivity and destruction. We are currently testing this hy-

DISCUSSION

Autoimmune pathogenesis may result, in part, from the immune-targeted tissue abnormally expressing self molecules such as HLA-DR, which in turn may activate autoreactive T lymphocytes and autoantibody synthesis. Abnormal target tissue expression of HLA-DR has been described in autoimmune diseases, such as on the islet β cells in type 1 diabetes and on myelin in multiple sclerosis. Transient expression of HLA-DR can be induced by inflammatory mechanisms and/or cytokines such as IFN-γ and may be responsible for increasing the intensity of an immune response or directing a tissue-specific immune response. Because Boshkov et al. in 1992 described a single patient with acute AITP who had increased platelet HLA-DR expression, which declined with response to therapy, we investigated platelet HLA-DR expression in patients with different forms of AITP. Because platelet dysfunction and IgG-mediated platelet activation have been described in AITP and these functional changes may be reflected by changes in platelet membrane antigen expression, we performed a blinded study in children with acute and chronic AITP to quantitatively assess changes in specific and nonspecific platelet surface molecules and to relate them to changes in serum cytokine levels and to in vitro platelet-stimulated activation by T lymphocytes.

Patients with acute AITP differed from those with the chronic form of the disorder in that, in the former, few patients had increased cytokines, whereas many (53%) of the latter had increased levels of serum IL-2, IFN-γ, and/or IL-10. None of the patients tested had detectable serum levels of IL-4 or IL-6. The increased serum IL-2 significantly correlated with in vitro platelet-stimulated IL-2 production by T-helper cells. Thus, a population of children with chronic AITP may have abnormal in vivo T-cell activation causing accumulation of serum cytokines. Cytokine secretion patterns can distinguish CD4+ T-helper cells into Th1 and Th2 cells. Th1 cells primarily secrete IL-2 and IFN-γ and mediate DTH-like responses, whereas Th2 cells can secrete IL-4, IL-5, IL-6, and/or IL-10 and are superior in helping humoral responses, particularly IgE. A third group of Th cells is termed Th0 cells and is thought to be less differentiated than Th1 and Th2 cells, because they can secrete most or all of the cytokines made by either cell type, particularly IL-2 and IL-10. Our results suggest that the pattern of cytokine levels in chronic AITP may reflect an early Th cell activation, i.e., primarily IL-2 secretion with some patients exhibiting Th0 or Th1 activation (IL2, IL-10, and/or IFN-γ). However, because IL-10 can be produced by other cell types and 3 of the patients with chronic AITP had elevated levels of only IL-10, it is unclear what the cellular source of this cytokine is in the patients with chronic AITP. Our in vivo results correlate with a recent report showing in vitro Th1 cytokine patterns in mitogen-stimulated CD2+ T cells from adult patients with chronic AITP.

IL-2 plays a pivotal role in human immune responses and increased serum IL-2 is reported in various autoimmune diseases. Hypersecretion of endogenous IL-2 may lead to autoagression by a number of mechanisms, eg, by bypassing the need for T-cell costimulation, by upregulating costimulatory CD80 molecules on B cells, or by the induction of other cytokines such as IFN-γ and IL-10. Increased IL-10 was also seen in a number of patients with AITP. IL-10 has potent immunosuppressive effects on human B cells and suppressive effects on monocytes/macrophages that leads to downregulation of inflammatory cytokines such as IL-6. We found no detectable levels of IL-6 in these patients. The ability of IL-10 to suppress the production of inflammatory cytokines suggest that it may have a strong anti-inflammatory role in vivo; although the role of IL-10 in chronic AITP is unclear, it may help in reducing antiplatelet reactivity and destruction. We are currently testing this hy-
hypothesis, but, at the present time, it remains unclear whether the alterations in cytokines play a primary role in the etiology of AITP or are rather a reflection of an ongoing inflammatory and/or immune response.

We and others have previously reported that PBMC from patients with chronic AITP have enhanced platelet-stimulated IL-2 secretion in vitro. It was currently found that, in children with chronic AITP, serum cytokine levels correlated well with in vitro platelet-stimulated IL-2 production. In contrast, only 1 of 11 children with acute AITP had significant levels of serum IL-2, IL-10, and IFN-γ, despite the fact that about one-third of these patients also have PBMC that mediated weak (0.7 U) in vitro platelet-stimulated IL-2 reactivity. These observations may relate to different immune pathogeneses in the various forms of AITP. Acute AITP may be due to a cross-reactive immune response directed against an infectious agent, e.g., a virus, whereas chronic AITP may be generated by a more platelet-specific autoimmune pathogenesis, possibly at the level of T cells. In acute AITP, the lymphocyte immune response, although slightly cross-reactive to normal platelets in vitro, may be due to a stimulus that does not generate the same serum cytokine profile as the autoimmune response directed at the platelets themselves in the chronic form of the disorder. The enhanced serum cytokine levels, the increase in activated T cells, and the strong in vitro antiplatelet T-cell response in patients with chronic AITP may be due to a continually platelet-stimulated autoimmune response. We are currently studying these platelet-reactive T-cell responses at the clonal level.

