RAPID COMMUNICATION

Induction of Phagocytosis by a Protein Tyrosine Kinase

By Zena K. Indik, Jong-Gu Park, Xiao Qing Pan, and Alan D. Schreiber

The transmission of extracellular signals to cellular targets by many noncatalytic surface receptors is dependent on interaction between cytoplasmic protein tyrosine kinases (PTKs) and tyrosine-containing sequences in the cytoplasmic domain of the receptor or an associated subunit. Isolomers of each of the three classes of the noncatalytic Fcγ receptors, FcγRI, FcγRII, and FcγRIII, are able to transmit a phagocytic signal in transfected COS-1 cells. Both FcγRI and FcγRIIA require the γ subunit for this signal event. The protein tyrosine kinase Syk dramatically enhances phagocytosis mediated by both these receptors and increases the number of cells able to mediate phagocytosis. Two γ chain cytoplasmic YXXL sequences are required for this effect. The action of Syk is less pronounced on the phagocytic FcγRII receptor, FcγRIIB, which does not require the γ chain for phagocytosis. However, Syk allows phagocytosis by the nonphagocytic FcγRII receptor FcγRIIB2, which contains only a single YXXL sequence, when an additional tyrosine-containing sequence, YMTL, is introduced. These studies indicate that the efficiency of phagocytosis is markedly enhanced by the presence of a specific protein tyrosine kinase.

© 1995 By The American Society of Hematology.

PROTEIN TYROSINE KINASES (PTKs) have been implicated in signaling events initiated by members of the Ig gene superfamily including receptors for the constant region of IgG (FcγRs). Cross-linking Fcγ receptors in hematopoietic cells induces phosphorylation of tyrosine residues of multiple proteins including the receptors themselves and/or their associated subunits.1-18 Although Fcγ receptors do not possess intrinsic tyrosine kinase activity, their cytoplasmic domains have sequences that facilitate interactions with cellular PTKs. Recently, the cytoplasmic domains of the Fcγ receptors and their associated subunits have received considerable attention because they include conserved tyrosine-containing sequences (YXXL) that have been implicated in signal transduction events.1,9-23 The cytoplasmic regions of most Fcγ receptors and/or their subunits contain at least one pair of this tyrosine-containing sequence,1,9,10,12,14,16,19 which is thought to bind to the SH2 (Src homology 2) domain(s) of PTKs.24,25

The Fcγ receptors differ from other Ig gene superfamily receptors such as the T-cell antigen receptor and the B-cell antigen receptor in that they mediate the phagocytosis of IgG-coated cells.26 The mechanism of Fcγ receptor-mediated phagocytosis likely involves elements endogenous to phagocytic cells; however, it has recently been shown that COS-1 cells, a fibroblast and/or epithelial-like cell line derived from monkey kidney cells, have the capability to mediate a phagocytic signal when transfected with a phagocytic receptor.27-29 The transfection of Fcγ receptors into such cells, which do not express endogenous Fc receptors but have phagocytic potential, has allowed the study of individual Fcγ receptors and the definition of those structures within the receptor molecule important for phagocytosis. For example, FcγRIIA contains the conserved YXXL motif within its cytoplasmic domain3,11,12,14 and mediates a high level of phagocytosis of IgG-sensitized red blood cells (RBCs) in COS-1 cells and fibroblast transfectants.11,14 In contrast, the cytoplasmic domains of FcγRIIB and FcγRI lack this motif and require the cytoplasmic domain of an associated γ chain subunit for phagocytic function5,7,23 (Table 1).

In these studies, we have further explored factors that influence the efficiency of phagocytosis by Fcγ receptors and have identified a PTK that specifically enhances phagocytosis mediated through the γ chain. The 72-kd PTK Syk, originally cloned from porcine spleen, is associated with B-cell slg and mast cell FcεRI receptors.6,29-32 We have observed that Syk can also be isolated in abundance from monocytes and macrophages and that cross-linking of FcγRIIIBA stimulates a fourfold increase in Syk kinase activity.3 Furthermore, after FcγRIIIBA cross-linking, Syk was identified by immunoprecipitation and phosphopeptide mapping as a major tyrosine phosphorylation substrate associated with the γ chain.3 Taken together, these data suggested that Syk may be important for FcγRI and FcγRIIB signal transduction.

