Glucocorticoids Inhibit Apoptosis of Human Neutrophils

By W. Conrad Liles, David C. Dale, and Seymour J. Klebanoff

Human neutrophils rapidly undergo apoptotic cell death. Because glucocorticoids are known to modulate an array of neutrophil functional activities as well as induce rapid apoptosis in susceptible lymphocyte populations, we have examined the effects of glucocorticoids on apoptosis in mature human neutrophils. In cultures of neutrophils maintained in vitro, the glucocorticoids, dexamethasone, 6α-methylprednisolone, and hydrocortisone, inhibited the development of apoptotic morphology by 58% to 30% when assessed at 12, 24, and 48 hours. In contrast, corticosteroids lacking anti-inflammatory activity and progesterone failed to affect development of the morphologic features of apoptosis. The concentration of dexamethasone required to reduce apoptosis by 50% at 24 hours was approximately 5 x 10⁻⁷ M/L, a concentration that is achievable in plasma after dexamethasone treatment. Dexamethasone (10⁻⁴ mol/L), but not progesterone, reduced the percentage of hypodiploid (apoptotic) nuclei by 40% to 90% over this time course. Similarly, dexamethasone reduced the DNA cleavage associated with apoptosis and prolonged the viability of neutrophils maintained in culture for 12 to 48 hours. Glucocorticoid-mediated modulation of neutrophil apoptosis was qualitatively similar, but lesser in magnitude, when compared with the effects of granulocyte colony-stimulating factor (100 ng/mL). Thus, glucocorticoids exert a protective effect on human neutrophil survival by delaying apoptosis.

MATERIALS AND METHODS

Special reagents. Dexamethasone, 6α-methylprednisolone, hydrocortisone, 11-deoxycortisol, tetrahydrocortisol, progesterone, Triton X-100, acridine orange, and propidium iodide were purchased from Sigma Chemical Co (St Louis, MO). Stock solutions of the steroids were prepared at a concentration of 10 mmol/L in ethanol and stored at 4°C before use. G-CSF was purchased from Amgen, Inc (Thousand Oaks, CA). Culture media components, including RPMI 1640, endotoxin-free fetal calf serum (FCS), HEPES buffer, penicillin-streptomycin solution, and L-glutamine were purchased from BioWhittaker, Inc (Walkersville, MD). FCS was heat-inactivated (56°C × 30 minutes) before use.

Preparation of purified neutrophils. Venous blood was collected from normal human volunteers using 0.2% dipotassium ethylenediaminetetraacetic acid (K₂EDTA) as anticoagulant. Neutrophils were isolated by sequential sedimentation in Dextran T-500 (Pharmacia LKB Biotechnology, Piscataway, NJ) in 0.9% sodium chloride, centrifugation in Histopaque-1077 (Sigma Chemical Co), and hypotonic lysis of erythrocytes, as described previously. The preparation contained greater than 97% polymorphonuclear leukocytes, of which greater than 95% were neutrophils. Cell viability was greater than 98% as determined by trypan blue exclusion.

Culture conditions. The neutrophil preparations were suspended in RPMI 1640-10% FCS (supplemented with 10 mmol/L HEPES, 0.2 mmol/L L-glutamine, 25 U/mL penicillin, and 25 μg/mL streptomycin) at a concentration of 5 x 10⁶ cells/mL and incubated in the presence or absence of steroids or G-CSF, as indicated in the figure.
viability. Neutrophil viability was assessed by exclusion of propidium iodide, a dye excluded from cells with intact membrane integrity. Briefly, approximately $5 	imes 10^6$ PBS-washed cells were gently suspended in PBS containing propidium iodide ($5 \mu g/mL$) in 12-× 75-mm polystyrene tubes and then analyzed (forward scatter versus FL-2 height) on a FACScan cytometer (Becton Dickinson, Mountain View, CA). A minimum of 20,000 events were recorded per sample. Data were analyzed using Consort 30 software (Becton Dickinson), and results are reported as the percentage of viable cells (i.e., percentage excluding propidium iodide).

