The Value of Flow Cytometric Analysis of Platelet Glycoprotein Expression on CD34+ Cells Measured Under Conditions That Prevent P-Selectin–Mediated Binding of Platelets

In the present study, we show by adherence assays and ultrastructural studies that platelets can bind to CD34+ cells from human blood and bone marrow and that this interaction interferes with the accurate detection of endogenously expressed platelet glycoproteins (GPs). The interaction between these cells was found to be reversible, dependent on divalent cations, and mediated by P-selectin. Enzymatic characterization showed the involvement of sialic acid residues, protein(s) containing O-linked glycans, and elastase-sensitive protein(s). The demonstration of mRNA for the P-selectin glycoprotein ligand 1 (PSGL-1) in the CD34+ cells by polymerase chain reaction (PCR) analysis suggests that this molecule is present in these cells. Under conditions that prevent platelet adhesion, a small but distinct subpopulation of CD34+ cells diffusely expressed the platelet GPIib/IIIa complex. These cells were visualized by immunohistochemical studies. Furthermore, synthesis of mRNA for GPIIb and GPIIIa by CD34+ cells was shown using PCR analysis. The semiquantitative PCR results show relatively higher amounts of GPIIb mRNA than of PF4 mRNA in CD34+CD41+ cells in comparison with this ratio in platelets. This finding is a strong indication that the PCR results are not caused by contaminating adhering platelets. MoAbs against GPla, GPIIb, GPV, P-selectin, and the α-chain of the vintreocyte receptor did not react with CD34+ cells. The number of CD34+ cells expressing GPIIb/IIIa present in peripheral blood stem cell (PBSC) transplants was determined and was correlated with platelet recovery after intensive chemotherapy in 27 patients. The number of CD34+CD41+ cells correlated significantly better with the time to platelet recovery after PBSC transplantation (r = -0.83, P = .04) than did the total number of CD34+ cells (r = -0.55). Statistical analysis produced a threshold value for rapid platelet recovery of 3.4 × 10^6 CD34+CD41+ cells/kg. This study suggests that if performed in the presence of EDTA the flow cytometric measurement of GPIIb/IIIa on CD34+ cells provides the most accurate indication of the platelet reconstitutive capacity of the PBSC transplant.

© 1995 by The American Society of Hematology.

MATERIALS AND METHODS

MoAbs. The following antibodies were used in this study. IgG1 and IgG2a isotype control antibodies were obtained from the CLB.

From the European Cancer Centre, Amsterdam, The Netherlands; the Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands; the Free University Hospital, Amsterdam, The Netherlands; the Netherlands Cancer Institute/Amsterdam, The Netherlands; the Medisch Spectrum Twente, Enschede, The Netherlands; INSERM U.91 Hôpital Henri Mondor, Créteil, France; INSERM U.362 Institut Gustave Roussy, Villejuif, France; and the Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.

Submitted September 12, 1994; accepted July 18, 1995.

Address reprint requests to C. Ellen van der Schoot, MD, PhD, Department of Experimental Immunohematology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, PO Box 9190, 1006 AD, Amsterdam, The Netherlands.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1995 by The American Society of Hematology.

0006-4971/95/0861-0017$3.00

3771
Fluorescein isothiocyanate (FITC)-labeled HPCA-2 (CD34), phycoerythrin (PE)-labeled rat MoAb against the ε light chain of mouse Ig, and MoAb Leu-8 (CD62L, L-selectin) were purchased from Becton Dickenson (San Jose, CA). MoAbs CLB-thromb/1 (C17, CD61, GPIIIa), CLB-thromb/34 (CD49b, VLA-2), CLB-thromb/53 (CD62P, P-selectin), CLB-thromb/6 (CD62P, P-selectin), CLB-thromb/7 (CD6, CD41, GPIIIb), ES12F11 (CD31, GPIIb, PECAM-1), ES4C7 (CD36, GPIVI), SW16 (CD42d, GPVI), CLB-3B9 (CD15, Lea), CLB-gran2/2 (CD15, Leb), and B13.9 (CD66b) were all produced in our laboratory (CLB) and clustered in the International Workshops on Leukocyte Differentiation Antigens.15,16 Biotin-labeled CD41 (CLB-thromb/7) and a biotin-labeled isotype control are MoAbs produced in our laboratory (CLB). MoAbs W6/32 (HLA class I), CTLA-4 (CD152), MB45 (CD42b, GPIIb), Y2.51 (CD61, GPIIIa), and NK-I7-M7 (CD51) were obtained from the Fourth International Workshop studies.17 MoAbs Immun-13, Immun-409, 14G3, DCHS5, CD34-9F2, HPCA2, 43A1, 581, 570, 533, 563, MD34.1, MD34.2, MD34.3, QBend10, 4A1, 9044, and 9049, directed against CD34, were obtained from the Fifth International Workshop studies.18

Patient characteristics. The group of 27 patients studied (median age, 35 years; range, 19 to 52 years) included 9 patients with breast cancer, 8 patients with germ cell cancer, 4 patients with Hodgkin’s disease, 3 patients with non-Hodgkin’s lymphoma, 1 patient with multiple myeloma, 1 patient with Hodgkin’s lymphoma, 1 patient with t(8:14) translocation, 1 patient with medulloblastoma, and 1 patient with neuroblastoma. The patients were either in their first chemotherapy-induced (near) complete remission (patients with breast cancer, 8 patients with germ cell cancer, 4 patients with Hodgkin’s disease, 3 patients with non-Hodgkin’s lymphoma, 1 patient with multiple myeloma, 1 patient with Hodgkin’s lymphoma, 1 patient with t(8:14) translocation), or 1, adequate renal and hepatic function (creatinine clearance, >250 mL/min; bilirubin, ≤377 μmol/L, and normal bone marrow (BM) functions (white blood cell [WBC] count, ≥3.5 × 10^9/L; platelets, ≥100 × 10^9/L).

BM was aspirated from patients undergoing cardiac surgery (Dr L. Eijssen, Department of Cardiac Surgery, Academic Medical Center, Amsterdam, The Netherlands) and patients with malignancies without evidence of BM localization of their disease. All patients gave informed consent, and the separate protocols were approved by the Ethical and Scientific Review Committees of the Netherlands Cancer Institute, the Free University Hospital, and the Academic Medical Center (Amsterdam, The Netherlands).