MATERIALS AND METHODS

Cell culture and transfection. COS-1 cells were maintained in Dulbecco's modified Eagle's medium (DMEM) containing glucose (4.5 mg/mL), glutamine (2 mmol/L), streptomycin (100 U/mL), penicillin (100 μg/mL), and 10% heat-inactivated fetal calf serum. Transient transfection of cells at 70% to 80% confluence was performed in complete media containing 10% Nu-Serum (Collaborative Biomedical Products, Bedford, MA), DEAE-Dextran (1 mg/mL), chloroquine chloride (100 μmol/L), and 2.5 μg plasmid DNA per milliliter of transfection media. After 4 hours at 37°C, the transfection media was replaced with 10% dimethyl sulfoxide (DMSO) in phosphate-buffered saline (PBS) for 2 minutes at room temperature. The cells were then washed, overlaid with fresh media for further incubation, and analyzed after 48 hours.

Flow cytometry. Cell samples incubated with anti-FcγRII monoclonal antibody (MoAb) IV.3 or anti-FcγRI MoAb 32.2 for 30 minutes at 4°C were washed, labeled with fluorescein isothiocyanate (FITC)-conjugated goat-antimouse F(ab')2, IgG (TAGO, Inc, Burlingame, CA) for 30 minutes at 4°C, then washed and fixed with 4% paraformaldehyde. Isotype controls were used for all reactions, and fluorescence was measured on a FACSTAR cytometer (Becton Dickinson, Mountain View, CA).

From the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.
Submitted September 30, 1994; accepted November 23, 1994.
Supported by National Institutes of Health Grants No. AI-22193 and HL-28207.
Address reprint requests to Zena K. Indik, PhD, University of Pennsylvania Cancer Center, 7 Silverstein Bldg, 3400 Spruce St, Philadelphia, PA 19104.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1995 By The American Society of Hematology.
0006-4971/95/8505-0913$3.00

From www.bloodjournal.org by guest on August 16, 2017. For personal use only.
Phagocytosis is expressed as phagocytic index (the number of ingested EA per 100 Fcy receptor expressing cells determined by flow cytometry) in Tables 1 and 2. Syk did not alter Fcy receptor surface expression. Receptor cell surface expression was equivalent within a single experimental group for all receptors. FcyRIIA required the γ chain subunit for expression. I-Ⅰα and I-Ⅰα-IIA are chimeric receptors containing the extracellular domain of FcyRI, the transmembrane domain of either FcyRI or FcyRIIA and the cytoplasmic domain of FcyRIIA. Abbreviation: ND, not performed.

* Experiments in which the ζ chain was substituted for the γ chain.
† FcyRI and FcyRIIA with the γ chain induce a low level of phagocytic function in COS-1 cells in the absence of Syk.15,18,27

Table 1. Effect of the Tyrosine Kinase Syk on Phagocytosis by Fcy Receptors

<table>
<thead>
<tr>
<th>Fcy Receptor</th>
<th>Receptor</th>
<th>+γ Chain</th>
<th>+Syk</th>
<th>+γ +Syk</th>
</tr>
</thead>
<tbody>
<tr>
<td>FcyRIIA</td>
<td><50</td>
<td>1361</td>
<td><50</td>
<td>760</td>
</tr>
<tr>
<td>FcyRIIA32CT</td>
<td><50</td>
<td>1511</td>
<td><50</td>
<td>680</td>
</tr>
<tr>
<td>FcyRI</td>
<td><50</td>
<td>691</td>
<td><50</td>
<td>564</td>
</tr>
<tr>
<td>FcyRIIC32CT</td>
<td><50</td>
<td>621</td>
<td><50</td>
<td>434</td>
</tr>
<tr>
<td>FcyRIIA*</td>
<td><50</td>
<td>60</td>
<td>ND</td>
<td>462</td>
</tr>
<tr>
<td>FcyRI*</td>
<td><50</td>
<td><50</td>
<td>ND</td>
<td>270</td>
</tr>
<tr>
<td>FcyRII</td>
<td>500</td>
<td>380</td>
<td>830</td>
<td>525</td>
</tr>
<tr>
<td>I-Ⅰα-IIA</td>
<td>540</td>
<td>250</td>
<td>625</td>
<td>450</td>
</tr>
<tr>
<td>I-Ⅰα</td>
<td>160</td>
<td>117</td>
<td>144</td>
<td>619</td>
</tr>
<tr>
<td>FcyRIIB1</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
</tr>
<tr>
<td>FcyRIIB2</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
</tr>
</tbody>
</table>