Apoptosis. Apoptosis of neutrophils was assessed by four distinct methods: (1) analysis of apoptotic cellular morphology; (2) analysis of apoptotic (hypodiploid) nuclei by flow cytometry; (3) quantitation of DNA fragmentation; and (4) DNA electrophoresis. For the analysis of apoptotic morphology, approximately 1×10^6 PBS-washed neutrophils were suspended in 1 mL of PBS containing acridine orange ($5 \mu g/mL$). An aliquot was then examined by fluorescence microscopy on a Leitz Ortholux microscope (Ernst Leitz, Wetzlar, Germany), and cells were scored as apoptotic versus non-apoptotic. The morphologic changes of apoptosis in neutrophils are easily visualized by this technique and consist of dimunition in cell volume and chromatin condensation yielding fragmented or bright, homogeneously stained nuclei. Five hundred cells were counted per sample, and data are reported as the percentage of cells with apoptotic morphology. Cytospin (Shandon Southern Cytospin; Shandon Inc, Pittsburgh, PA) preparations of neutrophils were also prepared and stained using the Wright-Giemsa technique for black-and-white photographic demonstration of apoptotic morphologic features.

For analysis of apoptotic nuclei, 5×10^6 PBS-washed neutrophils were gently resuspended in 0.5 mL of hypotonic fluorochrome solution (50 µg/mL propidium iodide in 0.1% sodium citrate plus 0.1% Triton X-100) in 12-× 75-mm polystyrene tubes and immediately analyzed by flow cytometry. Propidium iodide dye exclusion of individual nuclei was filtered through a 585/42-nm band pass filter and measured on a logarithmic scale using CellFIT Cell-Cycle Analysis Version 2.0 software (Becton Dickinson). A minimum of 10,000 events were counted per sample. Results are reported as the percentage of hypodiploid nuclei reflecting the relative proportion of apoptotic cells.

Quantitation of DNA fragmentation was performed by determination of fractional solubilized DNA by diphenylamine assay. In brief, 5×10^6 PBS-washed neutrophils were lysed in 0.5 mL of lysis buffer (5 mMol/L Tris-HCl, 20 mMol/L EDTA, 0.5% Triton X-100, pH 8.0), and the lysates were centrifuged (15,000g) to separate high molecular weight DNA (pellet) and cleaved, low molecular weight DNA (supernatant). After precipitation with 0.5N perchloric acid, DNA was quantitated by spectrophotometry after the addition of diphenylamine reagent. Data are reported as the relative proportion (percentage) of soluble, low molecular weight DNA.

DNA electrophoresis was performed to assess DNA fragmentation. Neutrophils (1×10^6) were removed from culture at varying time points, pelleted by centrifugation, washed once in PBS, and lysed by the addition of 0.5 mL of lysis buffer (10 mMol/L EDTA, 30 mMol/L Tris, 1% sodium dodecyl sulfate, 250 µg/mL proteinase K [Boehringer Mannheim, Mannheim, Germany], pH 8.0) at 37°C for 16 hours. DNA was extracted twice with phenol/chloroform/isooamyl alcohol (25:24:1), precipitated with 0.5 vol 7.5 mol/L sodium acetate and 2 vol ethanol at −70°C, resuspended in Tris-EDTA buffer containing 250 µg/mL RNAsel (Boehringer), and incubated at 65°C for 5 minutes before electrophoresis in 1% agarose at 50 V for 3 hours. After staining with ethidium bromide, DNA was visualized by UV examination for photography.

RESULTS

Effects of steroids on the development of apoptotic morphology in neutrophils maintained in vitro. All three of the glucocorticoids examined (dexamethasone, 6a-methylprednisolone, and hydrocortisone) inhibited the development of apoptotic morphology in neutrophils at each of the time points assessed (Figs 1 and 2). In control neutrophils obtained from 4 separate healthy donors, the mean percentage of cells showing apoptotic morphology increased steadily from 15% at 12 hours to 44% at 24 hours to 86% at 48 hours. Incubation with glucocorticoid effectively reduced the mean percentage of apoptotic cells by 59% to 90% at each of the time points. The differences in degree of apoptosis in glucocorticoid-treated versus control cells was statistically significant at each time point ($P < .05$). In cells incubated with dexamethasone (10 to 6 mol/L), the mean percentage of neutrophils with apoptotic morphology was 2%, 13%, and 35% at 12, 24, and 48 hours, respectively. Similar values were observed after incubation with either 6a-methylpred-
GLUCOCORTICOIDS INHIBIT NEUTROPHIL APOPTOSIS

