Cell-Free Transmission of Fv-4 Resistance Gene Product Controlling Friend Leukemia Virus-Induced Leukemogenesis: A Unique Mechanism for Interference With Viral Infection

By Masanobu Kitagawa, Shiro Aizawa, Hitoko Kamisaku, Hidetoshi Ikeda, Katsuiku Hirokawa, and Toshihiko Sado

Fv-4 is a mouse gene that dominantly confers resistance to infection by ecotropic murine leukemia virus (MuLV). We previously demonstrated that mixed radiation bone marrow chimeras containing Fv-4'-bearing BALB/c-Fv-4W' (C4W) bone marrow and Fv-4'-bearing C3H/He (C3H) bone marrow grafted into C3H recipient mice (C4W + C3H → C3H) were resistant to Friend leukemia virus (FLV)-induced leukemogenesis, even when they contained as high as 70% C3H-derived cells. This indicates that FLV-sensitive C3H-derived cells are rendered refractory to infection and/or transformation with FLV when they coexist in mice with Fv-4'-bearing cells. To investigate the mechanism of Fv-4 resistance to FLV-induced leukemogenesis, we first examined the expression of Fv-4' env antigen in the peripheral blood mononuclear cells (PBMC) of these chimeras. The Fv-4' env antigen was present not only on C4W-derived cells, but also on Fv-4'-bearing C3H-derived cells in C4W + C3H → C3H mixed bone marrow chimeras. The Fv-4' env antigen that binds to the cell surface of C3H cells was found in sera from normal C4W mice, C4W → C3H chimeras, and C4W + C3H → C3H mixed chimeras. The serum Fv-4' env antigen binds to ecotropic MuLV receptors, shown by specific binding to transfected mammalian cells expressing ecotropic MuLV receptor, but not to parental mink cells. To determine whether the binding of Fv-4' env antigen to the putative MuLV receptors would block FLV infection, C3H thymocytes or spleen cells that had been preincubated with C4W serum were mixed with FLV and the subsequent production of MuLV-specific antigens was examined. C3H thymocytes or spleen cells treated with C4W serum became refractory to binding by FLV. These results provide evidence that the Fv-4' env antigen is released from C4W-derived cells in vivo and binds to cells expressing surface receptors for ecotropic MuLV, thereby protecting them from infection with FLV. The implication of these findings for gene therapy of retrovirus-induced disease such as acquired immune deficiency syndrome (AIDS) is discussed.

© 1995 by The American Society of Hematology.

From the Department of Pathology, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo; the Division of Physiology and Pathology, National Institute of Radiological Sciences, Chiba; and the Division of Biodefense Research, National Institute of Animal Health, Ibaraki, Japan.

Submitted November 10, 1994; accepted April 13, 1995.

Address reprint requests to Masanobu Kitagawa, MD, Department of Pathology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113, Japan.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1995 by The American Society of Hematology.

0006-4971/95/8604-0028$3.00/0

MATERIALS AND METHODS

Mice. Specific-pathogen-free (SPF) C3H/HetMsNts (C3H, Fv-4', H-2') male mice were bred from our colonies at the Animal Production Facility of this institute and were maintained within the clean conventional animal facility in which all animals are maintained SPF by our criteria. BALB/c-Fv-4'W (C4W, Fv-4', H-2') mice, which are Fv-4 congenic with BALB/c mice (Fv-4'), were originally provided by Dr. T. Odaka (Professor Emeritus, Tokyo University, Tokyo, Japan) and were maintained in our laboratory.

Preparation of mixed irradiation bone marrow chimeras and virus infection. Ten- to 12-week-old C3H mice were irradiated with 12.5 Gy of 155Cs gamma-rays from GAMMA-CELL-40 (Atomic Energy of Canada, Ltd., Kanata, Canada) at a dose rate of 0.60 Gys/min. Mixed radiation bone marrow chimeras (C4W + C3H → C3H) were constructed by grafting a mixture of bone marrow cells from C4W and C3H donors as described earlier. Four groups of mixed radiation bone marrow chimeras were produced: C3H mice that were superlethally irradiated and reconstructed with a mixture of (1) 1 × 10^7 bone marrow cells from C4W and 2 × 10^6 cells from C3H mice [C4W(10) + C3H(2) → C3H], (2) 5 × 10^7 each of bone marrow cells from C4W and C3H donors [C4W(5) + C3H(5) → C3H], (3) 2 × 10^6 bone marrow cells from C4W mice and 1 × 10^7 cells from C3H [C4W(2) + C3H(10) → C3H], and (4) 1 × 10^6 bone marrow cells from C4W and 9 × 10^6 cells from C3H mice [C4W(1) + C3H(9) → C3H].

