A Controlled Comparison of the Efficacy of Hetastarch and Pentastarch in Granulocyte Collections by Centrifugal Leukapheresis

By J.-H. Lee, S.F. Leitman, and H.G. Klein

Compared with hetastarch (HS), the low molecular weight analog pentastarch (PS) has been reported to be equally effective for granulocyte collection by centrifugal leukapheresis, to result in fewer adverse donor reactions (ADR), and to have a more rapid elimination profile. We prospectively compared the granulocyte collection efficiency (GCE), granulocyte yield, and ADR in 72 randomly paired granulocytapheresis procedures from 36 volunteer donors using the model CS-3000 Plus Blood Cell Separator (CS) and either PS or HS as the sedimenting agent. Paired collections from each donor allowed us to compare the two agents directly while controlling for intrinsic donor differences. In 33 of 36 (92%) donors, HS procedures were significantly more efficient than PS procedures (P < .001). As an average, HS collections yielded 2.3 ± 0.67 × 10^8 granulocytes at 58% ± 8.8% GCE, whereas PS procedures resulted in 1.4 ± 0.76 × 10^8 granulocytes at 33% ± 15% GCE. No starch-induced ADR were seen with either agent. For granulocyte harvests using the CS, (1) in most donors, using HS as the red blood cell sedimenting agent during centrifugal leukapheresis results in significantly higher (nearly twofold) GCE and larger granulocyte yields in comparison with using PS, (2) ADR were not observed with either agent, and (3) the potential benefit of more rapid PS elimination should be balanced against significantly lower granulocyte yields. This is a US government work. There are no restrictions on its use.

MATERIALS AND METHODS

We prospectively studied 72 consecutive granulocyte collections from 36 volunteer blood donors using the model CS3000 Plus Blood Cell Separator (CS; Fenwal Laboratories, Deerfield, IL). Each donor underwent paired collections separated by approximately 2 months (range, 2 weeks to 7 months) and randomly received a standard 500 mL dose of either 10% PS (McGaw, Inc, Irvine, CA) or 6% HS (NPBI, Emmer-Compascuum, The Netherlands) during the first procedure and the alternate agent during the subsequent collection. The HS preparation used was chemically and pharmacologically identical to the preparation more widely used in the United States (McGaw, Irvine, CA). Thirty milliliters of 46.7% trisodium citrate added to 500 mL of either PS or HS was evenly distributed over approximately 7 L of processed whole blood (1:13 ratio with blood). After obtaining informed consent for the procedure for procuring granulocytes, all donors were premedicated with 8 mg of oral dexamethasone 12 hours before each procedure. The two RBC sedimenting agents are compared in Table 1. The specific instrument settings used are summarized in Table 2.

GCE. The GCE of each procedure was calculated by dividing the granulocyte yield by the total number of granulocytes processed. The yield was calculated as the product of the component cell count and volume. The number of granulocytes processed (GP) was calculated as follows: GP = \(\frac{WBC}{L} \times G \), where WBC represents the donor peripheral white blood cell count per liter, %G represents the granulocyte fraction (neutrophils including bands), and L represents the total volume of processed whole blood in liters. We used the average of the cell counts immediately before and after each procedure, for both WBC and %G. The accuracy of averaging the two cell counts has been previously verified. All cell counts were performed on the Coulter Counter Model S-PLUS V (Coulter Electronics, Inc, Hialeah, FL).

PS versus HS. For each donor, we plotted the GCE (Fig 1) and the granulocyte yield (Fig 2) from the procedure using HS as a function of the donor’s corresponding values using PS. We also
HYDROXYETHYL STARCH IN GRANULOCYTAPHERESIS

