RAPID COMMUNICATION

Human Thrombopoietin Levels Are High When Thrombocytopenia Is Due to Megakaryocyte Deficiency and Low When Due to Increased Platelet Destruction

By Robert V.B. Emmons, Diane M. Reid, Robert L. Cohen, Gloria Meng, Neal S. Young, Cynthia E. Dunbar, and N. Raphael Shulman†

Thrombopoietin (TPO), the ligand for c-mpl, stimulates proliferation of committed megakaryocytic progenitors and induces maturation of megakaryocytes. To better understand factors regulating TPO levels, we measured blood levels of TPO in patients with impaired platelet production due to aplastic anemia (AA) and with platelet destructive disorders, including idiopathic thrombocytopenic purpura (ITP), posttransfusion purpura (PTP), drug purpura (DP), and X-linked thrombocytopenia (XLTP). The TPO receptor capture enzyme immunoassay (EIA) used had a detection limit of ~150 to 200 pg/mL. TPO was undetectable in 88 of 89 normal individuals. Eighteen of 19 patients with AA and a mean platelet count (MPC) of 18,000/μL had markedly elevated TPO levels (mean, 1,467 pg/mL; range, 597 to 3,834 pg/mL). Eight AA patients who responded to immunosuppressive therapy with their MPC increasing to 140,000/μL (92,000 to 175,000/μL) had substantial decreases in TPO (mean, 440 pg/mL; range, 193 to 771 pg/mL). Initial TPO levels did not differ significantly between responders and nonresponders. In contrast, all 21 patients with ITP and an MPC of 16,000/μL (1,000 to 51,000/μL) had undetectable TPO levels, as did 6 patients with acute PTP or DP and 2 patients with XLTP. Megakaryocyte mass, reflected in the rate of platelet production, appears to be the major determinant of TPO levels in thrombocytopenic patients rather than circulating platelet levels per se. Measurement of serum TPO may be useful in differentiating thrombocytopenias due to peripheral destruction from those due to thrombopoietic failure. This is a US government work. There are no restrictions on its use.

T

HROMBOPOI ETIN (TPO), also known as c-mpl ligand or megakaryocyte growth and development factor (MGDF), has been isolated and cloned by several groups.1,6 It promotes proliferation of committed megakaryocytic precursors and differentiation of immature megakaryoblasts in vitro and in vivo.1,4,6-8 Expression of c-mpl in humans is restricted to nonlymphoid hematopoietic tissues including CD34+ cells, megakaryocytes, and platelets, with lower levels detected in endothelial cells.9,10 The predominant sites of TPO production are liver and, to a lesser degree, kidney, although the specific cell(s) responsible for production is not known.11,13 Many lines of evidence indicate that TPO acting through c-mpl is essential for normal thrombopoiesis. For example, c-mpl antisense oligodeoxynucleotides inhibit synthesis of c-mpl mRNA in CD34+ cells and prevent them from forming megakaryocytic colonies.9 In addition, both c-mpl-deficient mice and homozygous TPO-deficient mice have markedly reduced megakaryocytes and circulating platelets.11,12

The homeostatic factors that maintain relatively constant platelet mass in normal individuals have yet to be clearly defined. Recent studies of experimental thrombocytopenia induced in animals by chemotherapy, irradiation, or antiplatelet antibodies indicate an inverse relationship between circulating platelet mass and TPO levels.5,16-21 However, other observations, particularly in humans, indicate that megakaryocyte mass may be the principal regulator of TPO levels.16-21 To understand this apparent inconsistency, we measured TPO by receptor capture enzyme immunoassay (EIA) in patients with equivalent degrees of thrombocytopenia due to two different mechanisms: decreased platelet production with megakaryocytic hypoplasia (AA) and increased platelet destruction with normal or increased megakaryocyte mass and documented or presumed normal platelet production (idiopathic thrombocytopenic purpura [ITP], posttransfusion purpura [PTP], drug purpura [DP], and X-linked thrombocytopenia [XLTP]).

MATERIALS AND METHODS

Patient selection. Patients were referred to the Clinical Center for diagnosis and/or treatment of thrombocytopenia or AA. Serum or plasma anticoagulated with EDTA or citrate was collected using a single syringe technique during periods of thrombocytopenia or after recovery and stored at -20°C. AA patients had moderate or severe disease by standard criteria22 and received immunosuppressive therapy with antithymocyte globulin (ATG) or ATG/cyclosporine under NHLBI Institutional Review Board-approved research protocols.23 ITP was diagnosed clinically as thrombocytopenia with normal or increased narrow megakaryocytes and no concurrent abnormality that could otherwise explain thrombocytopenia. In all cases, diagnoses of PTP and DP were serologically confirmed. Congenital microthrombocytopenia and eczema, with (Wiskott-Aldrich syndrome) or without immunodeficiency, were the bases for diagnosis of XLTP.11 In autologous platelet survivals were performed according to general guidelines,24 with the modification that apheresis rather than phlebotomy was performed to ensure ample red blood cell (RBC)-free platelets for labeling.

EIA for TPO. A full description of our TPO assay is in preparation (G. Meng, personal communication). Briefly, microtiter wells were incubated overnight with 2 mg/mL rabbit F(ab')2 antihuman Fc (Jackson Immuno Research, West Grove, PA) and then for 2
hours with 100 ng/mL of a chimeric mAb-IgG. Twofold dilutions of samples (starting at 1:5) and standards were added to wells and incubated for 1 hour. Bound TPO was quantitated colorimetrically by addition of biotinylated affinity-purified polyclonal rabbit anti-TPO (Genentech, South San Francisco, CA) followed by streptavidin-conjugated peroxidase. Recombinant full-length TPO produced in mammalian cells was used to generate a curve that was subjected to a four-parameter nonlinear regression curve-fitting program. The working range of the assay, representing only data points on the linear portion, was 150 pg/mL to 10 ng/mL. The performance characteristics of the assay are similar in serum and plasma (independent of anticoagulant). TPO was below limits of detection in 88 of 89 normal individuals. The assay preferentially detects active full-length TPO yielding similar values to bioassays performed at Genentech.