Mobilization procedure, PBSC harvest, and reinfusion. Hematopoietic progenitor cells were mobilized by chemotherapeutic treatment followed by 300 μg of granulocyte colony-stimulating factor (G-CSF) administered subcutaneously daily (Filgrastim; Amgen Inc, Thousand Oaks, CA) until completion of the leukocytapheresis. In the patients with breast cancer, the mobilizing regimen consisted of 5-fluorouracil (500 mg/m²), epirubicin (120 mg/m²), and cyclophosphamide (500 mg/m²) administered on day 1, with G-CSF started on day 2.18 In the remaining patients, PBSCs were mobilized with ifosfamide (4 g/m², day 1) and etoposide (100 mg/m², days 1 through 3) followed by G-CSF on day 4 from day 7 of G-CSF administration, the percentage of CD34⁺ cells in the PB was determined daily. As soon as the WBC count exceeded 3.0 × 10^9/L and a clear increase in CD34⁺ cell percentage was observed, leukocytapheresis procedures were started. At the start of each leukocytapheresis procedure, the number of platelets had to be ≥50 × 10^9/L. The leukocytapheresis was performed as an outpatient procedure with a continuous-flow blood cell separator (Fenwal CS3000; Baxter Deutschland GmbH, Munich, Germany). One leukocytapheresis procedure per day was performed (San). After each leukocytapheresis, the number of CD34⁺ cells was measured. Depending on the yield of CD34⁺ cells, further leukocytaphereses were planned. In a median of 3 leukocytapheresis procedures (range, 1 to 8 leukocytapheresis procedures) per patient, a median of 6.7 × 10^9 CD34⁺ cells/kg (range, 1.6 to 42.0 × 10^9/kg) were procured. After leukocytapheresis, the cells were cryopreserved in saline, containing 0.1% glucose, 0.38% trisodium citrate, 10% human serum albumin, and 10% dimethylsulfoxide × a cell concentration of about 50 × 10⁹ mononuclear cells (MNCs)/mL. For cryopreservation, the cell suspensions were frozen at a controlled rate in a Kryo10 (Cryotech, Schagen, The Netherlands). The frozen cells were stored in the vapor phase of liquid nitrogen until reinfusion.

Patients with nonhematologic malignancies received high-dose chemotherapy consisting of 1,600 mg/m² carboplatin, 480 mg/m² thiotepa, and 6,000 mg/m² cyclophosphamide intravenously, divided over 4 days (CTC).19 Patients with malignant lymphoma received the BEAM regimen (300 mg/m² Carmustine, 800 mg/m² etoposide, 800 mg/m² cytarabine, and 140 mg/m² melphalan). Forty-eight hours after the last dose of chemotherapy in the CTC regimen or 24 hours after the last dose of chemotherapy in the BEAM regimen, the cryopreserved apheresis products were thawed rapidly at the bedside and were reinfused via an indwelling subclavian catheter. After transfusion, all patients received G-CSF at 5 μg/kg/d, which was started on the day of PBSC transplantation and continued until the WBC count in the PB exceeded 5 × 10^9/L. No significant differences in the rate of neutrophil or platelet recovery were found with either high-dose chemotherapy regimens (CTC or BEAM) or in patients with the different diagnoses (data not shown).

Flow cytometry. The percentage of cells expressing the CD34 antigen was determined in a sample of the leukocytapheresis product by direct immunofluorescence just before cryopreservation. After lysis of the erythrocytes with isomolar NH₄Cl buffer for 10 minutes, 1 × 10⁷ cells were incubated with MoAb CD34-FITC. All incubations were performed at 4°C. After each incubation, the cells were washed with phosphate-buffered saline (PBS) containing 0.2% (wt/vol) bovine serum albumin (BSA).

For double-color immunofluorescence analysis, the cells were incubated for 30 minutes with the primary MoAb, followed by incubation with PE-labeled rat-antinegous Ig. An isotype-matched mouse Ig served as control. Residual binding sites of rat-antinegous Ig were blocked with a mixture of irrelevant murine MoAbs of IgG1 and IgG2a subclasses. Subsequently, the cells were incubated with MoAb CD34-FITC. After each incubation, the cells were washed with PBS/ EDTA/BSA.

Flow cytometric analysis was performed with a FACScan flow cytometer (Becton Dickinson Immunocytometry Systems, San Jose, CA). A minimum of 20,000 cells were acquired in list mode. Analysis of the five-dimensional data was performed with Consort 30 software (Becton Dickinson). The percentage of CD34⁺ cells present was assessed after correction for the percentage of cells reactive with an isotype control. For the determination of the phenotype of CD34⁺ cells, a minimum of 2,500 CD34⁺ cells were analyzed. A marker was set at the first log decade and the percentage of CD34⁺ cells coexpressing a specific antigen was assessed after correction for the percentage of cells reactive with an isotype control. Absolute numbers of CD34⁺ cells were calculated by multiplication of the total amount of nucleated blood cells in the leukocytapheresis product with the percentage of CD34⁺ cells in the total leukocytapheresis product.

Isolation of cells. Platelet-rich plasma (PRP) was removed from BM or leukocytapheresis samples by centrifugation at 200g for 20 minutes. The erythrocytes were lysed with isomolar NH₄Cl buffer for 10 minutes at 4°C and subsequently washed twice with PBS containing 5 mMol/L EDTA and 0.2% (wt/vol) BSA (PBS/EDTA/BSA). BM MNCs were isolated by density centrifugation over Ficol-Paque (Pharmacia, Uppsala, Sweden; density, 1.077 g/mL). To facilitate further analysis of GPs on PB CD34⁺ cells, we enriched
for immature cells by one or two rounds of immunomagnetic depletion of T cells and monocytes. MNCs (1 x 10^7/mL) containing 0.5% to 5% CD34+ cells were incubated for 40 minutes at 4°C with a mixture of CD2 and CD14 in the presence of DNase (20 U/mL) and 10 mmol/L MgCl2. The cells were washed twice and incubated with immunomagnetic beads coated with goat-antimouse Ig (ratio of bead/cells = 3:1; Dynal, Hamburg, Germany). This procedure did not affect the expression of GPs on CD34+ cells (data not shown).

Resting platelets were prepared from EDTA-anticoagulated whole blood by direct fixation in paraformaldehyde (PFA) at a final concentration of 1% (wt/vol) for 10 minutes at room temperature. Platelets were isolated from PRP and washed twice with PBS/EDTA/BSA. Activated platelets were prepared by treatment with 1 U/mL of human α-thrombin (Sigma Chemical, St. Louis, MO) for 10 minutes at 37°C. The platelets were then washed once and fixed in PFA.

PB MNCs stained with CD34-FITC were sorted with an ATC 3000 (Odam, Wissensouyr, France) equipped with a 70-μm nozzle or with a FACStar (Becton Dickinson) on two parameters, i.e., fluorescence intensity and side-angle light scattering. More than 98% of these sorted cells are positive for CD34 when observed with a fluorescence microscope.

Cell adhesion assay. The interaction between CD34+ cell and platelet cell adhesion assays was studied as described before. Briefly, fixed MNCs and platelets were immunostained with MoAb CD34-FITC and MoAb W6/32 (anti-HLA class I), respectively. PE-labeled rat-antimouse Ig was used as conjugate for MoAb W6/32. Briefly, fixed MNCs and platelets were immunostained with MoAb in optimal dilution. Then, without washing, platelets and MNCs were gently mixed, and the FACS analysis was performed as described above. After treatment with enzymes, the cells were washed twice with PBS and 0.2% BSA and fixed with PFA. Subsequently, platelets and enzyme-treated MNCs were gently mixed, and the FACS analysis was performed as described above. An isotype-matched control antibody was used to set a threshold (99% of events below threshold) for positive platelet fluorescence. The percentage of CD34+ cells that bound platelets was expressed as the percentage of CD34+ cells that reacted positively with antiplatelet antibodies. In binding inhibition studies, the percentage of bound activated platelets of CD34+ cells was set at 100% and inhibition of platelet adhesion was expressed as a percentage of this value. The mean total platelet fluorescence (TPF) of positively reacting CD34+ cells was used as an estimate of the number of platelets bound per CD34+ cell.

