Human Leukemia Cell Lines Bind Basic Fibroblast Growth Factor (FGF) on FGF Receptors and Heparan Sulfates: Downmodulation of FGF Receptors by Phorbol Ester

By John P. Liuzzo and David Moscatelli

Basic fibroblast growth factor (bFGF) has been identified as an important cytokine for blood cells. To determine whether hematopoietic cells have receptors that recognize bFGF, the ability of human leukemia cell lines to bind 125I-bFGF was investigated. Specific bFGF-binding sites were identified on K562 and HL60 cells, but not on U937 cells. DAMI cells bound low amounts of 125I-bFGF specifically. Binding of 125I-bFGF to K562 cell surfaces was reduced in a dose-dependent manner by unlabeled bFGF or by heparin. Scatchard analysis of binding to K562 cells revealed two classes of binding sites: 1,860 high affinity binding sites per cell with a dissociation constant (kd) of 192 pmol/L, and 36,600 low affinity sites per cell with a kd of 9.3 n mole/L. Chemical crosslinking experiments with K562, HL60, and DAMI cells revealed receptor-growth factor complexes with molecular masses of 140 to 160 kD, similar in size to complexes formed by known receptor species. Binding of 125I-bFGF to K562 cells was sensitive to heparinase treatment but not to chondroitinase treatment, suggesting that heparan sulfate proteoglycans (HSPGs) may be responsible for the low affinity binding sites. To further investigate whether K562 cells make HSPG, the incorporation of 35SO$_4$ into proteoglycans was assessed.

Metabolically labeled cell-surface proteoglycans with molecular masses of 180 to 300 kD were identified in K562 cells. These proteoglycans were sensitive to heparinase, demonstrating that K562 cells synthesize bFGF-binding HSPG. Treatment of K562 cells with phorbol-12-myristate-13-acetate (PMA) caused a loss of bFGF-binding capacity. This decreased binding capacity reflected a rapid loss of high affinity receptors. The ability to form bFGF-receptor complexes decreased by 65% to 70% within 1 hour and declined continuously thereafter. The decrease in binding of bFGF was not due to an autocrine downregulation of bFGF receptors, because there was no increase in bFGF after PMA treatment as detected by Western blotting, and suramin, which blocks bFGF binding to receptors, did not prevent the loss of receptors after exposure to PMA. In addition, inhibitors of either protein synthesis or protease activity did not prevent the loss of bFGF receptors in PMA-treated cells. In summary, this work demonstrates that leukemia cell lines have receptors that specifically bind bFGF and supports the hypothesis that bFGF acts directly on certain blood cells to stimulate their proliferation.

© 1996 by The American Society of Hematology.

A lower affinity (kd = 2 x 10$^{-9}$ mol/L), large capacity class of binding sites for bFGF has also been identified. These low affinity receptors are heparan sulfate proteoglycans (HSPGs) found on the cell surface and in the extracellular matrix. Basic FGF can be released from the HSPGs by enzymatic degradation of the glycosaminoglycan with heparanase or of the HSPG core protein with plasmin. In addition, phospholipid-anchored HSPGs can be cleaved by phospholipase C, releasing a biologically active bFGF-HSPG complex. HSPG-bound bFGF can also be released by an excess of soluble heparin or heparan sulfate. Both cell-associated and soluble heparan sulfates potentiate the binding of bFGF to its high affinity receptors.

A role for bFGF in hematopoiesis has recently become evident, but the mechanism has not been fully elucidated. Basic FGF is a potent mitogen for passaged bone marrow stromal cells and considerably delays their senescence. In addition, low concentrations of bFGF (0.2 to 2.0 ng/mL) induce myelopoiesis in long-term bone marrow culture. It

From the Department of Cell Biology and the Kaplan Comprehensive Cancer Center, New York University Medical Center, New York, NY.

Submitted June 3, 1994; accepted August 10, 1995.
Supported by grants from the National Institutes of Health (NIH; CA42229 and CA34289). J.P.L. was supported in part by a training grant (T35 DK07421) from the NIH.
Address reprint requests to David Moscatelli, PhD, Department of Cell Biology, New York University Medical Center, 550 First Ave., New York, NY 10016.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1996 by The American Society of Hematology.
is possible that bFGF acts indirectly by stimulating bone
marrow stromal cells to secrete signaling molecules that
stimulate the hematopoietic stem cells to proliferate. How-
ever, increasing evidence shows that bFGF may also act
directly to stimulate blood cell proliferation. Purified popu-
lations of human hematopoietic stem cells have been shown
to respond to bFGF with increased survival and proliferative
ability, suggesting a permissive role for bFGF in hematopoi-
etic colony formation.26-28 Therefore, bFGF produced by
bone marrow stromal cells could act through direct interac-
tions with FGFRs on the surfaces of blood cells, thereby
stimulating their proliferation and function.

To determine whether bFGF can interact directly with
blood cells, we have investigated the presence of functional
bFGF receptors on blood cell-derived cell lines. We have
found that the K562 human erythroleukemia,32,33 DAMI hu-
man megakaryoblastic leukemia,34,35 HL60 human promy-
elocytic leukemia,32 cell lines bind bFGF on typical trans-
membrane protein receptors. In addition, K562 cells express
HSPGs that can bind bFGF and, therefore, may be involved
in modulation of its biologic activity. We have also found
that the bFGF receptors can be modulated after treatment of
K562 cells with phorbol ester.