In addition, similarly irradiated C3H mice were transplanted with 1 × 10^7 bone marrow cells from C4W donors (C4W → C3H) or with 2 × 10^6 bone marrow cells from C4W and C3H mice (C3H → C3H). The resulting radiation bone marrow chimeras contained various proportions of C4W- and C3H-derived cells. Three to 4 months after their construction, chimerism was determined by assessing the relative proportion of cells expressing H-2K^d or H-2D^d antigens on the surface of peripheral blood mononuclear cells (PBMC) using flow cytometry as described previously. They were then inoculated intraperitoneally (IP) with NB-tropic FLV complemented virus (F1TC)-conjugated monoclonal anti-H-2D^d antibody (Meiji Institute of Health, Tokyo, Japan) and biotin-conjugated monoclonal antibody (MoAb) to Fv-4' env antigen, followed by phycoerythrin (PE)-conjugated streptavidin. The specimens were also stained with FITC-conjugated anti-H-2K^d antibody (Meiji Institute of Health) and biotin-conjugated anti-Fv-4' MoAb, followed by PE-conjugated streptavidin. Anti-Fv-4' MoAb was kindly provided by Dr. H. Sato (Sapporo City Hospital, Sapporo, Japan). Two-color fluorescence analysis was performed on a FACScan (Becton Dickinson, Mountain View, CA).

Assay for surface binding of Fv-4' env antigen. Thymocytes and spleen cells from C3H mice, which are susceptible to ecotropic MuLVs, were used for the binding of Fv-4' env antigen. Cell suspensions were prepared from thymus or spleen of C3H mice. A total of 1 × 10^7 thymocytes or spleen cells from C3H mice were washed three times with RPMI 1640 medium and incubated with 100 μL of RPMI 1640 medium containing 20% mouse serum from C3H, C4W, C4W → C3H, or C3H → C3H mice for 1 hour at 4°C. The cells were then washed three times with phosphate-buffered saline (PBS) and stained with biotin-conjugated anti-Fv-4' MoAb and FITC-conjugated anti-H-2K^d antibody followed by PE-conjugated streptavidin. The expression and/or adherence of Fv-4' env antigen on the surface of H-2K^d-positive C3H cells was measured by immunofluorescence analysis using a cell sorter.

RESULTS

Susceptibility of C4W + C3H → C3H mixed radiation bone marrow chimeras to FLV-induced leukemogenesis depends on percentage of C4W-derived cells. We previously found that C4W + C3H → C3H mixed chimeras that contained over 30% C4W-derived (H-2') antigen-positive) peripheral blood cells were resistant to infection with FLV. Despite this observation, the present experiments (Fig 1), C4W → C3H mice were completely resistant to FLV-induced leukemogenesis, although two mice died from unknown causes other than leukemia about 20 days after inoculation with FLV. Mixed chimeras that contained less than 15% C4W-derived cells [C4W(2) + C3H(10) → C3H and C4W(1) + C3H(5) → C3H] were susceptible to FLV. C4W(5) + C3H(5) → C3H chimeras had different survival depending on the percentage of C4W-derived cells: chimeras containing 25% to 35% C4W-derived cells were resistant to FLV-induced leukemogenesis (one mouse died accidentally during blood sampling, but was free from leukemia), while chimeras containing 15% to 25% C4W-derived cells were susceptible to FLV. Thus, these results generally confirm our previous observations.

Concentration of the virion-containing fraction of FLV solution as well as C4W serum by centrifugation. To determine whether or not the Fv-4' env antigen was secreted in virions, C4W serum was centrifuged at 15,000 rpm (16,000g) at 4°C for more than 2 hours to pellet virus. We assessed the ability of pellet and supernatant fractions to bind to C3H thymocytes and confer expression of Fv-4' env antigen on the cell surface. The pellet fraction plus approximately 5 μL of supernatant was diluted with PBS to the original volume (500 μL). Under the experimental conditions employed, virus particles in the serum of C4W mice are expected to be pelletted. To confirm that virus particles were precipitated under these conditions, an FLV solution that was prepared as described earlier was similarly centrifuged, and the pellet resuspended with PBS as above. After filtration through 0.22 μm Millipore filters, these solutions were incubated with C3H thymocytes for 1 hour at 4°C. The binding of Fv-4' env antigen or FLV to C3H thymocytes was then determined using biotin-conjugated anti-Fv-4' MoAb or polyclonal anti-MuLV antibody (Cell Science Laboratory, Silver Spring, MD) by fluorescence-activated cell sorter (FACS) analysis.