Treatment of cells with enzymes. MNCs were treated with elastase (Elastin products, Pacific, MO) or trypsin (GIBCO BRL, Grand Island, NY) as described. Neuraminidase (Vibrio cholerae; Behringwerke, Marbur, Germany) treatment of cells was performed by incubating 1 x 10^6 cells in 100 μL of PBS and 0.2% BSA with 0.2 U/mL neuraminidase for 60 minutes at 37°C. Treatment with glycoprotease Pasteurella haemolytica (generous gift from Dr A. Mellors, Guelph, Ontario, Canada) was performed by incubating 1 x 10^6 cells in 100 μL of PBS and 0.2% BSA with 0.05 mg glycoprotease for 60 minutes at 37°C.

Immunocytochemical staining. For immunocytochemical analysis of CD34+ cells, the fluorescence-activated sorted cells were incubated for 30 minutes with a biotin-labeled CD41 (CLB-thromb7) MoAb. A biotin-labeled isotype-matched mouse Ig served as control. Subsequently, the cells were washed and spun on slides for 5 minutes at 350 rpm in a Shandon cytocentrifuge (Shandon Southern Products Ltd, Runcorn, Cheshire, UK). After fixation, the cells were incubated for 1 hour with peroxidase-conjugated avidin-biotin complex (Brunschwig Chemicals, Amsterdam, The Netherlands) and diluted in Tris-buffered saline (TBS; pH 7.8) to which 2% BSA and 0.5% Triton X-100 was added. Peroxidase was visualized with 3,3'-diaminobenzidine-tetrahydrochloride. All the rinsing procedures were performed with TBS. The sections were counterstained with haematoxilin.

Ultrastructural studies. Sixty thousand fluorescence-activated sorted cells were washed twice in Hank's medium at 4°C, fixed in 1.25% glutaraldehyde in Gey's buffer for 10 minutes, washed, and incubated in diaminobenzidine medium. Cells were then postfixed with osmium tetroxide, dehydrated, and embedded in epon. Thin sections were examined with a Philips CM 10 electron microscope (Philips, Eindhoven, The Netherlands) after lead citrate staining.

RNA isolation and synthesis of cDNA. RNA of CD34+CD41+ cells was isolated from 100,000 fluorescence-activated sorted cells essentially as previously described by Ziegler et al. Briefly, cells were transferred in 100 μL of lysis buffer (4 mmol/L guanidine thiocyanate, 25 mmol/L sodium chloride, pH 5.0, 0.5% sodium laurel sarcosinate, 0.1% (vol/vol) β-mercaptoethanol) containing 20 μg of glycogen (Boehringer Mannheim, Mannheim, Germany) as carrier. The mixture was then thoroughly vortexed and layered on top of a 100 μL 5.7 mol/L CsCl cushion. Samples in 0.3 mL diethylpyrocarbonate (DEPC)-treated polycarbonate centrifuge tubes were centrifuged for 2.5 hours at 4°C at 55,000 rpm in a TLS-55 rotor on a Beckman TL-100 tabletop ultracentrifuge (Beckman Instruments, Palo Alto, CA). The RNA pellet was resuspended in DEPC-treated H2O, precipitated with 0.1 vol of potassium acetate and 2.5 vol 100% ethanol, washed in 70% ethanol, dried, and again resuspended in DEPC-treated H2O. First-strand cDNA was synthesized by incubating RNA at 37°C for 1 hour in a final volume of 10 μL in RT-buffer (50 mmol/L Tris-HCl, pH 8.3, 75 mmol/L KCl, 3 mmol/L MgCl2) containing 100 U of Moloney marine leukemia virus (M-MLV) reverse transcriptase (GIBCO/BRL, Gaithersburg, MD), 0.5 μg oligo(dT), 15 U RNase inhibitor, 10 mmol/L diithiothreitol (DTT), and 1.0 mmol/L of each deoxyribonucleoside triphosphate (dNTP).

cDNA-polymerase chain reaction (PCR) procedure. Oligonucleotide primers selected for the PCR were used to amplify those parts of the cDNA that contain the sequences corresponding to GPIIb, GPIIIa, P-selectin glycoprotein ligand 1 (PSGL-1), and β-actin, respectively. The locations of the primers in the nucleotide sequence were as follows: GPIIIa (sense primer: positions 1025-1046, sequence 5'TCTCCTGTTGCTGAAGT3'; antisense primer: positions 144-163, sequence S'TAGAATTCAACAATGGTTACATC3'), product length: 332 bp); PSGL-1 (sense primer: positions 657-635, 5'ATAAGCTTCTTACACTCC-3 '; antisense primer: positions 683-660, 5'GTGGGGCGCCCCAGGCACCA3'), product length: 332 bp), and P-actin (sense primer: positions 683-660, 5'CTCCTAATGTGACCCGCAGAT-3', product length: 540 bp). All PCR primers were

From www.bloodjournal.org by guest on October 3, 2017. For personal use only.
synthesized on a DNA synthesizer (Applied Biosystems model 392, Palo Alto, CA) and purified with oligonucleotide purification cartridges (Applied Biosystems, Foster City, CA). A small portion of the RT-products (1 μL) was mixed with 1.25 U of Taq DNA polymerase (GIBCO/BRL), 1 pmol/L of each appropriate primer, 200 μmol/L of each dNTP in a buffer containing 10 mmol/L Tris-HCl, pH 8.3, 50 mmol/L KCl, 5 mmol/L MgCl2, and 0.01% (wt/vol) BSA in a 50 μL volume. For the PCR reaction of the P-selectin ligand, 2 U of Taq DNA polymerase from Promega (Madison, WI) and purified with oligonucleotide purification cartridge (GIBCO/BRL), 1 pmol/L of each appropriate primer, 200 μmol/L of each dNTP in a buffer containing 10 mmol/L Tris-HCl, pH 8.3, 50 mmol/L KCl, 5 mmol/L MgCl2, and 0.01% (wt/vol) BSA in a 50 μL volume. For the PCR reaction of the P-selectin ligand, 2 U of Taq DNA polymerase from Promega (Madison, WI) and purified with oligonucleotide purification cartridge (GIBCO/BRL), 1 pmol/L of each appropriate primer, 200 μmol/L of each dNTP in a buffer containing 10 mmol/L Tris-HCl, pH 8.3, 50 mmol/L KCl, 5 mmol/L MgCl2, and 0.01% (wt/vol) BSA in a 50 μL volume. For the PCR reaction of the P-selectin ligand, 2 U of Taq DNA polymerase from Promega (Madison, WI) and purified with oligonucleotide purification cartridge (GIBCO/BRL), 1 pmol/L of each appropriate primer, 200 μmol/L of each dNTP in a buffer containing 10 mmol/L Tris-HCl, pH 8.3, 50 mmol/L KCl, 5 mmol/L MgCl2, and 0.01% (wt/vol) BSA in a 50 μL volume. The PCR mixtures were overlaid with mineral oil and amplified for 35 cycles. The cycling conditions for the PCR reactions were as follows: for GPIIb (60 seconds at 95°C, 60 seconds at 55°C, and 180 seconds at 72°C); for GPIIIα, PF4, P-selectin ligand, and β-actin (60 seconds at 94°C, 60 seconds at 55°C, and 180 seconds at 72°C). PCR products were analyzed on 6% polyacrylamide gels. Fragments were visualized by UV illumination after ethidium bromide staining. One-hundred basepair ladders were used as markers.