Table 1. A Comparison of the Biochemical and Pharmacokinetic Characteristics of 10% PS and 6% HS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>PS</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average molecular weight (MW)</td>
<td>284,000</td>
<td>480,000</td>
</tr>
<tr>
<td>No. average molecular weight (MN)*</td>
<td>63,000</td>
<td>71,000</td>
</tr>
<tr>
<td>Hydroxyethyl starch concentration (g/dL)</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Hydroxyethyl groups per glucose residue</td>
<td>0.45</td>
<td>0.70</td>
</tr>
<tr>
<td>Time to reach 50% peak blood level (h)*</td>
<td>2.5</td>
<td>25.5</td>
</tr>
<tr>
<td>24-h plasma distribution (% dose)*</td>
<td>7</td>
<td>38</td>
</tr>
<tr>
<td>24-h urinary excretion (% dose)</td>
<td>70</td>
<td>33</td>
</tr>
<tr>
<td>24-h extravascular distribution (% dose)*</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Overall survival in blood*</td>
<td>96 h</td>
<td>17-26 wk</td>
</tr>
</tbody>
</table>

* Mishler et al. Characteristics not taken from Mishler et al have been listed directly from the package insert of each agent.

Compared the mean and the standard deviation of the GCE and the granulocyte yield for all procedures using PS versus all procedures using HS. The GCE distribution of the 36 procedures on each sedimenting agent is compared in Fig 3.

The donors were verbally questioned to detect any ADR from either starch preparation at completion of each procedure and were instructed to report by phone any problems arising subsequent to each procedure. All granulocyte donors in this study were also regularly questioned to detect any ADR from either starch preparation at completion of each procedure. All granulocyte donors in this study were also regularly questioned to detect any ADR from either starch preparation at completion of each procedure. All granulocyte donors in this study were also regularly questioned to detect any ADR from either starch preparation at completion of each procedure.

The greater variability in cell yield with PS than with HS may be also appreciated from Fig 3, which shows a distribution plot of the granulocyte yield for the 36 procedures with each agent. The less efficient and more variable PS collections included 9 procedures (25%) with unacceptably low cell numbers (< 1 × 10^6 granulocytes) and were more likely (12 procedures [33%]) to result in a yield between 1.0 and 1.5 × 10^6 granulocytes. In contrast, only one HS collection (3%) generated less than 1 × 10^6 granulocytes. HS collection commonly (13 procedures [36%]) generated components with a cell dose between 2.0 and 2.5 × 10^6 granulocytes. Using HS assured a minimum GCE of 40%, whereas using PS resulted in a collection failure with a GCE less than 10% in 3 of the 36 procedures (8.3%). Infrequent ADR

RESULTS

Figure 1 compares the expected relationship between HS and PS if the GCE for the two agents are equal (dashed line) with the observed relationship (solid line). The increased y-intercept of the observed line describes minimization, by using HS instead of PS, of unacceptably poor GCE or collection failures. Thirty-three of the 36 donors (92%) showed a higher GCE with HS than with PS (P < .001). The actual granulocyte yields are plotted in Fig 2, in which comparable predonation leukocyte counts for the two collections from each donor resulted in a line comparable to that in Fig 1. The overall mean predonation leukocyte count of approximately 8 × 10^7/L with 80% granulocytes showed substantial interdonor but relatively little intradonor variability. In comparison with PS, using HS resulted in a component with substantially more granulocytes in 32 of the 36 donors (89%, P < .001). The wide interdonor variability in the GCE and the granulocyte yield using PS were minimized by using HS, as indicated by the relatively horizontal slope values less than 1 (0.24 and 0.52 for Figs 1 and 2, respectively). For all 72 procedures, using HS resulted in a significantly higher mean GCE (58% ± 8.8% vs 33% ± 15%, P < .001) and a larger mean granulocyte yield (2.3 ± 0.67 vs 1.44 ± 0.76 × 10^6 granulocytes, P < .001) than using PS.