Fv-4' env antigen-positive) peripheral blood cells were resistant to infection with FLV. In the present experiments (Fig 1), C4W → C3H mice were completely resistant to FLV-induced leukemogenesis, although two mice died from unknown causes other than leukemia about 200 days after inoculation with FLV. Mixed chimeras that contained less than 15% C4W-derived cells [C4W(2) + C3H(10) → C3H and C4W(1) + C3H(5) → C3H] were susceptible to FLV. C4W(5) + C3H(5) → C3H chimeras had different survival depending on the percentage of C4W-derived cells: chimeras containing 25% to 35% C4W-derived cells were resistant to FLV-induced leukemogenesis (one mouse died accidentally during blood sampling, but was free from leukemia), while chimeras containing 15% to 25% C4W-derived cells were susceptible to FLV. Thus, these results generally confirm our previous observations.
Presence of Fv-4' env antigen on C3H-derived cells of mixed radiation bone marrow chimeras. To obtain information concerning Fv-4' expression on the surface of lymphohemopoietic cells in mixed radiation bone marrow chimeras, chimeras with different ratios of C3H and C4W cells were constructed and the cell surface expression of H-2 antigen and Fv-4' env antigen on PBMC were analyzed. H-2 typing by FACS analysis 3 months after bone marrow transplantation indicated that PBMC of C4W(10) + C3H(2) → C3H chimeras contained 44% to 74% C4W-derived (H-2'-positive) cells, while the PBMC of C4W(5) + C3H(5) → C3H chimeras contained 30% to 43% and the PBMC of C4W(2) + C3H(10) → C3H chimeras contained 5% to 9% C4W-derived cells. The PBMC from C3H → C3H mice and C4W → C3H chimeras contained more than 95% H-2'-positive and H-2'-positive cells, respectively.

Two-color flow cytometric analysis showed, as expected, that PBMC of C3H → C3H mice were H-2'-positive, but negative for Fv-4' env antigen (Fig 2A). Also, as expected, C4W-derived (H-2'-positive) cells of mixed chimeras were positive for Fv-4' env antigen. Unexpectedly, the majority of C3H-derived (H-2'-positive) PBMC of C4W(10) + C3H(2) → C3H mixed chimeras were also positive for Fv-4' env antigen (Fig 2B). The C3H-derived (H-2'-positive) PBMC of C4W(10) + C3H(2) → C3H and C4W(2) + C3H(10) → C3H mixed chimeras had lower levels of Fv-4' antigen than C4W → C3H chimeric mice (positive control) (Fig 3A). The H-2'-positive PBMC from C4W(2) + C3H(10) → C3H chimeras appeared to have a lesser amount of Fv-4' env antigen than those from C4W(10) + C3H(2) → C3H chimeras. The amount of Fv-4' env antigen on H-2'-positive PBMC of C4W(5) + C3H(5) → C3H mixed chimeras was intermediate between that of C4W(10) + C3H(2) → C3H and C4W(2) + C3H(10) → C3H mixed chimeras (data not shown). Thus, the intensity of the expression of Fv-4' antigen correlated with the proportion of C4W-derived cells in these mixed chimeras. In contrast, the intensity of Fv-4' env antigen on C4W-derived (H-2'-positive) cells was not affected by the proportion of coexisting C3H-derived cells.

About 4 months after bone marrow transplantation, all mice were inoculated with FLV. After inoculation, the proportion of Fv-4' env-negative cells among H-2'-positive cells increased in the peripheral blood of C4W(10) + C3H(2) → C3H and C4W(2) + C3H(10) → C3H chimeras (Fig 3B).