For the semiquantitative PCR, a sample of 10 μL was taken after 21, 24, 27, and 30 cycles of the GPIIb, PF4, and β-actin PCRs. The samples were denatured in 0.5 mmol/L NaOH and 0.15 mmol/L NaCl for at least 10 minutes and neutralized in 0.5 mmol/L Tris, pH 8.0, and 0.15 mol/L NaCl. Immediately thereafter the samples were dot-blotted using a broad dot-blot apparatus to Hybond N+ positively charged nylon membranes (Amersham, Buckinghamshire, UK). After drying, the DNA was cross-linked to the membranes with UV light for 5 minutes. The filters were then prehybridized in 6× SSC buffer containing 0.5% sodium dodecyl sulfate (SDS), 5× Denhardt’s, and 100 μg/mL denatured salmon sperm DNA for at least 1 hour at 60°C. After 1 hour, the mixture was replaced by the hybridization mix that contains all the ingredients of the hybridization mix except for the Denhardt’s. 32P-radioactively labeled probes were added to the hybridization mixture. The following sequences of probes were used: for GPIIb, TTAGATCCTGCAG-GAACAAATACACACGCC; for PF4, TCCATGAAAGGTAGATC-TGTGGG; and for β-actin, GATGACCCAGATCATGTTGTG-GAC. Twenty-five nanograms of probe was labeled with 3 μL 32P-γ-ATP (300 Ci/mmol) using the polynucleotide kinase 4 (PNK4; Boehringer Mannheim, Plaats, Germany) in the PNK buffer that belongs to the enzyme. After incubation at 37°C for 1 hour, the free label was separated from the labeled probe using a Sephadex-G25 column. The labeled probe that gets through the sephadex column after washing with 1× TE buffer was added to the hybridization mixture. The dot-blots were hybridized overnight at 60°C, after which they were washed two times with 2× SSC containing 0.1% SDS for 15 minutes at 55°C. The nylon membranes were wrapped in saran wrap and hybridized probes were detected using a X-OMAT AR film (Eastman Kodak, Rochester, NY) that were developed after overnight exposure. To compare the signal of the hybridized PCR products, the blots were also exposed to Fuji imaging plates (Fuji Photo Film Co, Fiji, Japan), that were measured by a bio imaging analyzer (Fujix Bas 2000, Fiji, Japan). Using this method, the blackness can be expressed as a number.

Statistical analysis. For nonnormal distributed values, data were summarized by means of median and ranges; otherwise, the arithmetic mean and standard deviation were used. Differences were calculated by means of the Mann-Whitney U test. The correlations are Spearman Rank correlations. Differences were calculated by means of a z-test. A P value less than α = .05 was considered significant. To determine the relative influence of parameters (multivariate analysis), a Cox’s proportional hazards model was used. The models were built in a stepwise procedure.

Thresholds for rapid platelet recovery (arbitrarily set at the time to platelet transfusion independence within 14 days after PBSC transplantation) were defined by the optimum of both sensitivity and specificity of a tested parameter in the receiver operating characteristic curve.

RESULTS

Flow cytometric assay for adhesion of thrombin-activated platelets to CD34+ cells. A double-color immunofluorescence assay was used to investigate whether platelets can adhere to CD34+ cells. Platelets were thrombin-activated and PE-labeled and then added to FITC-labeled CD34+ cells in a buffer containing Ca2+ and Mg2+.10 Without additional washing, platelet-cell adhesion was quantified using flow cytometry.

It appeared that nearly half of the BM CD34+ cells bound thrombin-activated platelets, whereas directly fixed nonactivated platelets bound to only low numbers of CD34+ cells (Table 1). Similar results were obtained with PB CD34+ cells.

The involvement of divalent cations in the interaction of platelets and CD34+ cells was studied by incubation of MNCs and platelets in the presence of EDTA. Binding of activated platelets to BM and PB CD34+ cells was almost completely abolished by 5 mmol/L EDTA. A slight reduction of binding of nonactivated platelets to CD34+ cells was also observed (Table 1).

As an estimate for the number of platelets bound per CD34+ cell, the TPF per CD34+ cell was also determined. The mean TPF for activated platelets bound to BM CD34+ cells was 5 times as high as for nonactivated platelets. Similar results were obtained with PB CD34+ cells (Table 1).

To investigate whether platelet-CD34+ cell interaction is reversible, activated platelets were bound to CD34+ cells and, after incubation for 30 minutes, the cells were washed twice in the presence of 5 mmol/L EDTA. These wash steps abolished platelet-CD34+ cell interaction and reduced the percentage of cells with bound platelets and the TPF to values comparable with those found when MNCs and platelets were incubated in the presence of EDTA (Table 1).

P-selectin–mediated adhesion of thrombin-activated platelets to CD34+ cells. Platelets were preincubated with MoAbs against P-selectin before incubation with MNCs to study the involvement of P-selectin in the interaction of activated platelets and CD34+ cells. Antibody CLB-thromb/throb/6 almost completely blocked adhesion of activated platelets to CD34+ cells from BM or PB, reducing the mean TPF to 6.1 ± 3.6 and 5.7 ± 4.5 (on a linear arbitrary scale), respectively (Table 1). Antibody CLB-thromb/5, which recognizes a nonfunctional epitope of P-selectin, did not inhibit the platelet-CD34+ cell interaction. The number of bound activated platelets as measured by the TPF was then the same as in the presence of control MoAbs. Thus, P-selectin is involved in the platelet-CD34+ cell interaction.