Representative experiments are shown for transfection of the γ chain, Syk, or the γ chain + Syk with the indicated Fcy receptor.

RESULTS AND DISCUSSION

We have observed that even with comparable cell surface expression in COS-1 cells both FcyRIIα/γ and FcyRI/γ mediate phagocytosis at a considerably lower level than does FcyRIIA (Table 1). Because FcyRIIα and FcyRI efficiently induce phagocytosis in human cultured monocytes and macrophages,25,34,35 we hypothesized that COS-1 cells lack an element(s) present in cells of monocyte/macrophage lineage that optimizes γ chain–mediated phagocytosis.

The PTK Syk, which is present in hematopoietic cells,2,3,5,6,29-32,36-38 coimmunoprecipitates with the γ chain associated with FcyRIIA in macrophages and FcRI in mast cells.2,3,18 Syk is also phosphorylated on tyrosine after cross-linking of FcyRI and/or FcyRIIA on cells of the monocyte/macrophage lineage.2,3,6,37,38 Therefore, to define the signal transduction requirements for phagocytosis, we cotransfected Syk, the γ chain, and either FcyRIIα or FcyRI into COS-1 cells and examined the ability of these cells to ingest IgG-sensitized RBCs (EA). Syk dramatically enhanced using enhanced chemiluminescence (ECL) (Amersham Corp, Arlington Heights, IL) and Kodak XAR-5 film (Eastman Kodak, Rochester, NY).1,12,14,27,30 2 x 10^6 COS-1 cells were analyzed per lane.

Construction of mutant receptor molecules. Two-step overlap extension polymerase chain reaction (PCR) was used to construct mutant cDNAs.14,15,21 γY1F and γY2F indicate γ chain mutants in which either cytoplasmic tyrosine 1 (Y1F) or tyrosine 2 (Y2F) have been replaced with phenylalanine. γA30 and γA65 are γ chain mutants truncated at amino acid 80 or 65, respectively. γΔ71-73 is a γ chain mutant in which amino acid residues 71-73 have been deleted. In the γFcyRIIA mutant, the 7-amino acid sequence NTRSEQE/ between the two YXXLs of the γ chain has been replaced by the 12-amino acid sequence NPYKTPREDKKIN between the two YXXLs of FcyRIIA. I-Ⅰα and I-Ⅰα-IIA are chimeric receptors containing the extracellular domain of FcyRI, the transmembrane domain of either FcyRI or FcyRIIA and the cytoplasmic domain of FcyRIIA. B2YMTL represents FcyRIIIB2 in which amino acid 243 is replaced by tyrosine to create a YXXXI sequence. B2YM1TYQNR represents FcyRIIIB2 mutant containing both YM1 and YQNR (see Table 2).