Chronological changes in the mean intensity of Fv-4' env antigen on C3H-derived PBMC of mixed chimeras after bone marrow transplantation and after inoculation with FLV are shown in Fig 4. The amount of Fv-4' env antigen was high 1 month after bone marrow transplantation and decreased slightly 2 to 3 months after bone marrow transplantation.
tion. After inoculation with FLV, mean expression of the Fv-4’ env antigen on the H-2α-positive PBMC decreased further, especially in the C4W(10) + C3H(2) → C3H mixed chimeras, largely due to an increase in the number of Fv-4’-negative cells. The overall mean intensity of Fv-4’ expression by H-2α-positive population of PBMC from C4W(10) + C3H(2) → C3H mixed chimeras, [B] that of C4W(5) + C3H(5) → C3H chimeras, and [C] that of C4W(2) + C3H(10) → C3H chimeras. Each group consisted of four or five mice and bars indicate standard deviation of each group.

Detection of Fv-4’ env antigen in sera from Fv-4’ mice and mixed chimeras. The strong resistance to FLV-induced leukemogenesis together with the presence of Fv-4’ env antigen on C3H-derived cells in C4W + C3H → C3H mixed chimeras suggested to us that Fv-4’ env antigen might have been transferred from C4W-derived cells to protect C3H-derived cells from infection with FLV. To investigate this possibility, we examined serum from mice containing C4W-derived cells for presence of Fv-4’ env antigen and ability of this antigen to bind to the surface of C3H-derived cells in vitro. Thymus or spleen cells from C3H mice were incubated with serum taken from C4W or C4W → C3H mice 1 month after bone marrow transplantation and examined for cell surface Fv-4’ env antigen by membrane immunofluorescence. While the incubation of C3H-derived cells with serum from C3H mice did not result in detectable Fv-4’ env antigen, C3H thymus cells incubated with serum from C4W(5) + C3H(5) → C3H, C4W → C3H, or C4W mice became positive for cell surface Fv-4’ env antigen (Table 1). The same type of experiments using C3H spleen cells showed similar results. These data demonstrate that C4W-derived serum contains a detectable amount of Fv-4’ env antigen that can bind to the surface of C3H-derived cells.

Table 1. Relative Intensity of Cell Surface Fv-4’ env Antigens on C3H Cells After Incubation With Various Mouse Sera

<table>
<thead>
<tr>
<th>Mouse Sera*</th>
<th>Thymus</th>
<th>Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3H</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>C4W(5) + C3H(5) → C3H</td>
<td>14.3</td>
<td>39.2</td>
</tr>
<tr>
<td>C4W + C3H</td>
<td>22.6</td>
<td>66.1</td>
</tr>
<tr>
<td>C4W(5) + C3H(5) → C3H</td>
<td>11.6</td>
<td>37.6</td>
</tr>
</tbody>
</table>

*Thymocytes and spleen cells of Fv-4’ env C3H mice were incubated with mouse sera from C3H, C4W(5) + C3H(5) → C3H, C4W → C3H, and C4W mice. The cell surface Fv-4’ env antigen was measured by flow cytometry using FACSscan.

1 Relative intensity of Fv-4’ env antigen fluorescence was calculated by the formula:

Relative Intensity (%) = \[\frac{\text{Sample Intensity} - \text{Negative Control}}{\text{Positive Control} - \text{Negative Control}} \times 100 \]

Sample intensity, mean fluorescence intensity of cell surface Fv-4’ env antigen by Fv-4’ env C3H cells after incubation with mouse sera; positive control, mean intensity of C4W thymic (111.4) or spleen cells (40.6); negative control, mean intensity of C3H thymic (1.95), or spleen cells (7.04) before incubation with mouse sera.

Binding of serum Fv-4’ env antigen to ecotropic MuLV receptor. To further analyze the binding specificity of Fv-4’ env antigen in C4W serum, we made use of a mink cell line transfected with DNA encoding the ecotropic MuLV receptor and parent mink cells that did not express ecotropic MuLV receptors. Fv-4’ env antigen present in C4W serum bound to the transfected cells (Fig 5, curve a), but not to the parental cells (Fig 5, curve b), as would be expected if the Fv-4’ env antigen was binding to the ecotropic virus receptor.
fraction of FLV solution, and (d) C3H serum.

CELL-FREE TRANSMISSION OF

antigen, (c) sediment fraction of C4W serum, and (d) C3H serum as a negative control. (B) Expression of MuLV antigen by C3H thymocytes after incubation with the (a) original, (b) supernatant, (c) sediment fraction of C4W serum, and (d) C3H serum. **Flv-4’ env** antigen was identified in the supernatant fraction of C4W serum, while viral antigen was demonstrated both in the sediment and supernatant fraction of FLV solution.