RESULTS

Table 1 provides clinical data and TPO levels on each patient studied. TPO levels in AA patients were threefold to 10-fold above the minimum detectable amount of 200 pg/mL. Ten patients unresponsive to immunosuppressive therapy had a mean platelet count (MPC) of 14,000/µL (2,000 to 34,000/µL) and a mean TPO level of 1,511 pg/mL (597 to 3,834 pg/mL). Eight patients who subsequently responded to immunosuppressive therapy had an initial MPC of 23,000/µL (5,000 to 61,000/µL) and a mean TPO level of 1,517 pg/mL (710 to 2,880 pg/mL). After recovery, when their MPC was 134,000/µL (92,000 to 175,000/µL), TPO levels were substantially decreased but still greater than controls (mean, 440 pg/mL; range, 193 to 771 pg/mL). Pretreatment bone marrow cellularity was severely depressed, with absent megakaryocytes in all but one AA patient. TPO was not detectable in 1 pancytopenic AA patient who had a platelet count of 19,000/µL and relative sparing of megakaryocytes on bone marrow biopsy. The patients responding to therapy had significant improvement in marrow cellularity, although megakaryocyte numbers, not quantitated precisely, appeared subnormal.

All 28 patients with acute and chronic thrombocytopenias resulting from platelet destruction had undetectable TPO levels. TPO levels in patients with ITP and those with aplastic anemia (before response to therapy) were significantly different (P < .0005) despite equivalent platelet counts (P = .54). Of the 21 ITP patients, 14 had undergone splenectomies and none had ever received cytotoxic chemotherapy. Survival of autologous 111In-labeled platelets in ITP patients no. 1, 3, 7, 13, 15, and 21 was decreased approximately proportionally to decreases in platelet levels, indicating that production was normal (data not shown). An allogeneic platelet survival on patient no. 1 with XLTP was 8 days and autologous survival approximately 2 days, consistent with the diagnosis.

DISCUSSION

Our data corroborate findings of others that TPO levels are characteristically high in humans and experimental animals with insufficient platelet production secondary to megakaryocytic hypoplasia. However, studies limited to those particular thrombocytopenias have not clearly distinguished whether elevated TPO levels correlate inversely with megakaryocyte or platelet mass. Our findings of undetectable TPO levels in a second group of patients with equal degrees of thrombocytopenia, but plentiful megakaryocytes and normal platelet production, help clarify this issue. Megakaryocyte mass, platelet turnover, or some parameter of megakaryocytic function, not circulating platelet number, appears to be the major regulator of TPO levels.

Before the isolation of TPO, bioassay measurements of
serum megakaryocyte colony-stimulating activity (Meg-CSA) also correlated with megakaryocytic mass. Patients with AA or amegakaryocytic thrombocytopenia had increased levels of Meg-CSA compared with normals, whereas a small number of patients with ITP did not. More recently, MGDF was elevated in 11 patients after myeloablative therapies and marrow or autologous peripheral stem cell transplants, at a time when marrow cellularity was likely suppressed, but before platelet counts decreased to less than 100,000/μL. There is compelling evidence from animal experiments that platelet mass alone does not control TPO levels. Meg-CSA in plasma collected from sublethally irradiated rats was elevated even when platelets were transfused to maintain normal levels after irradiation. Additionally, mice lacking the p45 subunit of erythropoietin transcription factor NF-E2 have unaltered endogenous TPO levels despite absolute thrombocytopenia due to maturation arrest of megakaryocytes.

Studies of immunologically mediated thrombocytopenias have yielded some conflicting data between humans and rodents with respect to relationships between TPO levels and fluctuations in platelets or megakaryocytes. Acute thrombocytopenia induced by antiplatelet serum was associated with transitory markers of enhanced megakaryocytic stimulating activity in several early animal experiments. More specifically, recent increases in TPO were detected in mice and rabbits within 3 to 24 hours of precipitous decreases in platelets caused by antiplatelet sera. The duration of TPO elevations ranged from hours to several days. Comparable acute measurements on humans have not been reported. However, 2 of our patients with PTP and DP had undetectable TPO levels as early as days 1 and 2. If megakaryocyte mass or function is the major modulator of TPO in all species, one might postulate that hyperimmune antisera used experimentally induced megakaryocytes. However, this is unlikely because the same antisera, administered repeatedly or in great excess to rodents did not maintain thrombocytopenia. Rodents have more rapid platelet turnover than humans and marked compensatory platelet production in response to thrombocytopenia due to marrow hypoplasia. Our single AA patient with residual megakaryocytes and a low TPO level may have had peripheral destruction contributing to his thrombocytopenia. There are reports suggesting that a minority of ITP patients have low rather than characteristic normal or increased platelet production. Measurement of TPO levels may help determine whether this subset of ITP patients truly exists.

Our observations raise the possibility that exogenous TPO might speed recovery from acute immune thrombocytopenias and elevate platelet counts in those patients with chronic ITP in whom the rate of platelet destruction can be overcome by physiologically attainable increases in production.

REFERENCES

a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77:1117, 1994


Human thrombopoietin levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction

RV Emmons, DM Reid, RL Cohen, G Meng, NS Young, CE Dunbar and NR Shulman