MATERIALS AND METHODS

Cell culture. K562, DAMI, HL60, and U937 cells were grown
in suspension using RPMI 1640 medium supplemented with 10%
feetal calf serum (Intergen, Purchase, NY), 100 U/mL penicillin,
and 100 μg/mL streptomycin in a humid atmosphere with 5% CO2
t37°C. In some experiments, the K562, DAMI, U937, or HL60 cells
were treated for varying lengths of time with 10−4 mol/L phorbol
12-myristate-13-acetate (PMA; Sigma, St Louis, MO), which has
been used to induce differentiation of these cells.36,37 The cells
were harvested after PMA treatment using Ca2+ and Mg2+-free phosphate-
buffered saline (PBS) containing 10 mmol/L EDTA and a sterile
rubber cell scraper to detach the cells from the plastic dishes.

125I labeling of bFGF and aFGF. Recombinant human bFGF
was a gift from Syenegen, Inc (Boulder, CO) and was labeled with
1 mCi Na125I (NEN, Boston, MA) using the Iodo-Gen procedure
(Pierce Chemical Co, Rockford, IL) as described previously.17 Ra-
diolaabeled bFGF was separated from unincorporated 125I on a G-25
Sepharose column (Pharmacia, Piscataway, N.J). The specific activity
was 1,400 to 2,800 cpm/nmol.

Recombinant human aFGF was provided by Dr J. Schlessinger
of New York University Medical Center (New York, NY) and was
labeled with 125I using chloramine T (Eastman Kodak Co, Rochester,
NY), as described.18 Radiolaabeled aFGF was separated from unincor-
porated 125I by affinity chromatography on heparin-Sepharose (Phar-
macia). The specific activity was 300 to 600 cpm/nmol.

Analysis of iodinated bFGF or aFGF by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiogra-
phy revealed a single band migrating at the appropriate position.
The recovery of bFGF or aFGF after iodination was determined by
competition binding assays.19 CHO-DG44 cells expressing FGFR2−
were incubated for 2 hours at 4°C with an amount of radiolaabeled
bFGF or aFGF sufficient to saturate high affinity binding sites and
varying concentrations of unlabeled ligand. The amount of radiola-
labeled bFGF bound to receptors was determined as described.18 The
concentration of radiolaabeled bFGF or aFGF was considered to be
equal to the concentration of unlabeled ligand that inhibited binding
of labeled ligand to receptors by 50%. In these experiments, nonspe-
cific binding was less than 10% of the total binding (see Table 1).

Greater than 80% of the biologic activity of bFGF was recovered
after iodination.

Binding of 125I-bFGF or 125I-aFGF to leukemia cells. Cells
grown in suspension were collected and counted with a hemocytom-
eter for all experiments. The cells were resuspended at 2.5 × 106/mL in
serum-free RPMI medium containing 0.15% gelatin, 25 mmol/L
HEPES pH 7.5, and 10 μg/mL 125I-bFGF or 125I-aFGF. This
concentration of bFGF was sufficient to saturate receptors, as experi-
ments with other cell types have shown.17,18 In some experiments, the
gelatin in the binding medium was replaced by bovine serum
albumin (BSA), and identical results were obtained. For each sample,
1 mL of the cell suspension in a 1.5-mL Eppendorf tube was incub-
ated on an end-over-end mixer at 4°C for at least 2 hours to achieve
equilibrium between bFGF and receptors. At the end of the incuba-
tion, the cells were washed twice with cold PBS. After each wash,
the cells were collected by centrifugation, and the wash fluid
was aspirated. After the last wash, the bottoms were cut from the
Eppendorf tubes and counted for gamma emission for 1 minute each.
All experiments were performed in either duplicate or triplicate.

In some experiments, CHO-DG44 cells expressing FGFR-1α were
used as controls. These cells express 100,000 FGFRs per cell as
determined by Scatchard analysis of 125I-bFGF binding data.20 The
CHO/FGFR-1 cells also produce bFGF-binding HSPGs.19 With these
cells, salt washes were used to separate radiolabeled bFGF bound to
HSPGs from that bound to receptors.19 CHO/FGFR-1 cells that had been
incubated with 125I-bFGF were washed twice with PBS to remove
unbound ligand, twice with 2 mol/L NaCl in 20 mmol/L
HEPES pH 7.4 to remove HSPG-bound ligand, and three times with
2 mol/L NaCl in 20 mmol/L sodium acetate pH 4.0 to remove FGFR-
bound ligand.

Crosslinking experiments. To identify FGFRs, complexes be-
 tween 125I-bFGF or 125I-aFGF and receptor were crosslinked, extracts
of the cells were run on SDS-polyacrylamide gels, and the complexes
were detected by autoradiography. Briefly, the cells (5 × 105 or 10
× 105 cells per condition) were incubated with 125I-bFGF or 125I-
aFGF at 4°C as described above. After two washes with PBS, cells
were resuspended in 1 mL PBS containing 1 mmol/L homobifunc-
tional crosslinking agent, bis(sulfosuccinimidyl)suberate (BS3;
Pierce Chemical Co), and incubated at room temperature for 30
to 60 minutes on an end-over-end mixer. The reaction was quenched
by addition of 50 mmol/L glycine, and after 5 minutes, the cells
were collected by centrifugation, washed two times with PBS, and
extracted in 1% Triton X-100 containing 2% glycerol, 0.1 mg/mL
aprotinin, 0.1 mg/mL leupeptin, and 20 mmol/L EDTA. Extracts
were incubated on ice for 10 to 20 minutes before centrifugation
at 16,000g for 1 minute to pellet insoluble material. The supernatants
were mixed with SDS-PAGE reducing sample buffer, heated in
a boiling water bath for 2 minutes, and loaded on an SDS-polyacryl-
amide gel. The gels were comprised of a 3% to 15% gradient resolv-
ing gel and a 3% stacking gel. After electrophoresis, the gels were
fixed in 25% methanol/10% acetic acid for 1 hour. Gels were dried
and exposed to phosphorimagery screens (Molecular Dynamics, Sun-
nnyvale, CA) for 2 days or exposed to XAR-5 film (Eastman Kodak)
for 2 to 3 weeks.