Putative CD34+ cell receptors for binding platelets. MNCs were preincubated with MoAbs or enzymatically treated to characterize the P-selectin ligand present on CD34+ cells. When MoAbs against CD15 antigen (CLB-3B9 and CLB-gran/2) were preincubated with the MNCs, binding to activated platelets was not inhibited (Table 1). Similar results were obtained with anti-sialyl Lewisx MoAb CSLEX-1 in different concentrations (range, 1.5 to 300 μg/
Platelet Glycoprotein Expression on CD34+ Cells

Table 1. Effect of EDTA and MoAbs Against P-Selectin on Platelet Adhesion to CD34+ Cells

<table>
<thead>
<tr>
<th></th>
<th>BM (n = 5)</th>
<th></th>
<th></th>
<th>Leukocytapheresis Samples (n = 10)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Adhesion (SD)</td>
<td>TPF</td>
<td>% Inhibition*</td>
<td>% Adhesion (SD)</td>
<td>TPF</td>
<td>% Inhibition</td>
</tr>
<tr>
<td>Resting platelets</td>
<td>8.5 (4.3)</td>
<td>5.8</td>
<td></td>
<td>8.1 (2.8)</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>5.6 (3.4)</td>
<td>5.2</td>
<td></td>
<td>5.2 (2.4)</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Activated platelets</td>
<td>47.9 (9.6)</td>
<td>31.2</td>
<td>0</td>
<td>51.6 (11.3)</td>
<td>39.3</td>
<td>0</td>
</tr>
<tr>
<td>EDTA</td>
<td>6.3 (3.4)</td>
<td>5.8</td>
<td>87</td>
<td>5.2 (3.1)</td>
<td>5.6</td>
<td>90</td>
</tr>
<tr>
<td>CLB-thromb/5 (CD62P)</td>
<td>6.2 (2.7)</td>
<td>6.1</td>
<td>87</td>
<td>6.9 (4.5)</td>
<td>5.7</td>
<td>87</td>
</tr>
<tr>
<td>CLB-thromb/5 (CD62P)</td>
<td>44.5 (11.6)</td>
<td>28.4</td>
<td>7</td>
<td>49.0 (10.2)</td>
<td>35.7</td>
<td>5</td>
</tr>
<tr>
<td>CD15</td>
<td>46.9 (10.4)</td>
<td>29.7</td>
<td>7</td>
<td>52.8 (9.7)</td>
<td>36.3</td>
<td>0</td>
</tr>
<tr>
<td>CSLEX-1 (CD15a) (n = 2)</td>
<td>50.7</td>
<td>30.8</td>
<td>0</td>
<td>60.5</td>
<td>35.0</td>
<td>2</td>
</tr>
<tr>
<td>Control MoAbs</td>
<td>48.3 (8.7)</td>
<td>32.1</td>
<td>0</td>
<td>50.2 (10.7)</td>
<td>37.2</td>
<td>3</td>
</tr>
<tr>
<td>Activated platelets</td>
<td>7.2 (4.0)</td>
<td>8.1</td>
<td>85</td>
<td>7.0 (3.9)</td>
<td>6.1</td>
<td>86</td>
</tr>
</tbody>
</table>

Abbreviation: SD, standard deviation.

* In binding inhibition studies, the percentage of CD34+ cells with adherent activated platelets was set as 100%, and inhibition of platelet adhesion was expressed as a percentage of this value.

Vascular CD34 is a ligand for L-selectin and could be a ligand for P-selectin as well. To study the involvement of CD34 in the interaction of activated platelets and CD34+ cells, MNCs were preincubated with a panel of MoAbs against all three classes of CD34 epitopes before incubation with platelets. No blocking effects of these MoAbs was observed on platelet-CD34+ cell interaction (data not shown).

The involvement of carbohydrates was studied further by enzymatic treatment of the MNCs with neuraminidase from Vibrio cholerae, with glycoprotease derived from Pasteurella haemolytica, or by treatment with the proteolytic enzymes trypsin or elastase (Table 2). Treatment with neuraminidase, which hydrolyses terminal N-acetylneuraminic acids, partially inhibited binding of activated platelets to BM CD34+ cells and reduced the number of bound platelets to CD34+ cells as the TPF decreased by 54% ± 8%. This finding indicates that sialic acid residues are present on the P-selectin ligand of CD34+ cells. The efficacy of the treatment with neuraminidase was established by the complete loss of reactivity of anti-sialyl LewisX antibody CSLEX-1 with CD34+ cells and loss of binding of activated platelets to neutrophils present in the same cell sample as the CD34+ cells (data not shown).

Treatment of BM CD34+ cells with glycoprotease derived from Pasteurella haemolytica, which cleaves cell surface proteins containing O-linked sugars, almost completely abolished binding of activated platelets (Table 2). Treatment with the proteolytic enzyme trypsin partially inhibited binding of activated platelets (mean percentage of inhibition, 44% ± 9%), whereas elastase almost completely inhibited binding to values seen on resting platelets (mean percentage of inhibition, 88% ± 5%). Similar results were obtained by the enzymatic treatment of PB CD34+ cells (Table 2).

To obtain evidence for the synthesis of PSGL-1 by CD34+ progenitor cells, messenger ribonucleic acid (mRNA) was isolated from fluorescence-activated cell sorted CD34+ cells and PCR analysis was performed. The analysis of RT-PCR products showed the expression of mRNA for PSGL-1 (Fig 1).

Platelet GP expression on CD34+ cells from BM and PB.

Table 2. Effect of Enzymatic Treatment on Platelet Adhesion to CD34+ Cells

<table>
<thead>
<tr>
<th></th>
<th>BM (n = 5)</th>
<th></th>
<th></th>
<th>Leukocytapheresis Samples (n = 10)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Adhesion (SD)</td>
<td>TPF</td>
<td>% Inhibition*</td>
<td>% Adhesion (SD)</td>
<td>TPF</td>
<td>% Inhibition</td>
</tr>
<tr>
<td>Activated platelets</td>
<td>47.9 (9.6)</td>
<td>31.2</td>
<td>0</td>
<td>51.6 (11.3)</td>
<td>39.3</td>
<td>0</td>
</tr>
<tr>
<td>Neuraminidase</td>
<td>24.4 (6.3)</td>
<td>16.1</td>
<td>49</td>
<td>21.7 (6.9)</td>
<td>18.1</td>
<td>58</td>
</tr>
<tr>
<td>Glycoprotease</td>
<td>8.3 (4.2)</td>
<td>5.8</td>
<td>83</td>
<td>10.2 (4.7)</td>
<td>7.5</td>
<td>80</td>
</tr>
<tr>
<td>Trypsin</td>
<td>26.0 (8.3)</td>
<td>18.3</td>
<td>44</td>
<td>31.1 (7.4)</td>
<td>20.5</td>
<td>40</td>
</tr>
<tr>
<td>Elastase</td>
<td>5.8 (3.8)</td>
<td>4.9</td>
<td>88</td>
<td>7.2 (3.7)</td>
<td>5.3</td>
<td>86</td>
</tr>
</tbody>
</table>

Abbreviation: SD, standard deviation.