Table 2. Effect of Syk on Phagocytosis Mediated by Mutants of the Nonphagocytic Receptor FcyRIIB2

<table>
<thead>
<tr>
<th>Fcy Receptor</th>
<th>Phagocytosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−Syk</td>
</tr>
<tr>
<td>FcyRIIB2</td>
<td><50</td>
</tr>
<tr>
<td>B2YMTL</td>
<td>60</td>
</tr>
<tr>
<td>B2YQRNI</td>
<td><50</td>
</tr>
<tr>
<td>B2YM1TYQNR</td>
<td>90</td>
</tr>
<tr>
<td>FcyRIIB2WT</td>
<td>221</td>
</tr>
<tr>
<td>FcyRIIB2YMTL</td>
<td>NPTNPDEAKV</td>
</tr>
<tr>
<td>FcyRIIB2YQNR</td>
<td>NPTNPDEAKV</td>
</tr>
<tr>
<td>FcyRIIB2YMTL</td>
<td>NPTNPDEAKV</td>
</tr>
</tbody>
</table>

Representative experiments are shown for FcyRIIB2 and its mutants. B2YMTL represents FcyRIIB2 in which a YM1 sequence is inserted after amino acid 221. B2YM1TYQNR represents FcyRIIIB2 mutant containing both YM1 and YQNR. Mutations were constructed using two-step overlap PCR.11
The induction of phagocytosis by PTK

Fig 1. Effect of Syk on phagocytosis mediated by Fcγ receptors. The increase in efficiency of phagocytosis by transfected wild-type and mutant Fcγ receptors in the presence of the PTK Syk is expressed as percent increase in phagocytic index (number of ingested EA per 100 Fcγ receptor expressing cells determined by flow cytometry). Error bars indicate ±SEM. The number of cells that ingest at least one RBC is also increased in the presence of Syk. For example, the fold increase in percent phagocytic cells is 3.0 ± 0.2 for FcγRIIα/γ, 3.6 ± 0.5 for FcγRIIα/γ, and 6.3 ± 1.7 for FcγRIIαCT/γ. Transfectants of FcγRI and FcγRIIα with wild-type and mutant γ chains are grouped on the upper section of the graph and wild-type and mutant FcγRIIα transfected are presented on the lower section of the graph. FcγRIIαCT and FcγRIIαCT/γ indicate mutants in which the cytoplasmic domain has been deleted. γY1F and γY2F indicate γ chain mutants in which either cytoplasmic tyrosine 1 (Y1F) or tyrosine 2 (Y2F) have been replaced with phenylalanine. γΔ80 and γΔ65 are γ-chain mutants truncated at amino acid 80 or 65, respectively. γΔ71-73 is a γ-chain mutant in which amino acid residues 71-73 have been deleted. In the γ-FcγRIIα mutant, the sequence between the two YXXLs of the γ chain has been replaced by the sequence between the two YXXLs of FcγRIIα. The chimeras H-I-IA and H-IIA-IIA represent receptor molecules containing the EC of FcγRI, the CYT of FcγRIIα and the TM of either FcγRI or FcγRIIα, respectively. The definition of the FcγRIIβ2 mutants is given in Table 2. FcγRI and FcγRIIα were transfected with the γ-chain subunit (eg, FcγRI/γ and FcγRIIα/γ) or the ζ chain as indicated. Data are shown with the γ chain for FcγRIIα and the two FcγRIIα chimeras to illustrate the enhancement by Syk of H-I-IA-mediated phagocytosis in the presence of the γ chain (Table 1). For most receptors, data are derived from at least four experiments.

(Fig 1, Table 1). The low level of phagocytosis noted for FcγRI and γ chain cotransfectants was also greatly enhanced (3-fold to 10-fold) by Syk (Fig 1, Table 1). Syk also increased the percent of cells able to phagocytose EA (3.0 ± 0.2-fold for FcγRIIα/γ, 3.6 ± 0.5-fold for FcγRIIα/γ). Thus, the PTK Syk dramatically enhances phagocytosis mediated by these receptors and also allows some nonphagocytic Fcγ receptor expressing cells to acquire phagocytic capability.