Heparinase or chondroitinase treatment of K562 cells. K562
cells (20 × 105) were incubated with 5 U/mL Flavobacterium hep-
arinum heparinase or 0.02 U/mL Proteus vulgaris chondroitinase
ABC (Sigma) in PBS containing 0.1% BSA for 2 to 4 hours at 25°C.
Control cells were either untreated or incubated in PBS alone at
room temperature for the same period. Cells were collected by cen-
trifugation and washed two times with PBS. The treated cells
were divided into equal aliquots and were used in binding or crosslinking
experiments as described above.

35S04 labeling of K562 cells. K562 or HL60 cells were grown in
normal culture medium containing 40 μCi/mL sodium 35SO4 (NEN).
After a 24-hour incubation at 37°C, the cells were collected, washed
two times with PBS, and counted. Some cells were treated with heparinase or chondroitinase as described above. Samples (5 x 10^6 cells per sample) were analyzed by SDS-PAGE followed by autoradiography.

Western blotting of endogenous bFGF. Untreated and PMA-treated K562 or DAMI cells (2.5 x 10^6 cells per condition) were lysed as described above and sonicated. Samples were run under reducing conditions on SDS-PAGE with 3% to 15% gradient separating gels. After electrophoresis, proteins were transferred via semidy or wet methods for 2 or 15 hours to Immobion PVDF membranes (Millipore Co., Bedford, MA) with a pore size of 0.45 μM. After transfer, the blots were soaked in 2-propanol for 1 minute to fix the proteins to the membrane and then were washed three times in PBS-Tween and incubated for 2 hours with 0.2 μCi/mL 125I-protein A (ICN, Irvine, CA). Blots were washed two more times in PBS-Tween, and Immunoreactive bands were detected by autodiography.

RESULTS

Characterization of bFGF binding sites in leukemia cell lines. The ability of the leukemia cell lines K562, DAMI, HL60, and U937 to bind 125I-bFGF was measured. Cells in suspension were incubated at 4°C in medium containing 10 ng/ml 125I-bFGF, and after 2 hours, the amount of 125I-bFGF bound was determined. K562 and HL60 cells bound significant amounts of 125I-bFGF. Approximately 50% of the binding was competed by inclusion of 100-fold excess unlabeled bFGF (Fig 1). DAMI cells bound much lower amounts of 125I-bFGF. An excess of unlabeled bFGF competed poorly for binding, reducing the amount of 125I-bFGF bound to these cells by 23%. U937 cells bound little 125I-bFGF, and excess unlabeled bFGF did not reduce the amount bound. As bFGF binds to both receptors and HSPGs on cells and soluble heparin can compete for binding to HSPGs, the effect of soluble heparin on the binding of 125I-bFGF to leukemia cell lines was determined. Heparin reduced the binding of 125I-bFGF to K562 and HL60 cells by approximately 66% and 68%, respectively (Fig 1). Similarly, 10 μg/mL heparin competed for binding of 125I-bFGF to DAMI cells, reducing binding by 27%. Heparin had no effect on the already low basal levels of 125I-bFGF binding to U937 cells. The combination of 10 μg/mL heparin and excess unlabeled bFGF reduced binding of 125I-bFGF slightly more than either heparin or unlabeled bFGF alone. Thus, bFGF binds to sites on K562 and HL60 cells that can be inhibited both by excess unlabeled bFGF and by heparin. The remaining 125I-bFGF bound in the presence of both soluble heparin and excess unlabeled bFGF probably represents nonspecific binding. This nonspecific binding represents 25% of the total binding to K562 cells. The nonspecific binding appears high compared with total binding, but the amount of nonspecific binding per cell is comparable with the nonspecific binding detected in Chinese hamster ovary (CHO) cells expressing transfected receptors (see Table 1).

The effects of heparin and excess bFGF on binding of 125I-bFGF to K562 cells and HL60 cells were compared with effects on CHO cells expressing transfected FGFFR-1 (CHO/FGFR-1 cells). In the CHO/FGFR-1 cells, binding to HSPGs can be separated from binding to receptors by a salt wash. Attempts to use these procedures with K562 and HL60 cells were unsuccessful because the high salt buffers damaged the cells. Table 1 shows that addition of 10 μg/mL soluble heparin inhibited binding of 125I-bFGF to HSPGs on the CHO/FGFR-1 cells by 80% but had little effect on binding to receptors, causing only a 17% reduction. In contrast, unlabeled bFGF inhibited 92% of the binding of 125I-bFGF to receptors on the CHO/FGFR-1 cells by only 49% of the binding to HSPGs. Binding of 125I-bFGF to K562 and HL60 cells was inhibited by both heparin and unlabeled bFGF. As binding to receptors is relatively resistant to competition by heparin, these results suggested that a component of the binding to these cells is due to HSPGs.

The effect of addition of unlabeled bFGF on binding of 125I-bFGF to K562 cells was investigated further. As shown in Fig 2A, maximum inhibition of 125I-bFGF binding to K562 cells was obtained with 2 μg/mL bFGF, a 200-fold excess.
The competition by unlabeled bFGF appeared biphasic. Low concentrations of unlabeled bFGF (50 to 100 ng/mL, a 5- to 10-fold excess) competed for 22% of the binding, intermediate concentrations did not decrease binding further, and higher concentrations (1 to 2 μg/mL, a 100- to 200-fold excess) competed for another 35% of the binding. Concentrations of bFGF up to 10 μg/mL did not result in any further competition. The biphasic competition observed in this experiment indicated the presence of two types of binding sites with differing affinities for bFGF.