Fig 2. Morphologic features of neutrophils maintained in suspension culture in the absence and presence of dexamethasone. Cytospin preparations of neutrophils were prepared and stained using the Wright-Giemsa method after incubation in vitro for 0, 24, 48, and 72 hours. Samples 1 through 4 represent control neutrophils: (1) 0 hours, (2) 24 hours, (3) 48 hours, and (4) 72 hours. Samples 5 through 7 represent neutrophils maintained in the presence of dexamethasone (10^{-8} mol/L): (5) 24 hours, (6) 48 hours, and (7) 72 hours.

nisolone (10^{-6} mol/L) or hydrocortisone (10^{-6} mol/L). For dexamethasone, the concentration required to inhibit neutrophil apoptosis by 50% (EC50) was approximately 5×10^{-8} mol/L (Fig 3). Apoptosis was clearly delayed but not prevented by dexamethasone, as shown in Fig 2. Microscopic examination showed that control neutrophils developed prominent morphologic features characteristic of apoptosis, including diminution in cell volume, nuclear condensation eventually resulting in apoptotic bodies, and cytoplasmic vacuolation, within 24 hours in culture. Although dexamethasone-treated cells generally retained a nonapoptotic morphologic appearance after 24 to 48 hours in culture, nuclear condensation and decreased cell volume were evident by 72 hours.

To assess the specificity of glucocorticoids in their ability to inhibit neutrophil apoptosis, we examined the effects of 11-deoxycortisone and tetrahydrocortisone, two corticosteroids that lack anti-inflammatory activity, and progesterone on the development of apoptotic morphology in human neutrophils maintained in vitro. In contrast to glucocorticoids, neither 11-deoxycortisone, tetrahydrocortisone, nor progesterone significantly affected the development of apoptotic morphology ($P > .05$; Fig 1). Thus, among the steroids tested, only the anti-inflammatory corticosteroids appear to inhibit apoptosis in neutrophils.

The effects of dexamethasone, G-CSF, and progesterone on the development of apoptotic nuclei and DNA fragmentation in human neutrophils maintained in vitro. Recent evidence indicates that apoptosis occurs via a sequential process. The initial stage is characterized by a decrease in cytoplasmic volume and chromatin condensation followed later by internucleosomal cleavage of DNA that results in hypodiploid nuclei that can be identified by flow cytometry. Because internucleosomal cleavage of DNA, albeit a late manifestation of apoptosis, is considered to be its biochemical hallmark, we quantitated the development of hypodiploid nuclei (Fig 4) and DNA fragmentation (Fig 5) in neutrophils maintained in vitro in the presence and absence of dexamethasone (10^{-6} mol/L), progesterone...
Fig 4. Kinetic analysis of the effects of dexamethasone, progesterone, and G-CSF on the development of apoptotic nuclei in human neutrophils maintained in suspension culture. (a) Neutrophils were maintained in suspension culture at 37°C with and without dexamethasone (10^{-8} mol/L), progesterone (10^{-8} mol/L), or G-CSF (100 ng/mL), as designated above. After incubation for 0, 12, 24, and 48 hours, aliquots of the neutrophil suspensions were processed for DNA content analysis using propidium iodide staining as described in the Materials and Methods. Nuclei were analyzed using flow cytometry, data were plotted on log histograms as red fluorescence intensity versus relative cell number, and the percentage of hypodiploid nuclei was determined for each condition. Results are reported as the mean ± SE of four separate experiments performed with neutrophils isolated from independent donors. *A statistically significant difference in apoptosis as compared with control cells maintained in culture for the specific time period indicated (P < .05). (b) Representative log histograms of DNA content in neutrophils from a single donor are displayed. Neutrophils were maintained in suspension culture for 24 hours with and without dexamethasone, progesterone, or G-CSF, as outlined above. The percentage of hypodiploid nuclei (between dashed line markers) present in each condition is reported. Similar results were observed in neutrophils isolated from 3 other independent donors.
(10⁻⁶ mol/L), and G-CSF (100 ng/mL). The mean percentage of apoptotic nuclei steadily increased in control neutrophils when measured after 12 (24%), 24 (50%), and 48 hours (92%) in culture (Fig 4). The development of apoptotic nuclei was not affected by incubation with progesterone. In contrast, both dexamethasone and G-CSF significantly reduced the development of hypodiploid nuclei in cultures of neutrophils at each of the time points (*P < .05). However, the magnitude of inhibition of apoptosis was greater for G-CSF at each determination. G-CSF reduced the mean percentage of apoptotic nuclei to 4%, 6%, and 55% at 12, 24, and 48 hours, respectively. By comparison, analysis of dexamethasone-treated neutrophils yielded mean apoptosis percentages of 6%, 16%, and 76% at the respective time points.