A number of surface platelet-specific and nonspecific antigenic markers were quantitated in children with AITP and controls. Although some of the children with AITP in each group did exhibit abnormalities, in general, children with either the acute or chronic forms of AITP had platelets with normal expression of GPIIbIIIa and the CD62 activation molecule. These results support those of Chong et al, who reported that, in contrast to patients with consumptive thrombocytopenia, plasma P-selectin levels were not increased in patients with AITP. The low expression of surface GPIIbIIIa observed in some patients (Fig 3A) may have been due to blocking by high-affinity autoantibodies to GPIIbIIIa, which are frequently present in chronic AITP. An increase in GPIb expression, on the other hand, was present in one-third of the children with AITP and was more common in those with acute AITP; this may reflect a form of platelet activation, in which surface GPIb expression may be downregulated or upregulated. However, the observed increases, although statistically significant, were slight.

HLA-DR expression is normally primarily restricted to mature APC of the immune system, i.e., monocytes/macrophages, dendritic cells, B cells, and activated T cells. Although megakaryocytes have been shown to express class II molecules on their surface in vitro, platelets normally express only HLA class I and not class II molecules. However, the majority of the patients with AITP had a small but distinct increase in the proportion of platelets expressing HLA-DR. This was not seen in patients with nonimmune thrombocytopenia (data not shown) or in normal controls. Further three-color flow cytometric analysis indicated that the HLA-DR expression was coexpressed with GPIb and GPIIbIIIa on intact peripheral blood platelets and was also associated with CD14, CD45, and CD80 expression on platelet microparticles and macrophages. These observations were particularly evident when splenic samples from patients with AITP were compared with the corresponding patients' peripheral blood platelets. Whereas the HLA-DR expression seen on GPIb-positive intact platelets may, as described above, have a role in the autoimmune pathogenesis of AITP, that seen on microparticles may reflect destructive mechanisms, i.e., platelet fragments may combine with leukocyte (monocyte) fragments, yielding microparticles expressing both platelet and leukocyte antigens. The amplified findings in the spleen samples may reflect the locus of destruction, with the peripheral blood samples reflecting only those cells not sequestered or destroyed in the spleen. However, we were consistently unable to show increased HLA-DR expression, although statistically significant, were slight.

Although platelet HLA-DR expression was of low levels, 1 patient with acute AITP had a dramatic increase in platelet HLA-DR (24%) that was similar to that found by Boshkov et al in acute AITP. None of the platelet phenotypic markers with AITP were compared with the corresponding patients' peripheral blood platelets. Whereas the HLA-DR expression seen on GPIb-positive intact platelets may, as described above, have a role in the autoimmune pathogenesis of AITP, that seen on microparticles may reflect destructive mechanisms, i.e., platelet fragments may combine with leukocyte (monocyte) fragments, yielding microparticles expressing both platelet and leukocyte antigens. The amplified findings in the spleen samples may reflect the locus of destruction, with the peripheral blood samples reflecting only those cells not sequestered or destroyed in the spleen. However, we were consistently unable to show increased HLA-DR expression, although statistically significant, were slight.

Approximately 20% of children with acute AITP will progress to the chronic form of the disease. It would be beneficial if markers of this transition were available. Although Ware and Howard found no major phenotypic differences in T cells between children with acute and chronic AITP, functional analyses showed that the majority of platelet-reactive T-cell clones were derived from the children with chronic AITP. None of the platelet phenotypic markers investigated in the current report clearly distinguished the different clinical forms of AITP; however, we are observing
these children to determine if these results may have a predi-
tive value for determining progression to chronic AITP.
Increased serum cytokines, together with in vitro platelet-
stimulated IL-2 production, may be important tests in exam-
ining differences in the pathophysiology of the acute and
chronic forms of AITP and may help predict which children
with acute AITP will develop the chronic form of the disease.