The effect of heparin on the binding of 125I-bFGF to K562 cells was also examined in more detail (Fig 2B). If varying concentrations of heparin were included in the binding medium with 10 ng/mL 125I-bFGF, inhibition of binding of 125I-bFGF was observed with as little as 20 ng/mL heparin, and maximal inhibition was obtained with 10 μg/mL heparin. Addition of higher concentrations of heparin had no further effect, so that approximately 36% of the 125I-bFGF bound was not inhibited by heparin. Although heparin potentiates bFGF binding to FGFRs on cells lacking heparan sulfates,20-22 heparin did not increase the level of 125I-bFGF binding at any concentration in these experiments.

As the competition with unlabeled bFGF indicated two classes of binding sites for bFGF on K562 cells, the presence of multiple sites was investigated by Scatchard analysis. The binding data obtained when K562 cells were incubated with varying concentrations of 125I-bFGF gave a curve with two components (Fig 3) when plotted according to Scatchard,23 indicating the presence of two classes of binding site. The higher affinity component of the curve indicated 1,650 sites per cell, with a kD of 1.92 × 10−9 mol/L. Extrapolation of the second component of the curve gave an estimate of 37,600 sites per cell, with a kD of 9.34 × 10−10 mol/L. Thus, the K562 cells express approximately 23 times more low affinity binding sites than high affinity binding sites. The affinity for the low affinity sites is in the same range as the affinity of 125I-bFGF for heparan sulfates on other cells.17 These observations are consistent with the fact that heparin can compete effectively for binding of 125I-bFGF to K562 cells.

To determine if specific protein bFGF receptors are present on leukemia cells, complexes of 125I-bFGF with receptor were crosslinked and visualized by autoradiography after separation of proteins by SDS-PAGE. K562 and HL60 cells displayed receptor complexes with molecular weights of 140 to 160 kD, similar in size to previously reported FGFR species (Fig 4A, a lanes). Although DAMI cells displayed only low levels of specific binding in Fig 1, bFGF-receptor complexes also could be detected in these cells (Fig 4A). The intensity of the receptor complex in DAMI cells was low and was only visible after long film exposure, consistent with the low levels of specific binding found on these cells. The crosslinked receptor complexes appeared as multiple bands in each of these three cell types. In contrast, crosslinked 125I-bFGF–receptor complexes could not be detected in U937 cells, even with very long exposures (data not shown). In K562, DAMI, and HL60 cells, the crosslinked bands were eliminated when incubation of the cells with 125I-bFGF occurred in the presence of 1 μg/mL unlabeled bFGF, demonstrating that the interaction was specific (Fig 4A, b lanes). Heparin at 1 or 10 μg/mL reduced the formation of crosslinked complex by 50% or 75%, respectively (data not shown, and Fig 4A, c lanes). Thus, high concentrations of heparin can inhibit binding to receptors in addition to blocking the binding to HSPGs in K562 cells. In addition to the complexes of 140 to 160 kD, specific radiolabeled complexes with molecular weights greater than 215 kD were also formed in K562, DAMI, and HL60 cells. These bands may represent dimers of the receptors.

Because bFGF binds to some FGFRs with lower affinity than others, it is possible that some FGFRs might be missed using 125I-bFGF as a probe. Because aFGF binds to all known FGFRs with high affinity, the binding of 125I-aFGF was compared with the binding of 125I-bFGF in K562 cells. K562 cells were incubated for 2 hours at 4°C with 10 ng/mL 125I-aFGF, and complexes of 125I-aFGF with receptor were cross-
FGF RECEPTORS IN LEUKEMIA CELLS

Figure 2. Dose-dependent competition of \(^{125}\)I-bFGF binding in K562 cells. The human leukemia cell line, K562, was incubated with 10 ng/mL bFGF in serum-free medium containing 0.15% gelatin and 25 mM HEPES, pH 7.0, for 2 hours at 4°C in the presence of the indicated concentrations of (A) unlabeled bFGF or (B) heparin. Cells were washed twice with PBS to remove non-bound ligand, and cell-bound radioactivity was measured. Each point represents the average of duplicate determinations with calculated standard deviation.

Basic FGF has been reported to block the stimulation of hemoglobin synthesis in response to transforming growth factor (TGF)-\(\beta\) in K562 cells.\(^6\) To verify that the bFGF receptors identified in our K562 cells were functional, we investigated whether bFGF would inhibit hemoglobin synthesis in response to TGF-\(\beta\) treatment. As reported by Burger et al.\(^6\), treatment of the cells with 1 ng/mL TGF-\(\beta\) for 72 hours resulted in 11.4% ± 1.8% of the K562 cells staining with benzidine, indicating the presence of hemoglobin, whereas only 3.4% ± 1.1% of untreated cells stained. Addition of 10 ng/mL bFGF with the TGF-\(\beta\) antagonized the induction of hemoglobin, and only 2.1% ± 1.5% of the cells were stained with benzidine (data not shown). Thus, the bFGF receptors identified in these K562 cells were able to transmit a signal that blocked the TGF-\(\beta\) induction of benzidine staining.