In the absence of the γ chain, Syk did not induce phagocytosis by either FcγRIIα or FcγRI, and consistent with the concept that the effect of Syk requires sequences in the γ chain, the cytoplasmic domain of neither FcγRIIα nor FcγRI was required for the stimulation of phagocytosis by Syk (Fig 1, Table 1). There was no effect when either FcγRI or FcγRIIα and the γ chain were cotransfected with nonsense Syk or vector alone. Flow cytometry showed that the Syk effect was not a consequence of increased Fcγ receptor expression (Fig 2). Furthermore, cross-linking of FcγRI in COS-1 transfected with the γ chain and Syk induced tyrosine phosphorylation of Syk, suggesting that Syk is activated under these conditions (Fig 3). This result is consistent with the observations in monocytes and macrophages which show that Fcγ receptor cross-linking enhances tyrosine phosphorylation of Syk kinase. These data indicate that Syk markedly enhances the phagocytic signal in two Fcγ receptors associated with the γ chain and demonstrates that introduction of a specific tyrosine kinase can induce a physiologically important cellular function.

The ζ chain of the T-cell receptor is homologous to the γ chain in that it contains conserved cytoplasmic YXXL sequences. It functions as a subunit of FcγRIIα in some cells, eg, natural killer cells and also appears to be able to transmit a phagocytic signal. Coexpression of Syk with the ζ chain and either FcγRIIα or FcγRI also enhanced ζ chain-mediated phagocytosis but did not increase the level of phagocytosis to that of the γ chain (Table 1). This result is consistent with our previous observations which indicate that the ζ chain is less efficient than the γ chain in inducing phagocytosis in transfected COS-1 cells.

Signaling pathway(s) used for phagocytosis by FcγRI and FcγRIIα appear to differ from that used by the other phagocytic Fcγ receptor, FcγRIIα. For example, in contrast to FcγRI and FcγRIIα, FcγRIIα-induced phagocytosis occurs efficiently in COS-1 transfected in the absence of the

Fig 2. Flow cytometric analysis of COS-1 cells cotransfected with FcγRI and the γ chain with () or without () Syk. The fluorescence of an isotype control is indicated by (). COS-1 cells transfected with FcγRI were incubated with anti-FcγRI MoAb 32.2 and labeled with FITC-conjugated goat F(ab')2 antimouse IgG (TAGO, Inc, Burlingame, CA). Expression of FcγRI was similar in the presence and absence of Syk.
γ chain or Syk. Nevertheless, the induction of Syk phosphorylation after cross-linking of FcγRII in monocytes/macrophages suggested that Syk may play a role in phagocytosis by FcγRIIA. Syk modestly increased the efficiency of phagocytosis by FcγRIIA (Fig 1, Table 1) and, similarly, modestly increased phagocytosis by the chimeric receptor I-IIA-IIA which contains the cytoplasmic domain (CYT) and transmembrane domain (TM) of FcγRIIA and the extracellular domain (EC) of FcγRI (Fig 1, Table 1). Consistent with the thesis that association of FcγRI with the γ chain occurs through the TM of FcγRI, greater enhancement of phagocytosis by Syk in the presence of the γ chain was observed for the chimera I-I-IIA (EC-TM-CYT) than for either FcγRIIA or the chimeric receptor I-IIA-IIA (Fig 1, Table 1). It is likely that association with the γ chain occurs through the FcγRI-derived TM of I-I-IIA and that recruitment of the γ chain allows a larger Syk phagocytic response by this chimera. It is also noteworthy that in these experiments, the γ chain decreased phagocytosis mediated by FcγRIIA in the absence of Syk (Table 1). Although the reason for this apparent inhibitory effect is unknown, one possible explanation is that the γ chain competes for a substrate(s) important for phagocytosis by FcγRIIA.

Because the association of Syk with phosphorylated γ and the enhancement by Syk of Fcγ receptor phagocytosis suggest involvement of Syk in γ chain mediated Fcγ receptor function, we examined whether particular sequences in the γ chain are important for induction of phagocytosis by Syk (Fig 1). Replacement of either tyrosine by phenylalanine in the conserved YXXL motifs of the cytoplasmic domain of the γ chain eliminates both FcγRI- and FcγRIIIA-mediated phagocytosis (Fig 1). Syk was unable to induce phagocytosis in these γ-chain mutants lacking one YXXL tyrosine (FcγRI/γY1F, FcγRI/γY2F, FcγRIIIA/γY1F, and FcγRIIIA/γY2F, Fig 1), suggesting that Syk engages two functional SH2 binding domains for its interaction with γ in phagocytosis. In addition, there was no induction of phagocytosis by Syk in the γ-chain truncation mutation which removed YXXL sequences (γΔ65) whereas enhancement of phagocytosis by Syk was observed with the γ-chain mutants that lack residues downstream of the YXXL sequences (γΔ80). These results confirm the importance of the region containing the two YXXL sequences for phagocytosis and suggest that Syk associates with the γ chain through this conserved sequence.