Similar results were obtained when DNA fragmentation was quantitated (Fig 5). The mean percentage of soluble DNA (ie, low molecular weight DNA representing cleavage products) in neutrophils increased steadily with increasing time in culture (8% at 12 hours, 48% at 24 hours, and 59% at 48 hours). The amount of soluble DNA in progesterone-treated cells was not statistically different than that of the control at each of the time points (*P > .05). However, both dexamethasone and G-CSF significantly reduced the development of soluble DNA in cultures of neutrophils over time (*P < .05). As observed with inhibition of the development of hypodiploid nuclei, G-CSF exerted the greater effect. Electrophoretic analysis confirmed the ability of dexamethasone to delay DNA fragmentation in neutrophils maintained in vitro for 0 to 72 hours (Fig 6).

The effects of dexamethasone, G-CSF, and progesterone on viability of neutrophils maintained in vitro. To confirm that the observed reduction in apoptosis induced by glucocorticoids correlates with enhanced survival of neutrophils, we determined the viability of neutrophils maintained in the presence and absence of dexamethasone (10⁻⁶ mol/L), G-CSF (100 ng/mL), or progesterone (10⁻⁶ mol/L) for 24 and 48 hours (Fig 7). Viability was assessed using flow cytometry to quantitate the percentage of cells capable of excluding propidium iodide. After 24 hours in vitro, the mean proportion of viable cells declined to similar levels in control (81%) and progesterone-treated (82%) neutrophils. In contrast, viability was significantly increased in neutrophils treated with either dexamethasone (92%) or G-CSF (94%). The ability of dexamethasone and G-CSF to prolong neutrophil survival was even more apparent at 48 hours. Whereas the mean percentage of viable cells had declined to 35% to 40% in control and progesterone-treated neutrophils, treatment with either dexamethasone (61% viable) or G-CSF (80%) significantly enhanced neutrophil survival. Thus, similar to the effects reported for G-CSF, glucocorticoid inhibition of neutrophil apoptosis results in prolonged viability of human neutrophils in vitro.

DISCUSSION

Apoptosis is considered to be an active process dependent on specific RNA and protein synthesis. However, it is now clear that certain cell populations must be induced to undergo apoptosis by specific hormones or stimuli, whereas other cell populations appear to be committed to apopto-
Immature thymocytes represent a cell population that must be induced to undergo apoptosis. In these cells, glucocorticoids induce rapid apoptosis via a pathway that is independent, at least in part, of p53 expression. Mature neutrophils, on the other hand, represent a cell population that appears to be committed to a pathway of apoptosis. Recent evidence from several laboratories indicates that neutrophils can be partially rescued, or inhibited, from undergoing apoptosis by a variety of proinflammatory mediators and cytokines. Of the cytokines influencing apoptosis in human neutrophils, G-CSF exerts the greatest antiapoptotic activity. In the present study, we examined whether glucocorticoids (ie, anti-inflammatory corticosteroids) could influence the development of apoptosis in human neutrophils. Our results show that glucocorticoids exert a protective effect on neutrophil survival in vitro via inhibition of apoptosis at concentrations that correlate with both the plasma level achieved after the administration of pharmacologic doses of dexamethasone in vivo and the concentration required to induce apoptosis of immature thymocytes.