REFERENCES
1. Blanchette VS, Kirby MA, Turner C: Role of intravenous immu-

nageglobulin G in autoimmune hematologic disorders. Semin Hem-

atol 29:72, 1992
Blanchette VS: Autoantibodies against platelet membrane glycopro-
teins in children with acute and chronic immune thrombocytopenic
3. McIntosh S, Johnson C, Hartigan P, Baumgarten A, Dwyer JM:
Immunoregulatory abnormalities in children with thrombocytopenic
4. Mizutani H, Tsubakio T, Tomiyama Y, Katagiri S, Tamaki T,
Kurata Y, Yonezawa T, Tarui S: Increased circulating Ia-positive T
lymphocytes in patients with idiopathic thrombocytopenic purpura.
WJ: Sex difference in the CD4+CD45R+ T lymphocytes in normal
individuals and its selective decrease in women with idiopathic
thrombocytopenic purpura. Clin Immunol Immunopathol 52:473,
1989
6. Hynes KB, Karpakrin S: In vitro suppressor T lymphocyte
dysfunction in autoimmune thrombocytopenic purpura associated
7. Semple JW, Freedman J: Increased anti-platelet T helper lym-
phocyte reactivity in patients with autoimmune thrombocytopenic
cell activity in patients with autoimmune thrombocytopenic purpura.
9. Ware RE, Howard TA: Phenotypic and clonal analysis of T
lymphocytes in childhood immune thrombocytopenic purpura. Blood
82:2137, 1993
10. Boshkov L, Kelton J, Halloran PF: HLA-DR expression by
platelets in acute idiopathic thrombocytopenic purpura. Br J Haema-
tol 81:552, 1992
11. Dunstan RA: Use of flow cytometry to study the binding of
various ligands to platelets. J Histochem Cytochem 33:1176, 1985
between HLA and platelet-specific antibodies by flow cytometry.
13. Bottazzo GF, Pujol-Borrell R, Hanafusa T: Role of HLA-
DR expression and antigen presentation in induction of endocrine
14. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift
PGF, Gamble DR: In situ characterization of autoimmune phenomen-
en and expression of HLA molecules in the pancreas in diabetes
15. Traugott U, Scheinberg LC, Raine CS: On the presence of
Ia-positive endothelial cells and astrocytes in multiple sclerosis les-
sions and its relevance to antigen presentation. J Neuroimmunol 8:1,
1985
16. Nepom G, Erlich H: MHC class-II molecules and autoimmu-
17. Sugiyama T, Okuma M, Ushikubi F, Sensaki S, Kanaji K,
Uchino H: A novel platelet aggregating factor found in a patient
with defective collagen-induced platelet aggregation and autoim-
18. Yanabu M, Nomura S, Fukuroi T, Soga T, Kondo K, Sone
N, Kitada C, Nagata H, Kokowa T, Yasunada K: Synergistic action
in platelet activation induced by antiplatelet autoantibody in ITP. Br
J Haematol 78:87, 1991
19. Yanabu M, Nomura S, Fukuroi, T, Suzuki M, Kawakatsu T,
Kido H, Yamaguchi K, Kokowa T, Yasunaga K: Platelet activation
induced by an antiplatelet autoantibody against CD9 antigen and its
inhibition by another autoantibody in immune thrombocytopenic
20. Hashimoto Y, Tanabe J, Mohri H, Ohkubo T: Autoimmune
antibody in a patient with idiopathic thrombocytopenic purpura re-
acted to the platelet low molecular weight glycoproteins and activ-
21. Mosmann TR, Coffman RL: Th1 and Th2 cells: different
patterns of lymphokine secretion lead to different functional proper-
22. Yssel H, de Vries J, de Waal-Malefyt R, Roncarolo MJ, Ab-
rams JS, Lahesmaa R, Spits H, de Vries J: IL-10 is produced by
subsets of human CD4+ T cell clones and peripheral blood T cells.
J Immunol 149:2378, 1992
K, Alvezer-Mon M: Abnormal γIFN and αTNF secretion in purified
CD4+ cells from autoimmune thrombocytopenic purpura (ATP) pa-
tients: Their implication in the clinical course of the disease. Am J
Hematol 49:271, 1995
25. Trotter JL: Serial studies of serum interleukin-2 in chronic
progressive multiple sclerosis patients: Occurrence of bursts and
26. Tebib JG, Boughabha H, Letroublon MC: Serum IL-2 level
in rheumatoid arthritis: Correlation with joint destruction and disease
progression. Eur Cytokine Network 2:239, 1991
27. Huang Y-P, Perrin LH, Miescher PA, Zuber RH: Correlation of
T and B cell activities in vitro and serum IL-2 levels in systemic
28. Schwartz RH: A cell culture model for T lymphocyte clonal
29. Valle A, Aubry J-P, Durand I: IL-4 and IL-2 upregulate
the expression of antigen B7, the B cell counterstructure to T cell CD28:
An amplification mechanism for B-T cell interactions. Int Immunol
3:229, 1991
30. Sarvetnick N, Shizuru J, Liggitt D, Martin L, McIntyre B,
Gregory A, Parshov T, Stewart T: Loss of pancreatic islet tolerance
31. DeFrance T, Vandevliet B, Briere F, Durand I, Roussel F,
Banchereau J: Interleukin 10 and transforming growth factor β cooper-
ate to induce anti-CD40-activated naive human B cells to secrete
32. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra
A: IL-10 inhibits cytokine secretion by activated macrophages. J
Immunol 147:3815, 1991
33. Howard M, Muchamuel T, Audrade S, Mennon S: Anti-in-
34. Kaplan C, Morinet F, Carton J: Virus-induced autoimmune
thrombocytopenia and neutropenia. Semin Hematol 1:34, 1992
35. Chong BH, Murray B, Berndt MC, Dunlop LC, Brightt
T, Chesterman CN: Plasma P-selectin is increased in thrombotic
consumptive platelet disorders. Blood 83:1535, 1994
36. McMillan R: Antigen-specific assays in immune thrombo-
37. George JN, Pickett EB, Saucerman S, McEver R, Kunicki
TJ, Kieffer N, Newman PJ: Platelet surface glycoproteins. Studies

Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura: relationship to platelet phenotype and antiplatelet T-cell reactivity

JW Semple, Y Milev, D Cosgrave, M Mody, A Hornstein, V Blanchette and J Freedman