* In binding inhibition studies, the percentage of CD34+ cells with adherent activated platelets was set as 100%, and inhibition of platelet adhesion was expressed as a percentage of this value.
Expression of GPs on CD34+ cells from BM and PB was examined in a double-color fluorescence assay with a panel of MoAbs recognizing platelet membrane GPs Ia, Ibα, Ibα', IIaα, IIb/IIaα, IIIa, IV, and V (Table 3). GP expression was measured under two conditions, i.e., either in the absence of EDTA or after removal of platelets by density centrifugation and washing in EDTA-containing buffer. In the absence of EDTA, there was significant reactivity of BM- and PB-CD34+ cells with the platelet-reactive MoAbs against GPIIa' (CD31), GPIIb (CD41), GPIIIa (CD61), and GPIV (CD36), whereas reactivity with MoAbs against GPIα, GPIβα, VNRα, and P-selectin was weak. Binding of all these MoAbs was reduced when antigen expression was measured after the removal of platelets by density centrifugation and washing in EDTA-containing buffer. Under these conditions, a small and distinct subset of CD34+ cells (2% to 12%) still reacted with MoAbs against the GPIIb (CD41) and GPIIIa (CD61) (Fig 2), whereas virtually no staining was seen with MoAbs recognizing GPIα, GPIβα, GPV, VNRα, and P-selectin either in BM or in PB. The expression of platelet GPs was not significantly different on CD34+ cells obtained from BM or PB.

Immunochemical and ultrastructural studies. Immunochemical and ultrastructural studies were performed to confirm that, when EDTA is omitted from the buffers, platelets attached to CD34+ cells could attribute to the detection of platelet GPs on CD34+ cells from PB. When cyt centrifuge preparations of fluorescence-activated sorted CD34+ cells, stained in the absence of EDTA, were labeled with CD41, some diffusely stained CD34+ cells were visualized (Fig 3A), but, in addition to these cells, several CD34+ cells

<table>
<thead>
<tr>
<th>GP</th>
<th>CD</th>
<th>MoAb</th>
<th>EDTA-</th>
<th>EDTA+</th>
<th>Leukocytapheresis Samples (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>49b</td>
<td>CLB-thromb/4</td>
<td>2.1 (0.1-5.3)</td>
<td>0.6 (0.1-1.5)</td>
<td>4.2 (1.5-6.3)</td>
</tr>
<tr>
<td>Ibα</td>
<td>42b</td>
<td>MB46</td>
<td>2.5 (1.4-7.2)</td>
<td>1.3 (0.2-2.6)</td>
<td>6.2 (2.7)</td>
</tr>
<tr>
<td>IIa'</td>
<td>31</td>
<td>ES12F11</td>
<td>89.6 (86.0-97.9)</td>
<td>86.1 (84.3-94.2)</td>
<td>94.5 (84.7-95.4)</td>
</tr>
<tr>
<td>IIb/IIaα</td>
<td>41</td>
<td>CLB-thromb/7</td>
<td>14.3 (6.7-18.4)</td>
<td>6.8 (3.7-12.7)</td>
<td>19.5 (8.3-24.5)</td>
</tr>
<tr>
<td>IIIa</td>
<td>61</td>
<td>CLB-thromb/1</td>
<td>7.7 (3.8-11.8)</td>
<td>5.9 (3.3-9.3)</td>
<td>14.2 (4.7-18.0)</td>
</tr>
<tr>
<td>IIIa</td>
<td>61</td>
<td>Y2.51</td>
<td>6.8 (2.9-11.7)</td>
<td>4.9 (1.9-8.6)</td>
<td>11.8 (2.3-13.3)</td>
</tr>
<tr>
<td>IV</td>
<td>36</td>
<td>ES4C7</td>
<td>12.2 (6.8-15.2)</td>
<td>11.5 (5.7-13.3)</td>
<td>16.7 (12.0-19.9)</td>
</tr>
<tr>
<td>V</td>
<td>42d</td>
<td>SW16</td>
<td>1.2 (0.1-2.1)</td>
<td>0.3 (0.1-0.5)</td>
<td>4.5 (0.9-7.7)</td>
</tr>
<tr>
<td>VNRα</td>
<td>51</td>
<td>NKI-M7</td>
<td>1.9 (0.9-5.1)</td>
<td>1.1 (0.1-2.3)</td>
<td>2.4 (1.4-8.1)</td>
</tr>
<tr>
<td>P-selectin</td>
<td>62P</td>
<td>CLB-thromb/6</td>
<td>5.7 (2.5-8.6)</td>
<td>0.9 (0.1-1.2)</td>
<td>7.9 (4.9-12.4)</td>
</tr>
</tbody>
</table>

Values are the median percentage of cells expressing platelet antigen as determined in five experiments, with the range of platelet antigen expression in parentheses.
PLATELET GLYCOPROTEIN EXPRESSION ON CD34+ CELLS

Fig 3. Immuno-peroxidase staining of cytocentrifuge preparations of fluorescence-activated sorted CD34+ cells stained in the absence of EDTA (A) or under conditions that prevent platelet adhesion (B). Thrombin-activated platelets incubated with CD34+ cells in a buffer containing either Ca2+ and Mg2+ (C) or EDTA (D). All preparations were labeled with biotin-labeled CD41 MoAb and were counterstained with hematoxilin. In addition to strongly stained CD34+ cells, some CD34+ cells with a patchy localized staining were identified (A, arrows), strongly suggesting the appearance of platelets and platelet particles adhering to the cell membrane. Similar cells were found when thrombin-activated platelets were added to the sorted CD34+ cells (Fig 3C). In the CD34+ cell preparation, labeled in the presence of EDTA after removal of platelets by density centrifugation, only diffusely stained cells and no cells with a patchy appearance were detected (Fig 3B). In addition, the interaction between thrombin-activated platelets and sorted CD34+ cells was blocked by EDTA (Fig 3D).

Electron microscopy on CD34+CD41+ sorted cells, stained in the absence of EDTA, showed numerous platelet membrane fragments adhering to cell membrane. Large nucleoli were observed in the nuclei of these cells and all granules showed strong peroxidase staining. Therefore, these cells were identified as promonocytes (Fig 4A). In contrast, when CD41-labeling of CD34+ cells was performed under conditions that prevent platelet adherence, no membrane fragments attached to CD34+CD41+ sorted cells were detected. Megakaryocytic cells were identified in this fraction by platelet-peroxidase staining of the endoplasmatic reticulum and of the area around the nuclear envelope (Fig 4B). Platelet organelles were not observed in these cells. In addition to these promegakaryoblasts, pro-
monocytes with small peroxidase-positive granules were still found to be present in this fraction. However, all of these cells were free of attached membranes or membrane fragments of platelets.

Detection of GPIIb and GPIIIa by PCR. To obtain evidence for the synthesis of platelet GPs by progenitor cells, PCR analysis was performed on mRNA isolated from CD34+CD41+ fluorescence-activated cell sorted cells that were stained under conditions that prevent platelet adherence to CD34+ cells. The analysis of RT-PCR products showed the expression of mRNA for GPIIb and GPIIIa (Fig 1). The same products were detected in CD34+CD41− fluorescence-activated cell sorted cells (data not shown). To exclude the possibility that the expression of GPIIb and GPIIIa was mainly due to platelets adhering to the CD34+CD41+ sorted cells, the mRNA expression of GPIIb and the platelet-spe-
cific protein PF4 were compared in a semiquantitative PCR assay by measuring the obtained PCR products after 21, 24, 27, and 30 PCR cycles in platelets and sorted CD34+CD41+ cells (Fig 5). In CD34+CD41+ cells, relatively more GPIIb mRNA was present than PF4 mRNA in comparison with the expression in platelets, eg, at 24 cycles the ratio of GPIIb/PF4 PCR products in CD34+CD41+ cells as measured by fosfoimaging analysis was 2.6, whereas in platelets this ratio was 0.1. In all cell types, similar amounts of β-actin mRNA were present (data not shown). These results indicate that mRNA for GPIIb is mainly synthesized by CD34+ progenitor cells. Also, in CD34+CD41− cells, some GPIIb mRNA expression was detected, although at a lower level, whereas PF4 mRNA could not be detected.