Consistent with the commitment of neutrophils to apoptotic death, glucocorticoids delayed, rather than blocked, apoptosis, resulting in prolonged neutrophil survival in vitro. Thus, it is clear that glucocorticoids play divergent roles in the regulation of the apoptotic pathway in thymocytes and neutrophils.

The administration of glucocorticoids in vivo induces a moderate increase in the number of blood neutrophils. This neutrophilia has been attributed to an increase in the release of neutrophils from bone marrow reserves and/or a decrease in neutrophil margination. The results from the present study suggest an alternative or additional mechanism that may play a role in glucocorticoid-induced neutrophilia. The apoptotic pathway is considered to be the primary means by which neutrophils undergo senescence. Macrophages recognize and phagocytose senescent, apoptotic neutrophils before their loss of viability in vitro and, apparently, in vivo. Thus, a decrease in the rate of development of apoptotic features in neutrophils would be expected to reduce the rate of their removal by macrophages in vivo, resulting in an apparent increase in neutrophil survival and lengthening of the blood neutrophil half-life. Thus, inhibition of neutrophil apoptosis may contribute to the neutrophilia that occurs after glucocorticoid administration in vivo.

The Fas antigen (Fas; Apo-1; CD95), a member of the tumor necrosis factor receptor family, is capable of inducing rapid apoptosis in susceptible cell populations. The Fas-mediated apoptotic signal transduction pathway appears to involve the generation of ceramide, produced after activation of specific sphingomyelinase(s). The recent findings that Fas is expressed on human neutrophils and capable of inducing rapid apoptosis suggest that the Fas pathway may represent an important mechanism regulating spontaneous neutrophil apoptosis. Furthermore, dexamethasone has been shown to increase
the sphingomyelin content of human neutrophils in vitro,26
invoking the possibility that glucocorticoids could depress the rate of spontaneous apoptosis via modulation of steady-
state levels of ceramide. Further studies are underway to
delineate which of these factors are important for the regula-
tion of apoptosis in neutrophils.16,63

In summary, our results show that glucocorticoids prolong
neutrophil survival in vitro via inhibition of apoptosis. These
effects on neutrophil viability are qualitatively similar, but
of lesser magnitude, to those exerted by G-CSF, a proin-
flammatory cytokine. On the basis of our findings, we postu-
late that the neutrophilia induced by glucocorticoid administra-
tion in vivo may be due, in part, to inhibition of apoptosis
and prolonged survival of circulating neutrophils.

NOTE ADDED IN PROOF

We acknowledge the manuscript published by Cox et al4
after the submission of our report demonstrating similar ef-
effects of glucocorticoids on neutrophil apoptosis.

ACKNOWLEDGMENT

We express appreciation to Mary Touma for technical assistance
with flow cytometry.