The greater variability in cell yield with PS than with HS may be also appreciated from Fig 3, which shows a distribution plot of the granulocyte yield for the 36 procedures with each agent. The less efficient and more variable PS collections included 9 procedures (25%) with unacceptably low cell numbers (< 1 × 10^6 granulocytes) and were more likely (12 procedures [33%]) to result in a yield between 1.0 and 1.5 × 10^6 granulocytes. In contrast, only one HS collection (3%) generated less than 1 × 10^6 granulocytes. HS collection commonly (13 procedures [36%]) generated components with a cell dose between 2.0 and 2.5 × 10^6 granulocytes. Using HS assured a minimum GCE of 40%, whereas using PS resulted in a collection failure with a GCE less than 10% in 3 of the 36 procedures (8.3%). Infrequent ADR

Table 2. Apheresis Parameters for Granulocyte Collection on the Model CS3000 Plus Blood Cell Separator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole blood flow rate</td>
<td>50 mL/min</td>
</tr>
<tr>
<td>Centrifuge RPM</td>
<td>1,000</td>
</tr>
<tr>
<td>Blood volume processed</td>
<td>6.5-7.0 L</td>
</tr>
<tr>
<td>Interface detector setting</td>
<td>33</td>
</tr>
<tr>
<td>Program</td>
<td>2</td>
</tr>
<tr>
<td>Chamber type</td>
<td>Granulo</td>
</tr>
</tbody>
</table>

Fig 1. A comparison of the GCE for PS and HS. The GCE using HS was roughly linearly correlated with the GCE using PS, and a given donor with a relatively high GCE on HS was more likely to show a high GCE on HS. In 33 of 36 donors (92%), HS resulted in a superior GCE in comparison to PS. The 3 remaining donors showed a comparable GCE with either PS or HS. The dashed line indicates the hypothetical plot assuming that the two agents are equally effective.
from dexamethasone premedication (sleep disturbance) and the apheresis procedure (mild vasovagal reactions and citrate toxicity) did not favor collections using either agent. None of the 36 donors reported ADR directly attributable to either agent.

DISCUSSION

Advances in blood component therapy and the therapeutic efficacy of RBC, platelet, and plasma components allow effective transfusion support of patients with complicated hematologic disorders. As a result, infectious complications unresponsive to optimal antibiotic therapy have become an increasing cause of morbidity and mortality in patients with prolonged cytopenias. In contrast to RBCs and platelets, granulocytes have developed slowly as a therapeutic blood component, owing in part to the difficulty in collecting sufficient numbers of cells that permit well-controlled studies to assess granulocyte transfusion efficacy. Thus, despite numerous studies that have attempted to assess the therapeutic role of granulocyte transfusions (GTs) in neutropenic patients, definitive information is not available and GTs have fallen out of favor. Seven controlled studies comparing antibiotic therapy alone versus GT in addition to antibiotic therapy in infected neutropenic patients have generated conflicting conclusions. Five of the seven studies report at least partial success of GT; no benefit was seen in the remaining two studies involving 47 and 22 subjects. However, the latter two studies used extremely low cell doses, approximately only 20% of currently achievable dose. Recent reports using granulocyte colony-stimulating factor to stimulate normal blood donors again raise the possibility of routinely collecting greater numbers of granulocytes in the future. Advances that increase cell dose may significantly improve the efficacy of GT, especially in the pediatric setting, in which a higher dose of granulocytes per kilogram of body weight is possible. It thus seems appropriate to reanalyze the technique for collecting granulocytes in optimal numbers.

The granulocyte yield depends primarily on the efficiency at which the cells are extracted during an apheresis collection procedure. The similarity of RBC and granulocyte sedimentation rates during centrifugation has necessitated the use of macromolecules to enhance RBC sedimentation and to achieve optimal separation of these cells for a successful granulocyte collection. The macromolecules most widely used include hydroxyethyl starch preparations, dextrans, and modified fluid gelatins; of these, HS gained initial favor because it effectively enhanced granulocyte yield with few ADR in conventional procedures.
The initial studies on PS, which included one multicenter clinical trial, concluded that PS is as effective as HS in centrifugal granulocytapheresis. In view of the current literature on the effects of macromolecules on the physics of blood cell separation and the biochemical differences between PS and HS, it would be surprising if in fact PS were as effective as HS. One intrinsic donor variable that predictably influences granulocyte harvest by centrifugal leukapheresis is the donor erythrocyte sedimentation rate (ESR). Results of studies from our laboratory have suggested that PS may be less effective than HS, based on an indirect comparison of the respective formulas that predict GCE from the donor ESR. The slope and the y-intercept of the linear relationship GCE (%) = 1.3 ESR (mm/h) + 45 when one uses HS as the cell sedimenting agent decreases to 0.8 and 20, respectively, when PS is substituted for HS in otherwise identical collection procedures. In this study, we directly compare the two agents in a controlled clinical trial; our results confirm the indirect comparison study. The more consistent HS collections assured a 40% minimum GCE, whereas a substantial fraction (8.3%) of the less predictable PS procedures resulted in collection failures at less than 10% GCE. Routine PS use will more likely result in fewer granulocytes than the criteria established by the American Association of Blood Banks Standards Committee, or 1.0 × 10^10 granulocytes per unit in 75% of tested units. Finally, the lack of ADR from either agent in our series of only 36 collections in each of the two arms from 72 donors is not unexpected in view of the previously reported incidence of less than 1%.1,6