Correlation with platelet recovery. After high-dose chemotherapy, a median number of 6.0×10^6 CD34+ cells/kg (range, 1.6 to 39.4 × 10^6/kg) was reinfused in 27 patients. This resulted in a rapid platelet recovery (≤ 14 days) to platelet transfusion independence (defined as the platelet count remaining $\geq 20 \times 10^9/L$ without platelet transfusions) in 15 of 27 patients ($n = 27$; median, 14 days; range, 7 to 37 days).

The expression of CD41 and CD61 antigens on CD34+ cells was measured in the presence of EDTA on all 92 leukocyteapheresis samples from these patients. Under these conditions, a median of 6.3% of the CD34+ cells expressed the CD41 antigen (range, 0% to 18.1%), whereas the CD61 antigen was detected on a median of 3.5% of CD34+ cells (range, 0% to 10.3%). These percentages were used to calculate the absolute number of CD34+ cell subsets per kilogram of body weight that were reinfused into a patient.

The correlation between the total number of CD34+ cells per kilogram and the time to platelet transfusion independence was $r = -0.55$ (95% confidence interval [CI], −0.68 to −0.34). When subsets of CD34+ cells, defined by the expression of the megakaryocytic lineage-associated antigens CD41 or CD61, were correlated with the time to platelet recovery, both subsets correlated better (CD34+CD41+ cells, $r = -0.83$ [95% CI, −0.89 to −0.73]; CD34+CD41− cells, $r = -0.78$ [95% CI, −0.85 to −0.65]) than did the total number of CD34+ cells. This difference was significant only for the subset of CD34+ cells defined by CD41 ($P = .04$), but failed to reach significance for the subset defined by the expression of CD61 ($P = .09$). Using a stepwise procedure in a Cox-regression analysis with the numbers of CD34+ cells, CD34+CD41+ cells, and CD34+CD61− cells, respectively, as covariates, only the number of CD34+CD41+ cells was a significant covariable ($\beta = .0012$, SE = .003, $P = .0005$).

To assess a threshold for rapid platelet recovery the optimal sensitivity and specificity of the number of reinfused CD34+ cells per kilogram of body weight was calculated. The threshold of CD41-expressing CD34+ cells for rapid platelet recovery was calculated to be 0.34×10^6 CD34+CD41+ cells/kg. In the 17 patients who received more than the threshold of 0.34×10^6 CD34+CD41+ cells/kg, the time to platelet recovery was significantly shorter ($n = 17$; median, 11 days; range, 7 to 16 days) as compared with the time to platelet recovery of the patients who received fewer CD34+CD41+ cells ($n = 10$; median, 20 days; range, 13 to

Fig 4. (A) Electron microscopy of a promonocyte from CD34+GP IIb/IIIa+ sorted cells (without EDTA). A big nucleolus (Nu) is present in the nucleus. Strong peroxidase activity is present in all granules. Note the presence of numerous membrane fragments that adhere to the promonocyte membrane (arrows). (Original magnification × 13,300.) (B) Electron microscopy of a megakaryocyte progenitor in the CD34+GP IIb/IIIa+ cell fraction (with EDTA). This cell, which expresses peroxidase activity (arrows) around the nuclear envelope and in the endoplasmic reticulum, has an irregular nucleus, few mitochondria, and no platelet organelle. (Original magnification × 17,400.)
Fig 5. Dot-blot of PCR products of GP11b and PF4 hybridized to *P-labeled probes as detected after 21, 24, 27, and 30 cycles. In all three cell types similar amounts of β-actin PCR products were detected after 24, 27, and 30 cycles, whereas no expression of β-actin was detected after 21 cycles (data not shown). Lane 1, CD34+CD41- cells; lane 2, CD34+CD41+ cells; lane 3, platelets; lane 4, H2O.

37 days; P < .0001; Fig 6). None of these 10 patients had recovered within 2 weeks.

DISCUSSION

The expression of platelet GPs on CD34+ cells was analyzed to develop a simple flow cytometric assay for the number of platelet precursor cells. This study shows that the detection of endogenously expressed platelet GPs can be hampered by the adherence of activated platelets to CD34+ cells. Firstly, we observed that binding of the platelet-reactive MoAbs was reduced when antigen expression was measured after the removal of platelets by density centrifugation and washing in EDTA-containing media. Secondly, both immunochemical and ultrastructural studies showed the presence of platelet membranes and membrane fragments attached to CD34+ cells when EDTA is omitted from the buffers. Most of these cells were identified as promonocytes. In contrast, when CD41-labeling of CD34+ cells was performed after removal of platelets by density centrifugation and washing in EDTA-containing buffer, membrane fragments attached to the sorted cells were not detected. We have quantified the platelet-cell interaction and showed that, when thrombin-activated platelets were added to the MNC fraction of BM or PB, about 50% of the CD34+ cells bound activated platelets. This binding of platelets to CD34+ cells is dependent on divalent cations and is reversible, because thrombin-activated platelets adherent to CD34+ cells could be removed by subsequent washing with EDTA in high concentration. Therefore, these studies indicate that platelet adherence could be attributed to the detection of platelet GPs on CD34+ cells and could explain why, when measured in the absence of EDTA, strong expression of platelet antigens on CD34+ cells has been found by others. Furthermore, the platelet interaction with CD34+ cells derived from BM or PB was characterized. This interaction was shown to be mediated by P-selectin, because MoAbs against P-selectin almost completely blocked this interaction. Platelet adherence was similar to CD34+ from BM or PB. P-selectin is known to interact with carbohydrate ligands such as sialyl LewisX and related carbohydrates presented on a polypeptide backbone. Recently, a specific GP (PSGL-1) on myeloid cells has been recognized as a ligand for P-selectin. This P-selectin ligand carries large numbers of sialylated O-linked oligosaccharides and is functionally active only when it is appropriately glycosylated. The sialic acid(s) on this ligand is required for binding to P-selectin but appears to be somewhat resistant to sialidase treatment. Our results are in accordance with these findings. We showed that treatment of CD34+ cells with glycoprotease derived from Pasteurella haemolytica, which cleaves cell surface proteins containing O-linked glycans, completely inhibited the binding of activated platelets to CD34+ cells. In addition, this binding was only partially inhibited by neuraminidase, as was previously found for monocytes, lymphocytes, eosinophils, and basophils. Treatment with the proteolytic en-

![Graph](image-url)
zyme trypsin partially inhibited and with elastase completely inhibited the binding of activated platelets to CD34⁺ cells, although the amount of sialyl Lewis x was unaffected. In addition to the enzymatic characterization of the P-selectin ligand on CD34⁺ cells, our PCR results suggest the expression of mRNA for PSGL-1 by the CD34⁺ progenitor cells.