Form of **Flv-4’ env **antigen in C4W serum. The possibility that the Flv-4’ env antigen in serum was associated with virus particles was investigated by centrifugation to pellet virus. **Flv-4’ env** antigen from C4W serum was found in the supernatant fraction, but not in the sediment fraction, when assessed by binding to C3H thymocytes (Fig 6A). In contrast, most FLV antigen in an FLV solution was pelletable, although a small amount of FLV antigen was also found in the supernatant fraction (Fig 6B). FLV antigen in serum from FLV-infected C3H mice gave similar results (data not shown). These results imply that the Flv-4’ env antigen in the serum is not associated with virions.

Serum Flv-4’ env antigen can block binding by FLV. We previously suggested that Flv-4’ resistance may be mediated via receptor interference. To test whether the binding of Flv-4’ env antigen from serum interferes with FLV adsorption, C3H thymocytes or spleen cells were preincubated with C4W serum, followed by incubation with FLV suspension. A large amount of FLV antigen was bound to the cell surface of C3H thymocytes or spleen cells if the cells were preincubated with C3H serum (Fig 7, curve a), whereas preincubation with C4W serum strongly reduced the binding of FLV (Fig 7, curve b). Negative controls included C4W cells incubated with FLV (Fig 7, curve c) and C3H cells not incubated with FLV (Fig 7, curve d).

DISCUSSION

MuLV infection is initiated by binding of virus envelope to membrane receptors expressed on susceptible cells. Binding is required for fusion of the virus envelope to the target cell, an event that may occur at the cell surface or within an acidified endosome after receptor-mediated endocytosis that results in entry of the virion core into the cytoplasm and initiation of replication. The mechanism of Flv-4’ resistance is presumed to be mediated via receptor interference. This virus interference model is related to the phenomenon of viral interference in vitro. When tissue culture cells are chronically infected with one retrovirus, they are resistant to superinfection with the same or related retroviruses. Mouse cells have three types of virus receptors, Rec-1 for ecotropic MuLVs, Ram-1 for amphotropic MuLVs, and Rmcf-1 for dualtropic MuLVs. The observation that mouse cells transfected with the cloned Flv-4’ gene became resistant specifically to ecotropic MuLV infection suggested a possible interference between the Flv-4’ env and the ecotropic MuLV receptor. The results presented in this paper clearly demonstrate that the soluble Flv-4’ env antigen (molecular weight of about 80 kD, unpublished data) specifically binds to the ecotropic MuLV receptors (Fig 5) and, further, that binding of Flv-4’ env antigen to the cell surface receptors interferes with the subsequent binding and infection by FLV (Fig 7).

The interference appears to be a consequence of the modification of virus receptor via interaction between receptor and viral envelope glycoprotein. Experiments demonstrating interference have usually been done in persistently infected cells. Recent findings suggested that, in those cells, intracellular binding of receptor by env glycoprotein induces downregulation of cell surface receptor molecules. A study with reticuloendotheliosis virus shows that envelope mutants that are retained predominantly in the endoplasmic reticulum (ER) can still cause superinfection interference. Related studies using the mutant env gene of a newly cloned MuLV showed that the mutant env glycoprotein that remained in the ER caused superinfection resistance. Transfection of the mutant env gene into cells persistently infected with wild-type virus of the same interference group led to trapping of the wild-type env protein in the ER and suppressed expression of wild-type virus. The interference demonstrated in this paper is different from the interference shown in persistently infected cells in that the binding of Flv-4’ env antigen from outside unaffected cells blocked the attachment and replication of infecting virus. Such a phenomenon has not been reported in other retroviruses. Human immunodeficiency virus (HIV) binding to susceptible cells failed to induce receptor (CD4) endocytosis, whereas anti-CD4 antibodies and phorbol esters did. Binding inhibition for superinfection was tested in the HIV experiment.
Although AKR mice are viremic and express the env glycoprotein of an endogenous ecotropic MuLV (AKV virus) on the cell surface,26 they are not as strongly resistant to exogenous infection by ecotropic MuLVs as are Fv-4' mice. Most of the AKV proviral loci of AKR mice appear to be structurally competent for full expression of infectious virus,26 while the Fv-4' gene contains only a truncated provirus genome. Differences between ecotropic AKV proviral loci and the Fv-4' gene in the env region and in structures outside of the env region may account for the different resistance activities.9