bFGF-binding HSPGs are present on the surface of K562 cells. To test whether part of the \(^{125}\)I-bFGF binding in K562 cells was due to the presence of HSPGs, cells were treated with heparinase or chondroitinase ABC and then were assayed for their ability to bind \(^{125}\)I-bFGF. Treatment with chondroitinase did not affect the binding of \(^{125}\)I-bFGF to K562 cells (data not shown). However, treatment with heparinase for 2 hours reduced the binding of \(^{125}\)I-bFGF by 75% (Fig 5A). Inclusion of 100-fold excess unlabeled bFGF or 10 \(\mu\)g/mL heparin along with the \(^{125}\)I-bFGF caused no further linked and visualized by autoradiography after separation of proteins by SDS-PAGE (Fig 4B). Receptor complexes crosslinked to \(^{125}\)I-aFGF were similar in size to the complexes observed with bFGF, with molecular weights of 140 to 160 kD. The formation of receptor complexes with \(^{125}\)I-aFGF could be prevented by inclusion of a 100-fold excess of either unlabeled aFGF or bFGF (Fig 4B). Similarly, formation of receptor complexes with \(^{125}\)I-bFGF could be prevented by a 100-fold excess of unlabeled aFGF (data not shown), demonstrating that the two ligands recognize the same receptors in K562 cells. When the amount of \(^{125}\)I-aFGF bound by K562 cells was quantitated, only low amounts of specific binding could be observed (Table 1). Indeed, K562 cells bound less \(^{125}\)I-aFGF than \(^{125}\)I-bFGF. This difference in binding was not due to differences in activity of the ligands, as the \(^{125}\)I-aFGF recognized the same number of receptors as \(^{125}\)I-bFGF on CHO cells expressing FGFR-1 (Table 1). The small amount of \(^{125}\)I-aFGF compared with \(^{125}\)I-bFGF bound to K562 cells probably reflects the low number of receptors expressed on these cells and the binding of \(^{125}\)I-bFGF to HSPGs.

Fig 3. Scatchard analysis of \(^{125}\)I-bFGF binding to K562 cells reveals two types of binding sites. K562 cells (2.5 \(\times\) 10\(^6\) cells per point) were incubated for 2 hours at 4°C in serum-free medium containing 0.15% gelatin, 25 mM HEPES pH 7.0, and a range of concentrations of \(^{125}\)I-bFGF from 0.1 ng/mL to 40 ng/mL. Each concentration was assayed in duplicate. Cells were washed twice with PBS to remove non-bound ligand, and cell-bound radioactivity was measured. Nonspecific binding was estimated by parallel determinations in which 1 \(\mu\)g/mL unlabeled bFGF was included. The results were plotted according to the method of Scatchard. The data are best described by two straight lines representing two binding sites.
Fig 4. Basic FGFRs in human leukemia cell lines. (A) K562, DAM1, and HL60 cells were incubated with 10 ng/mL 125I-bFGF for 2 hours at 4°C as described in the legend to Fig 1. The cells were collected by centrifugation, resuspended in PBS containing the crosslinking agent BS3 (1 mmol/L), and incubated for 30 minutes at room temperature. Glycine (50 mmol/L) was added to quench the crosslinking reaction, and cells were washed once with PBS and extracted. Samples were analyzed under reducing conditions on a 3% to 15% gradient SDS-PAGE gel. Each lane contains lysate from 5 x 10^6 cells. Lanes a, 125I-bFGF alone; lanes b, 199I-bFGF with 1 μg/mL unlabeled bFGF; lanes c, 125I-bFGF with 10 μg/mL heparin; lanes d, 125I-bFGF with both 1 μg/mL unlabeled bFGF and 10 μg/mL heparin. Longer autoradiographic exposure was required for visualization of the receptor bands in DAM1 and HL60 cells. (B) K562 cells were incubated with 10 ng/mL 125I-aFGF for 2 hours at 4°C, and ligand-receptor complexes were crosslinked as described in A. Lane a, 125I-aFGF alone; lane b, 125I-aFGF with 1 μg/mL unlabeled aFGF; lane c, 125I-aFGF with 10 μg/mL heparin; lane d, 125I-aFGF with 1 μg/mL bFGF.

reduction in binding of 125I-bFGF to K562 cells treated with heparinase, suggesting that the residual 25% of 125I-bFGF binding was nonspecific. The reduction in binding of 125I-bFGF to heparinase-treated K562 cells was similar to the reduction obtained in untreated cells in the presence of 10 μg/mL heparin. To determine whether binding to FGFRs on these cells is sensitive to heparinase, the formation of complexes between receptor and 125I-bFGF was investigated in heparinase-treated cells. Cells preincubated with heparinase or chondroitinase for 4 hours were incubated for 2 hours at 4°C with 125I-bFGF, and receptor-bFGF complexes were chemically crosslinked. In heparinase-treated cells, there was a 50% reduction in intensity of the 125I-bFGF-receptor complex (Fig 5B). In contrast, cells pretreated with chondroitinase displayed crosslinked receptor complexes equal in intensity to untreated cells (Fig 5B). As it has been reported that heparan sulfates or heparin is necessary for binding of bFGF to receptors, the ability of heparin to restore 125I-bFGF binding to heparinase-treated cells was investigated. However, addition of 0.1 to 10 μg/mL heparin to heparinase-treated cells did not increase formation of 125I-bFGF-receptor complexes (Fig 5B). Furthermore, if cells were first crosslinked to 125I-bFGF and subsequently treated with heparinase for 4 hours, 125I-bFGF-receptor complex bands were not reduced in size or intensity, demonstrating that HSPGs do not form a significant part of the crosslinked complex (data not shown). The finding that specific binding of 125I-bFGF to K562 cells was almost eliminated by heparinase treatment but that formation of 125I-bFGF-receptor complexes was only partially reduced suggests that the majority of the binding measured in these cells is due to HSPGs.

To demonstrate that cell surface HSPGs are present on K562 cells, proteoglycans were labeled by metabolic incorporation of 35SO$_4$. When extracts of these cells were run on SDS-PAGE and the gels were exposed for autoradiography, a broad 35SO$_4$-labeled band with molecular weights of 180 to 300 kD was observed (Fig 6, lane a). The intensity of the diffuse 35SO$_4$-labeled band was reduced almost totally after treatment of the intact cells with heparinase (Fig 6, lane b). Chondroitinase treatment of 35SO$_4$-labeled cells had little effect on the intensity of this band (Fig 6, lane c). Treatment with both enzymes completely eliminated the 35SO$_4$-labeled band (data not shown). These results show that K562 cells produce cell-surface proteoglycans that contain heparan sulfate. The decreased intensity of the bands after treatment of intact cells with heparinase suggests that the HSPGs are on the cell surface rather than sequestered in an intracellular compartment. Thus, K562 cells express cell-surface HSPGs that may be responsible for the low affinity bFGF binding sites on these cells.