Our data do not exclude the presence of P-selectin ligands other than PSGL-1 on CD34⁺ cells. L-selectin, which has multiple ligands, including other selectins, may function as a ligand for P-selectin. In addition, it was recently reported that vascular CD34 functions as a ligand for P-selectin.32 Analogous with this report, hematopoietic CD34 could function as a ligand for P-selectin. In our study, no evidence was found for a role for either L-selectin or hematopoietic CD34 as ligand for P-selectin. The reactivity of the L-selectin reactive MoAb Leu-8 with CD34⁺ cells was not decreased by elastase treatment, whereas the binding of activated platelets to CD34⁺ cells was completely inhibited. In addition, no blocking effect of platelet CD34⁺ cell interaction by a panel of anti-CD34 MoAbs was observed, suggesting that hematopoietic CD34 is not a major ligand in the P-selectin-mediated interaction of activated platelets and CD34⁺ cells.

After showing that the binding of platelets to CD34⁺ cells is reversible and dependent on divalent cations, we were able to measure platelet GP expression on CD34⁺ cells using double-color flow cytometry after the removal of platelets by density centrifugation and washing in EDTA-containing buffer. Under these conditions, a small but distinct population of CD34⁺ cells, ranging from 2% to 12%, reacted with CD41 and CD61 MoAbs, which recognize GPs IIb and IIa. The percentage of cells reactive with CD41 MoAb was higher than that reactive with CD61 MoAb. This discrepancy is probably caused by a higher affinity of the CD41 MoAb. We cannot rule out the possibility that, in the presence of EDTA, a small percentage of CD34⁺CD41⁺ or CD34⁺CD61⁺ cells are cells to which platelet fragments are still bound, because some contaminating promonocytes were still present in the CD34⁺CD41⁺ sorted cell fraction as observed by electron microscopy. However, several lines of evidence indicate that the number of CD34⁺ cells with attached platelets in this population is negligible and that the reactivity with the GPIIb/IIIa antibodies is caused by protein synthesis by CD34⁺ cells. First, no CD34⁺ cells reacted with MoAbs recognizing GPIIb or with MoAbs against GPla and GPlGPs known to be present on platelets. Secondly, using a semiquantitative PCR analysis, we showed that the expression of mRNA for GPIIb cannot be due only to adhering platelets, because in that case, the ratio of GPIIb mRNA and PF4 mRNA would be similar to the ratio of these products in platelets, whereas we clearly found a preferentially expression of GPIIb in CD34⁺ cells. Therefore, these results indicate that mRNA for GPIIb is mainly synthesized by CD34⁺ progenitor cells. The positive results of the PF4 PCR may indicate that this protein has already begun to be synthesized at the progenitor cell level, although we cannot exclude the possibility that PF4 mRNA is solely derived from adhering platelets. We found GPIIb/IIIa mRNA also in the CD41⁺ population, although at a lower level. This may be caused by a lower sensitivity of flow cytometric analysis. Debili et al.42 have shown that the more mature megakaryocyte progenitors are present in the CD34⁺CD41⁺ cell population, whereas immature megakaryocyte progenitors are present in the CD34⁺CD41⁻ cell population.

No staining of CD34⁺ cells was seen with MoAbs recognizing GPla, GPIIb, or GPV. GPIIIa can also be associated with the a-chain of the vitronectin receptor (CD51).30,39 CD34⁺ cells did not react with CD51 antibodies, indicating that most if not all GPIIIa on CD34⁺ cells is associated with the platelet-specific GP GPIIb. CD34⁺ cells also reacted with MoAbs against GPla (CD31) and GPIV (CD36). However, these MoAbs cannot be used for determining the number of platelet progenitor cells, because GPla' was found to be also present on myeloid progenitors,40 and GPIV on erythroid precursors.41

Current evidence indicates that GPIIb and GPIIIa are detected first during megakaryocytic differentiation, whereas the platelet GP lba appears to be a slightly later marker of differentiation.5,42-44 Using purified CD34⁺ cells, Debili et al. showed that, in culture, a very small population of CD34⁺ express GPlba. These cells are extremely rare and might not be detectable using the present technique. Moreover, among acute megakaryoblastic leukemic cells, cells showing reactivity with both GPIIb/IIIa and GPlba antibodies as well as cells expressing only GPlb/IIIa have been found.45,46 The results of our experiments are concordant with those of these earlier reports, because we show that only GPlb/IIIa is present on CD34⁺ cells, indicating that these cells represent an early stage in the megakaryocyte lineage.

We assumed that, if performed in the presence of EDTA, the flow cytometric measurement of CD34⁺ cells expressing platelet antigens could be used as an indicator for the number of megakaryocytic progenitors. Indeed, we found that CD34⁺CD41⁺ cells correlated significantly better with the time to platelet recovery after autologous PBSC transplantation than the total number of CD34⁺ cells. This observation suggests that the CD34⁺CD41⁺ cells represent megakaryocytic precursors that are responsible for platelet recovery after PBSC transplantation. An important clinical issue is to establish a practical minimum number of cells required for rapid platelet recovery. In this study, the threshold for rapid platelet recovery was calculated to be 0.34 × 10⁸ CD34⁺CD41⁺ cells/kg and reinforcement of more than the threshold of CD34⁺CD41⁺ cells per kilogram resulted in a significantly faster recovery. Together with the significantly better correlation of the number of reinfused CD34⁺CD41⁺ cells per kilogram with platelet recovery than of the total number of CD34⁺ cells per kilogram, this study indicates that determining the number of megakaryocytic precursor cells by flow cytometry most accurately represents the platelet reconstitutive capacity of the PBSC transplant. The value of determining the number of CD34⁺CD41⁺ cells by flow cytometry has to be confirmed in studies with a larger number of patients receiving different types of high-dose chemotherapy.

ACKNOWLEDGMENT

We thank Dr Suat Simsek, Lucia de Bruijne-Admiraal, and Onno Verhagen for technical assistance; Wim Schaasberg for statistical...
PLATELET GLYCOPROTEIN EXPRESSION ON CD34+ CELLS

analyses; Dr Najet Debili for helpful discussion; and Dr Dirk Roos and Dr Paul Engelfriet for critically reading the manuscript.

REFERENCES

The value of flow cytometric analysis of platelet glycoprotein expression of CD34+ cells measured under conditions that prevent P-selectin-mediated binding of platelets

MW Dercksen, IS Weimar, DJ Richel, J Breton-Gorius, W Vainchenker, CM Slaper-Cortenbach, HM Pinedo, AE von dem Borne, WR Gerritsen and CE van der Schoot