We examined whether the spacing between the two conserved YXXL sequences of the γ chain affects Syk function. Seven amino acids separate the two YXXL sequences of the γ chain whereas 12 amino acids separate the two YXXLs in FcγRIIA. In the γ chain mutant γ-FcγRIIA, the sequence separating the two cytoplasmic YXXLs of the γ chain was replaced with the intervening sequence from FcγRIIA. This lengthened the sequence between the two YXXLs by five amino acids. Syk stimulated the phagocytic efficiency of this mutant as well as that of a γ chain mutant in which four amino acids were deleted from the conserved sequence separating the two YXXLs (γΔ71-73). Thus, a sequence of between 3 and 12 amino acids between the two conserved YXXL sequences allows Syk to function in Fcγ receptor/γ chain-mediated phagocytosis.

To further define the Fcγ receptor sequences important for the induction of phagocytosis by Syk, we also examined FcγRII isoforms and mutants of these receptors. In contrast to the phagocytic receptor FcγRIIA, FcγRIIB1 and FcγRIIB2 contain a single cytoplasmic YXXL sequence and do not mediate phagocytosis in COS-1 transfectants. Co-transfection with Syk did not induce phagocytosis by FcγRIIB1 or FcγRIIB2 (Fig 1, Table 1). To establish an additional YXXL sequence in FcγRIIB2, YMTL (the first YXXL from FcγRIIA) was inserted after Val21, seven amino acids upstream of the existing YSLL (B2/YMTL) (Table 2). The insertion of YMTL into FcγRIIB2 enabled Syk to enhance the phagocytic efficiency of this receptor more than sixfold (Table 2, Fig 1). In contrast, Syk did not affect phagocytosis by B2/YQNR1, in which Asp64 was changed to Tyr, creating a YXXXI motif at position 243, 11 amino acids downstream of the existing YSSL. However, Syk increased by ninefold the phagocytic efficiency of B2/YMTL/YQNR1, a mutant with two additional tyrosine-containing motifs. These data suggest that Syk requires at least two YXXX/YXXI motifs to induce phagocytosis and that YMTL may be one of the permissible sites for the effect of Syk.

Because the protein kinases of the Src family Lyn, Fyn, Fgr, Lck, and Srd, like Syk, are expressed in phagocytic cells such as monocytes/macrophages, we examined the effect of these protein kinases on γ chain–mediated phagocytosis. In contrast to the effect of Syk, phagocytosis by FcγRIIA/γ and by FcγRI/γ was not increased by introduction of any of these tyrosine kinases. The observation that
of these protein kinases only Syk kinase enhanced phagocytosis by FcγRI or FcγRIIIA in the presence of the γ chain suggests a specificity of Syk for γ chain sequences. The low levels of FcγRI/γ and FcγRIIIA/γ-mediated phagocytosis in COS-1 cells in the absence of transfected Syk may be caused by endogenous tyrosine kinases, or less able than Syk to function with γ-chain sequences, or to low levels of Syk that may be present in some COS-1 cells. In addition, it is not yet known whether endogenous COS-1 cell Src family kinases (SRTKs) are necessary for Syk's effect or whether Syk-induced phagocytosis in the presence of the γ chain is independent of SRTKs. Variability in the surface density of the Fcγ receptors may also influence phagocytic function; however, the adherent properties of COS-1 cells make it difficult to use cell sorting to determine whether cells expressing high densities of Fcγ receptors are able to mediate phagocytosis in the absence of Syk.