PMA causes rapid downmodulation of bFGF receptors. Treatment for 24 to 48 hours with the protein kinase C (PKC)
PMA treatment of K562 cells has been shown to induce expression of TGF-β, and it is possible that the reduction of receptors in response to PMA is mediated by TGF-β. However, 2- and 6-hour treatments with TGF-β had no effect on receptor complexes (Fig 7B, lanes h and i). PMA has also been reported to increase expression of bFGF in dermal fibroblasts. To investigate the possibility that PMA increased the expression of bFGF, resulting in autocrine downregulation of the FGFR, the effect of PMA on bFGF levels in K562 cells was investigated. Western blotting of K562 lysates with purified anti-bFGF antibodies showed no alterations in the amount of bFGF protein in PMA-treated cells (data not shown). Therefore, the changes in FGFR are not correlated with changes in bFGF expression. Moreover, the addition to the culture medium of 1 mmol/L suramin, which blocks the interaction of bFGF with receptors, or 10 μg/mL heparin, which competes for most of bFGF binding in K562 cells, did not prevent the decrease in FGFRs in PMA-treated cells (Fig 7B, lanes f and g). These results indicate that the decrease in FGFRs in PMA-treated cells is not the result of autocrine downregulation of receptors. In addition, inhibition of protein synthesis with cycloheximide did not prevent modulation of FGFRs by PMA and did not cause receptor downmodulation in the absence of PMA. These data suggest that PMA-induced FGF downmodulation does not require new protein synthesis, nor does PMA act by inhibiting the synthesis of FGFRs.

PMA treatment of cells has been shown to result in cleavage of the extracellular ligand-binding domain of some growth factor receptors, and differentiation-related transmembrane metalloproteinases have been identified on the cell surface of many blood cells. However, the addition of the protease inhibitor aprotinin, leupeptin, pepstatin, phenylmethylsulfonyl fluoride, EDTA, EGTA, or ortho-phenan...
were incubated in medium containing 40 μCi/mL ¹²⁵I-SO₄ for 24 hours at 37°C. Cells were collected, washed twice with PBS, and incubated in PBS containing no addition (a), heparinase (b), or chondroitinase (c) for 4 hours at room temperature. Cells were extracted, and the lysates were analyzed under reducing conditions on a 3% to 20% gradient SDS-PAGE gel. Each lane contains lysate from 5 × 10⁶ cells. Gels were exposed for autoradiography for 3 weeks.

Fig 5A, where heparinase dramatically decreased specific binding, and Fig 5B, where heparinase treatment reduced the formation of ¹²⁵I-bFGF–receptor crosslinked complexes by only 50%, suggests that the majority of the specific binding is due to binding to HSPGs. This conclusion is supported by the Scatchard analysis of binding data, which showed 23 times more low affinity than high affinity binding sites on K562 cells. A low number of protein receptors is also consistent with the finding that although αFGF could be crosslinked to the same protein receptors as bFGF, only low levels of ¹²⁵I-αFGF bound to K562 cells in direct binding experiments.

At the time this study began, there were no reports of functional FGFRs in blood cells. However, the two most recently identified members of the FGFR family, FGFR-3 and FGFR-4, have been cloned from K562 cells.⁴⁻⁵ It has been reported recently that mRNA for all four FGFRs are expressed in various leukemia cell lines and some peripheral blood cells; ⁶⁻⁻⁷ Armstrong et al.⁸ found high levels of FGFR-3 and FGFR-4 mRNA in erythroid and megakaryocytic leukemia cell lines, suggesting expression of these receptor types may be important for the erythroid and megakaryocytic lineages. Bikfalvi et al.⁹ reported that FGFR-1 and FGFR-2 mRNA was present in HEL and DAMI cell lines and in megakaryocytes, macrophages, granulocytes, T cells, and B cells. These data suggest a possible role for bFGF in the growth or differentiation of other blood cell lineages and the possibility of other receptor types in cells of the megakaryocytic lineage. However, only two studies have demonstrated that the presence of mRNA for FGFRs leads to the presence of functional FGFRs on the cell surface. These studies have shown that K562 cells and HEL cells can bind αFGF. Because FGFR-3 and FGFR-4 have a greater affinity for αFGF than for bFGF, it was not clear from these results that blood-derived cells could interact with bFGF. We have found that the leukemia cell lines K562, DAMI, and HEL-60 have receptors that interact with bFGF. The recent demonstration that bFGF can inhibit TGF-β–induced differentiation of K562 cells indicates that these receptors can transmit a signal in response to bFGF.¹⁰

In chemical crosslinking experiments, receptor complexes with molecular weights in the range of 140 to 160 kD were observed in K562 cells. The sizes of these receptor complexes are consistent with those found in other cell types. The range of sizes of these complexes may be due to bFGF binding to different receptor types, as the mRNAs for FGFR-1, FGFR-3, and FGFR-4 have been reported to be present in K562 cells.¹¹⁻¹² In addition, the bands may represent binding to alternatively spliced forms of FGFRs, which have been described for FGFR-1 and FGFR-2.¹³ Alternative splicing can result in receptor variants possessing either two or three immunoglobulin-like domains in the extracellular region that differ in molecular weight by about 20 kD. The receptor variants of FGFR-1 with two and three immunoglobulin domains both interact with bFGF. The species of FGFR responsible for bFGF binding was not directly addressed in this study. Others have shown that K562 cells express predominately mRNA for FGFR-3 and FGFR-4.¹⁴ These receptors have at least 10-fold lower affinity for bFGF than FGFR-1 and FGFR-2, making their affinity for bFGF closer to the affinity of the bFGF-HSPG interaction. This is
consistent with the fact that binding of bFGF to receptors on K562 cells was partially inhibited by addition of 10 μg/mL heparin, whereas in cells expressing FGFR-1 or FGFR-2, heparin at this concentration does not significantly inhibit binding to receptors (Table 1).