We conclude the following for centrifugal granulocytapheresis using the model CS3000 Plus blood cell separator and either PS or HS as the RBC sedimenting agent. (1) In most donors, HS results in a significantly higher (nearly twofold) GCE and a larger granulocyte yield in comparison to PS. (2) Sedimenting agent-induced ADR were not observed with either HS or PS. (3) The potential benefit of more rapid PS elimination should be balanced against the significantly lower granulocyte yield. The relative efficacy of PS and HS using other blood cell separators and under other collection conditions requires further study.

ACKNOWLEDGMENT

The authors sincerely thank David W. Alling, MD, PhD of the Biometry Branch, National Institute of Allergy and Infectious Diseases, for his expert comments and advice in statistically analyzing the data. We also gratefully appreciate the assistance from our departmental staff (Karen Diggs, Cynthia Martin, Sandra Bangham, Phyllis Byrne, Roland Grammont, Jeanette Rothberg, Kathleen Swisher, and Margaret Weller) for their skilled hemapheresis operations. We thank Gail Carter and Virginia Morgan for diligent donor recruitment, Herb Culitis and Charles Carter for insightful technical suggestions, and Tim Jacobson for his helpful technical assistance.

REFERENCES

The separation of granulocytes from erythrocytes, which dictate GCE, depends on the relative sedimentation rates of the two cell types and the granulocyte sedimentation rate relative to the upward plasma flow resulting from downward cell displacement. Macromolecules that promote RBC rouleaux formation increase the effective cell mass to cell surface area ratio and thereby increase both the cell sedimentation rate and the consequent upward plasma flow. RBCs, with a highly negatively charged outer cell surface, are much more susceptible to polar macromolecules than are neutral granulocytes, and RBC sedimentation is selectively increased over granulocyte sedimentation through both direct cell and indirect plasma effects. Although the precise molecular mechanism of RBC rouleaux formation is unknown, kinetic studies using nuclear magnetic resonance relaxation methods have shown that HS rapidly induces over 20 seconds the formation of aggregates containing 4 RBCs on average at equilibrium, which effectively doubles the mass to surface area ratio in comparison to a single RBC.

Two properties of macromolecules independently influence RBC sedimentation. There appears to be a critical molecular weight (CMW) as well as a critical concentration (CC) below which RBC sedimentation is not enhanced. Although rigorous numbers are difficult to establish, the CMW and the CC for hydroxyethyl starch compounds have been determined to be 300,000 and 0.3 g/dl, respectively. HS, with a weight-average molecular weight (MW) of 480,000 and relatively slow elimination over several days, readily meets these criteria under virtually all collection conditions used today. In contrast, the substantially lower PS MW of 264,000 (below the CMW) may explain in part the decreased efficacy relative to HS. Because the number-average molecular weights of the two agents are fairly comparable, the relatively few but large molecules present to a greater extent in HS than in PS may be an important element that contributes to the more uniform, increased HS efficacy. Furthermore, the rapid PS plasma clearance within hours (and within the time frame of a single leukapheresis procedure) decreases the potential cumulative effect of infusing the sedimenting agent into recirculated donor blood already containing the agent in significant amounts.

A controlled comparison of the efficacy of hetastarch and pentastarch in granulocyte collections by centrifugal leukapheresis

JH Lee, SF Leitman and HG Klein