Our studies show that introduction of a PTK can induce an important cellular function, phagocytosis. Previous studies have demonstrated an association between the γ chain and Syk kinase in macrophages and rat basophilic leukemia cells. However, although activation of FcγRII on monocytes and macrophages induces the phosphorylation of the γ chain and association with Syk, the mechanism by which Fcγ receptors interact with distinct PTKs and the role(s) of Syk in Fcγ receptor function are unknown. We have observed that Syk dramatically increases phagocytosis by FcγRI and FcγRIIIA, mediated through the γ chain. The effect of Syk requires the conserved tyrosines within the γ chain cytoplasmic domain and two intact YXXL sequences, providing two potential SH2 binding sites. Syk is also able to induce phagocytosis in a previously nonphagocytic Fcγ receptor, FcγRIIB2, after the insertion of an additional YXXL sequence(s) (Table 2).

Although isoforms of each class of Fcγ receptor are able to induce the phagocytosis of IgG-coated cells, their mechanisms for phagocytosis differ. FcγRIIA induces phagocytosis through the phosphorylation of tyrosines within the conserved motif of its own cytoplasmic domain, whereas both FcγRI and FcγRIIIA require the tyrosines within the conserved cytoplasmic region of the γ subunit for phagocytosis (Fig 1). Efficient phagocytosis by transfectected FcγRIIIA is mediated by endogenous tyrosines in COS-1 cells (presumably Src family kinases) because high levels of phagocytosis are observed in the absence of cotransfected Syk. Enhancement by Syk of FcγRIIA-mediated phagocytosis was minimal compared with FcγRI/γ or FcγRIIIA/γ, further supporting the concept that the pathway for phagocytosis mediated through FcγRIIA is distinct from the pathway(s) used by FcγRI and FcγRIIIA. Furthermore, in contrast to γ chain-mediated phagocytosis, phagocytosis by FcγRIIA is detectable in the presence of a single intact YXXL sequence. It is of note that Syk does not enhance phagocytosis by these FcγRIIA mutants lacking one YXXL sequence (unpublished observation, March 1994).

These studies begin to define the structural features for the induction of phagocytosis by Syk. The observation that cotransfection of Syk alters the efficiency of an important Fcγ receptor-mediated function provides an approach for examining the specificity and requirements for tyrosine kinases in signaling by Fcγ receptors. A similar model has been helpful for reconstructing the association of T-cell receptor molecules after their introduction into COS cells. Our experiments show that receptor function is modified by introduction of a kinase and constitute, to our knowledge, the first direct demonstration of an in vivo functional consequence of the action of a PTK.

ACKNOWLEDGMENT

The authors thank Dr Christine Darby for her many helpful suggestions during the course of this work and in preparation of the manuscript, and Dr Clement Couture (La Jolla Institute for Allergy and Immunology, La Jolla, CA) for his gift of Syk cDNA.

REFERENCES

6. Kiener PA, Rankin BM, Burkhardt AL, Schieven GL, Gilliland LK, Rowley RB, Bolen JB, Ledbetter JA: Crosslinking of Fcγ receptor I (FcγRI) and receptor II (FcγRII) on monocytes activates a signal transduction pathway common to both Fc receptors that involves the stimulation of p72 Syk protein tyrosine kinase. J Biol Chem 268:24442, 1993

22. Romeo C, Seed B: Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64:1037, 1991

31. Hutchcroft JE, Geahlen RL, Deavin GG, Oliver JM: Fc epsilon RI-mediated tyrosine phosphorylation and activation of the 72 kDa protein kinase, PTK72, in RBL-2H3 rat tumor mast cells. Proc Natl Acad Sci USA 89:9107, 1992

40. Scholl PR, Geha RS: Physical association between the high affinity receptor for IgG (FcγRI) and the γ subunit of the high affinity IgE receptor (FcεRI). Proc Natl Acad Sci USA 90:8847, 1993

42. Ernst LK, Duchemin A-M, Anderson CL: Association of the high affinity receptor of IgG (FcγRI) with the γ subunit of the IgE receptor. Proc Natl Acad Sci USA 90:6023, 1993

Induction of phagocytosis by a protein tyrosine kinase

ZK Indik, JG Park, XQ Pan and AD Schreiber