In addition to FGFRs, bFGF-binding HSPGs were found in K562 cells. K562 cells contain greater than 20 times more HSPG binding sites than FGFRs according to Scatchard analysis of 125I-bFGF binding. The presence of cell-surface HSPGs has been previously reported only in blood cells of the B-lymphocyte lineage. As heparin or heparan sulfates seems to be necessary for the long-term biologic activity of bFGF, the presence of HSPGs can have significant effects on the ability of the cells to respond to bFGF. Indeed, removal of the HSPGs by heparinase treatment of the K562 cells reduced their ability to bind bFGF on FGFRs.

Treatment of K562 cells with PMA resulted in a decrease in bFGF binding and loss of ability to form crosslinked bFGF-receptor complexes. We have also observed this effect of PMA in HL60, DAMI, and MO-7E leukemia cell lines, suggesting the effect is not specific for any particular blood cell lineage. In K562 cells, the decreased ability to bind bFGF on receptors occurred rapidly, with 70% loss after 1 hour of treatment. Others have reported that PMA has no effect on FGFR mRNA levels in K562 cells,

Treatment of K562 cells with PMA resulted in a decrease in bFGF binding and loss of ability to form crosslinked bFGF-receptor complexes. We have also observed this effect of PMA in HL60, DAMI, and MO-7E leukemia cell lines, suggesting the effect is not specific for any particular blood cell lineage. In K562 cells, the decreased ability to bind bFGF on receptors occurred rapidly, with 70% loss after 1 hour of treatment. Others have reported that PMA has no effect on FGFR mRNA levels in K562 cells,

![Graph](image1)

Fig 7. PMA rapidly reduces bFGF binding and crosslinking in K562 cells. (A) K562 cells (2.5 x 10⁶ cells per condition) were incubated at 37°C in medium containing 10⁻⁶ mol/L PMA for the times indicated. The cells were collected, washed twice with PBS, and incubated for 2 hours at 4°C with 10 ng/mL ¹²⁵I-bFGF in medium containing 0.15% gelatin and 25 mmol/L HEPES, pH 7.0 (solid bars). Some samples contained 1 μg/mL unlabeled bFGF (open bars). Cells were washed twice in PBS, and cell-bound radioactivity was determined. All conditions were performed in duplicate. (B) K562 cells, treated as in A, were incubated with 10 ng/mL ¹²⁵I-bFGF for 2 hours at 4°C, and the crosslinking agent BS³ was added for 30 minutes at room temperature. The crosslinking reaction was quenched with the addition of 0.1 mol/L glycine, and cells were washed once with PBS and extracted. Cell extracts were analyzed on 3% to 15% gradient SDS-PAGE gels. K562 cells were incubated with 10⁻⁶ mol/L PMA for 0 (lane a), 1 (lane b), 2 (lane c), 6 (lane d), or 12 (lane e) hours. Some cells were incubated with 10⁻⁶ mol/L PMA for 12 hours in the presence of 1 mmol/L suramin (lane f) or 10 μg/mL heparin (lane g). For comparison, K562 cells were treated with 2 ng/mL TGF-β for 2 (lane h) or 6 (lane i) hours. (C) Densitometry of the crosslinked ¹²⁵I-bFGF-receptor complexes in B (lanes a through e) expressed as a percentage of control lane a. The intensities of the radioactive receptor bands were quantitated by phosphorimager.
mide, demonstrating that new protein synthesis was not in-
volved in the downmodulation. Thus, the downmodulation of
FGFR does not appear to be the result of increased synthe-
sis or release of the ligand. In addition, receptors were not
decreased in control cells treated with cycloheximide, sug-
gesting that PMA does not act by inhibiting synthesis of
FGFR protein.

Activation of PKC in blood-derived cells leads to the loss
of cell-surface c-kit receptor, tumor necrosis-α receptor, and
colony-stimulating factor-1 receptor through proteolytic
clavage in the extracellular juxtamembrane region of the
receptors.39,41 Soluble extracellular domains of the receptors
are generated that act as binding proteins for the ligands.
The loss of bFGF receptors in K562 cells after PMA treat-
ment does not seem to proceed through a similar process.
Inhibitors of serine, thiol, acid, and metalloproteases all did
not prevent the downmodulation of bFGF receptors by PMA,
and soluble bFGF-binding proteins were not detected in the
conditioned medium. FGFRs also may be modulated by
phorbol ester through phosphorylation of residues in the
cytoplasmic domain of the receptor, as has been described for
the epidermal growth factor receptor.39,41 The mechanism of
downmodulation of FGFRs on K562 cells will be the subject
of future investigations.

Recently, a role for FGF in megakaryocytopenias has been
identified, as both aFGF and bFGF can increase human
and murine megakaryocyte colony growth.27,28 Basic FGF is
expressed in both bone marrow stromal cells and megakary-
ocytic and platelets.27,28 These data suggest that bFGF may act
in an autocrine or paracrine manner to support megakaryo-
cytic cell growth. Our results demonstrating functional bFGF
expression in both bone marrow stromal cells and megakaryo-
cytic cell growth. Our results demonstrating functional bFGF
expression in both bone marrow stromal cells and megakaryo-
cytic cell line, and K562, a primitive stem cell line capable of differentiating along the
megakaryocytic lineage, support a role for bFGF in megakar-
yocytopenias.