The resistance of C4W + C3H → C3H mixed chimeras to FLV depended on the amount of Fv-4' env antigen on the surface of H-2k-positive (C3H-derived) cells. The amount of Fv-4' env antigen on the H-2k-positive PBMC of mixed chimeras was roughly proportional to the ratio of C4W- to C3H-derived bone marrow cells. The C4W(5) + C3H(5) → C3H chimeras were FLV-resistant, while C4W(2) + C3H(10) → C3H chimeras were susceptible to FLV-induced leukemia. The overall average amount of Fv-4' env antigen on C3H-derived PBMC of C4W(2) + C3H(10) → C3H chimeras was below 20% of the normal expression by C4W PBMC. Thus, surface Fv-4' env antigen greater than 20% of that of C4W-derived cells appeared necessary for C3H-derived cells to resist FLV-induced leukemogenesis. Limjoco et al.10 have constructed two strains of transgenic Fv-4' mice expressing Fv-4'-related antigen in the thymus and spleen cells. One of the two transgenic strains expressed three to nine times more transgene RNA and protein than the other strain. The former strain of mice were completely resistant to FLV-induced leukemia, while the latter mice were only partially resistant. This finding of Fv-4' gene expression dependent FLV-resistance in transgenic Fv-4' mice is consistent with our observation in the present study using mixed bone marrow chimeras. Further study may be necessary to clarify the precise mechanism whereby FLV resistance depends on the amount of Fv-4' env antigen on the cell surface.

In the mixed chimeras examined in the present study, the amount of Fv-4' env antigen on PBMC lacking the Fv-4' gene (C3H-derived) appeared highest at 1 month after bone marrow transplantation and then gradually decreased. As shown by the binding assay, serum of C4W → C3H chimeras contained more Fv-4' env antigen than the C4W serum. This finding may be due to increased proliferation or metabolic activity of bone marrow cells after bone marrow transplantation following supralethal irradiation.

Bone marrow transplantation has offered therapeutic prospects for the treatment of otherwise fatal hematologic malignancies.22,23 Severe combined immunodeficiency,24 as well as aplastic anaemia.25 However, the indication of bone marrow transplantation for retroviral infection is still controversial.26 The fact that the soluble or secreted form of viral env appeared to be effective in conferring resistance is auspicious for attempts to establish receptor interference therapy of retrovirus diseases by bone marrow transplantation23,26 or other treatments, because (1) the transfected env gene might not need to be expressed in all marrow-derived cells, and (2) soluble forms of genetically engineered env proteins could be applicable for the therapy. Several approaches to block infection by soluble env or receptor proteins at the level of viral attachment to the cellular receptor have been reported. With HIV in vitro, soluble, secreted forms of the CD4 antigen27 and synthetic peptide segments of the CD4 molecule28 have been shown to block HIV infection of CD4-positive cells. Moreover, anti-CD4 antibody29 and phorbol esters30 induce internalization of the CD4 molecule resulting in a block to HIV binding. HIV-like particles containing modified envelope glycoproteins were used to develop a cross-protective AIDS vaccine in vivo.41 However, the efficacy of soluble CD4 or anti-CD4 antibody therapy, as well as vaccine therapy of AIDS, is still controversial. CD4 epitope masking by envelope protein could also downregulate CD4-positive cell function.42 Nevertheless, the unique interference mechanism of an env gene product shown in this study could contribute to establishing a novel basis for therapeutic intervention in AIDS.

ACKNOWLEDGMENT

The authors thank Dr Hidetoshi Sato for supplying a monoclonal antibody against Fv-4' env antigen, Dr Toshiyasu Hiraoka and Dr Akinori Ishimoto for supplying a mink cell line transfected with ecotropic MuLV receptor gene, and Dr Jonathan Silver (Laboratory of Molecular Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD) for critical reading of the manuscript and helpful suggestions.

REFERENCES

From www.bloodjournal.org by guest on October 31, 2017. For personal use only.
CELL-FREE TRANSMISSION OF Fv^A PRODUCT

virus-infected mice from leukemia: A model of bone marrow transplantation therapy against retroviral infection. Leukemia 8:2200, 1994

Cell-free transmission of Fv-4 resistance gene product controlling Friend leukemia virus-induced leukemogenesis: a unique mechanism for interference with viral infection

M Kitagawa, S Aizawa, H Kamisaku, H Ikeda, K Hirokawa and T Sado