REFERENCES

1. Ellis RE, Yuan J, Horvitz HR: Mechanisms and functions of
Immunol 50:55, 1991
3. Colea JJ, Duke RC, Fadok VA, Sellins KS: Apoptosis and
programmed cell death in immunity. Annu Rev Immunol 10:267,
1992
4. Owens GP, Hahn WE, Cohen JJ: Identification of mRNAs
associated with programmed cell death in immature thymocytes.
5. Wyllie AH: Glucocorticoid-induced thymocyte apoptosis is
associated with endogenous endonuclease activation. Nature 284:555,
1980
and properties of thymocytes undergoing apoptosis after glucocorti-
7. Cohen JJ, Duke RC: Glucocorticoid activation of a calcium-
dependent endonuclease in thymocyte nuclei leads to cell death. J
Immunol 132:38, 1984
8. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC,
Hooper ML, Wyllie AH: Thymocyte apoptosis induced by p53-
9. Zhivotovsky BD, Seiliev AA, Hanson KP: Effect of gamma-
irradiation on DNA-dependent RNA polymerase activity in rat thym-
10. Sellins KS, Cohen JJ: Gene induction by gamma-irradiation leads
to DNA fragmentation in lymphocytes. J Immunol 139:3199, 1987
11. Glasser L, Fiederlein RL, Huetsw DW: Liquid preservation
of human neutrophils stored in synthetic media at 22^\circ C: Controlled
observations on storage variables. Blood 66:267, 1985
12. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM,
Haslett C: Macrophage phagocytosis of aging neutrophils in
inflammation. Programmed cell death in the neutrophil leads to its
13. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A:
Modulation of granulocyte survival and programmed cell death by
14. Whyte MKB, Meagher LC, Mac Dermot J, Haslett C: Impair-
ment of function in aging neutrophils is associated with apoptosis.
J Immunol 150:5124, 1993
15. Lee A, Whyte MKB, Haslett C: Inhibition of apoptosis and
prolongation of neutrophil functional longevity by inflammatory me-
16. Liles WC, Waltersdorph AM, Klebanoff SJ: Regulation of
apoptosis in human neutrophils: Effects of proinflammatory medi-
tors, protein kinase inhibitors, and antibodies directed against B-
17. Liles WC, Rodger ER, Dale DC: In vivo administration of
granulocyte colony-stimulating factor (G-CSF) to normal human
subjects: Priming of the respiratory burst and inhibition of apoptosis
in neutrophils. Blood 84:24a, 1994 (abstr, suppl I)
H, Mizuguchi Y: Lipopolysacharide and granulocyte colony-stimu-
lating factor delay neutrophil apoptosis and ingestion by guinea pig
19. Goldstein RA, Bowen DL, Fauci AS: Adrenal corticosteroids,
in Gallin JJ, Goldstein BM, Snyderman R (eds): Inflammation: Basic
Principles and Clinical Correlates (ed 2). New York, NY, Raven,
1992, p 1061
20. Peterski KC, Shen L, Gayre PM: Modulation of human poly-
morphonuclear leukocyte IgG Fc receptors and Fc receptor-mediated
124:209, 1966
22. Coates TD, Wolach B, Tseng DY, Higgins C, Baehner RL,
Boxer LA: The mechanism of action of the anti-inflammatory agents
dexamethasone and auranoxin in human polymorphonuclear leuko-
23. Schleimer RP, Freeland HS, Peters SP, Brown KE, Derse CP:
An assessment of the effects of glucocorticoids on granululation,
chemotaxis, binding to vascular endothelium and formation of leuko-
triene B, by purified human neutrophils. J Pharmacol Exper Ther
250:598, 1989
in vitro eosinophil and neutrophil adherence and chemotaxis.
Blood 53:633, 1979
25. MacGregor RR, Spagnuolo PJ, Leutner AL: Inhibition of
granulocyte adherence by ethanol, prednisone, and aspirin measured
change in the sphingomyelin content of human polymorphonuclear
27. Dale DC, Fauci AS, Guerry D, Wolff SM: Comparison of
agents producing a neutrophilic leukocytosis in man. J Clin Invest
56:808, 1975
leukocyte kinetics and susceptibility to infections. N Engl J Med
291:1154, 1974
29. Fauci AS, Dale DC, Balow JE: Glucocorticosteroid therapy:
Mechanism of action and clinical considerations. Ann Intern Med
84:304, 1976
30. Klebanoff SJ, Olszowski S, Van Voorhis WC, Ledbetter JA,
Waltersdorph AM, Schlechte KG: Effects of gamma interferon on human
neutrophils: Protection from deterioration on storage. Blood 80:225,
1992
phosphorylation regulates apoptosis in human eosinophils and neu-
32. Nicoletti I, Migliorati G, Pagliacci MC, Orignani F, Riccardi
C: A rapid and simple method for measuring thymocyte apoptosis by
propidium iodide staining and flow cytometry. J Immunol Methods
139:271, 1991
From www.bloodjournal.org by guest on September 14, 2017. For personal use only.
48. Lotem J, Sachs L: Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 82:1092, 1993
Glucocorticoids inhibit apoptosis of human neutrophils
WC Liles, DC Dale and SJ Klebanoff