ACKNOWLEDGMENT

We thank Drs Daniel B. Rifkin and E. Lynnette Wilson for critical
reading of the manuscript.

REFERENCES

1. Basilico C, Moscatelli D: The FGF family of growth factors
2. Tanaka A, Miyamoto K, Minamino N, Takeda M, Sato B,
Matsuo H, Matsumoto K: Cloning and characterization of an andro-
gen-induced growth factor essential for the androgen-dependent
growth of mouse mammary carcinoma cells. Proc Natl Acad Sci
USA 89:8928, 1992
3. Miyamoto M, Naruo K-I, Seko C, Matsumoto S, Kondo
Kurokawa T: Molecular cloning of a novel cytokine cDNA encoding
the ninth member of the fibroblast growth factor family, which has
4. Burgess WH, Maciag T: The heparin-binding (fibroblast)
5. Rifkin DB, Moscatelli D: Recent developments in the cell
6. Feige J-J, Baird A: Glycosylation of the basic fibroblast growth
factor receptor. The contribution of carbohydrate to receptor func-
7. Coughlin SR, Barr PJ, Cousens LS, Fretto LJ, Williams LJ:
Acidic and basic fibroblast growth factors stimulate tyrosine kinase
8. Bellot F, Creamly G, Kaplow JM, Schlessinger J, Jaye M,
Dionne CA: Ligand-induced transphosphorylation between different
FGF receptors. EMBO J 10:2849, 1991
9. Schlessinger J, Ullrich A: Growth factor signalling by receptor
receptor tyrosine kinases: Molecular analysis and signal transduc-
tion. Biochim Biophys Acta 1135:185, 1992
11. Dione CA, Creamly G, Bellot F, Kaplow JM, Seanoss G,
Ruta M, Burgess WH, Jaye M, Schlessinger J: Cloning and expres-
sion of two distinct high-affinity receptors cross-reacting with acidic
and basic fibroblast growth factors. EMBO J 9:2685, 1990
12. Mansukhani A, Moscatelli D, Talarico D, Levytska V, Basil-
ico C: A murine fibroblast growth factor (FGF) receptor expressed
in CHO cells is activated by basic FGF and Kaposi FGF. Proc Natl
Acad Sci USA 87:4278, 1990
13. Mansukhani A, Dell’Era P, Moscatelli D, Kornbluth S, Han-
fusa H, Basilico C: Characterization of the murine BEK fibroblast
growth factor (FGF) receptor. Activation by three members of the
FGF family and requirement for heparin. Proc Natl Acad Sci USA
89:3305, 1992
14. Ornitz DM, Leder P: Ligand specificity and heparin depen-
dence of fibroblast growth factor receptors 1 and 3. J Biol Chem
267:16305, 1992
15. Vainikka S, Partanen J, Bellosta P, Coulier F, Basilico C,
Jaye M, Altitalo K: Fibroblast growth factor receptor-4 shows novel
features in genomic structure, ligand binding and signal transduction.
EMBO J 11:4273, 1992
16. Ron D, Reich R, Chedid M, Lengel C, Cohen OE, Chan
AML, Neufeld G, Miki T, Tronicck SR: Fibroblast growth factor
receptor 4 is a high affinity receptor for both acidic and basic fibro-
blast growth factor but not for keratinocyte growth factor. J Biol
Chem 268:5388, 1993
17. Moscatelli D: High and low affinity binding sites for basic
fibroblast growth factor on cultured cells: Absence of a role for low
affinity binding in the stimulation of plasmogen activator produc-
tion by bovine capillary endothelial cells. J Cell Physiol 131:123,
1987
18. Moscatelli D: Metabolism of receptor-bound and matrix-
bound basic fibroblast growth factor by bovine capillary endothelial
19. Vlodavsky I, Folkman J, Sullivan R, Freidman R, Ishai-Mi-
chaeli R, Sasse J, Klagsbrun M: Endothelial-derived basic fibroblast
growth factor: Synthesis and deposition into subendothelial extracel-
ular matrix. Proc Natl Acad Sci USA 84:2292, 1987
20. Brunner G, Gabrilove J, Rifkin DB, Wilson EL: Phospholi-
pase C release of basic fibroblast growth factor from human bone
marrow cultures as a biologically active complex with phosphatidy-
linositol-anchored heparan sulfate proteoglycan. J Cell Biol 114:1275,
1991
surface, heparin-like molecules are required for binding of basic
fibroblast growth factor to its high-affinity receptor. Cell 64:841,
1991
22. Rapaeger AC, Krufta A, Olwin BB: Requirement of heparan
sulfate for bFGF-mediated fibroblast growth factor and myoblast
C, Rifkin DB, Moscatelli D: Heparin increases the affinity of basic
fibroblast growth factor for its receptor but is not required for bind-
24. Oliver LJ, Rifkin DB, Gabrilove J, Hancocks M-J, Wilson
EL: Long-term culture of human bone marrow stromal cells in the
presence of basic fibroblast growth factor. Growth Factors 3:231,
1990
25. Wilson EL, Rifkin DB, Kelly F, Hancocks M-J, Gabrilove

From www.bloodjournal.org by guest on November 16, 2017. For personal use only.
FGF RECEPTORS IN LEUKEMIA CELLS

42. Shipp MA, Look AT: Hematopoietic differentiation antigens that are membrane-associated enzymes: Cutting is the key! Blood 82:1052, 1993

Human leukemia cell lines bind basic fibroblast growth factor (FGF) on FGF receptors and heparan sulfates: downmodulation of FGF receptors by phorbol ester

JP Liuzzo and D Moscatelli