Graft-Host Tolerance in Bone Marrow Transplant Chimeras. Absence of Graft-Versus-Host Disease Is Associated With Unresponsiveness to Minor Histocompatibility Antigens Expressed by All Tissues

By Sylvie Brochu, Chantal Baron, Robert Bélanger, and Claude Perreault

Because bone marrow (BM) transplantation is used with increasing frequency, it is important to elucidate the mechanisms involved in the establishment of tolerance to host minor histocompatibility antigens (MiHA) in recipients transplanted with T-cell–undepleted marrow grafts. We have previously shown that BM chimeras transplanted across MiHA barriers showed specific unresponsiveness to MiHA expressed on recipient-type concanavalin A blasts. Because expression of many MiHA is tissue-specific, we wanted to determine if chimaera T lymphocytes would be tolerant to MiHA expressed by all host tissues and organs. To investigate this issue, we measured in vivo proliferation of lymphoid cells from normal C57BL/10 (B10) mice and (B10 → LP) chimeras in tissues and organs of lethally irradiated syngeneic and allogeneic recipients. Donor B10 cells were either untreated, or depleted with anti-Thy-1.2, anti-CD4, or anti-CD8 antibodies. Transplantation of B10 cells in LP recipients triggered an important T-cells-dependent 125I-UdR uptake in several organs that involved both CD4+ and CD8+ cells. Using Thy-1-congeneic mice we showed that in long-term chimeras practically all CD4+ and CD8+ T lymphocytes were derived from hematopoietic progenitors and not from mature T cells present in the BM graft. When (B10 → LP) BM chimeras were injected to secondary recipients, no proliferation was observed in any organ of LP hosts whereas normal proliferation was seen in H-2b allogeneic hosts. Thus, in these BM chimeras, tolerance encompasses MiHA expressed by all organs.

© 1994 by The American Society of Hematology.

Materials and Methods

Mice and BM chimeras. The following strains of H-2b mice were used throughout these studies: C57BL/6J (Thy-1.2, Mlsb), B6, B10, and C57BL/10SnJ (B10) BM cells were transplanted in lethally irradiated LP/J (LP) recipients to investigate the mechanisms responsible for tolerance to host MiHA. Additional injection of 1 to 5 × 10⁶ spleen cells (as a source of T lymphocytes) to the BM inoculum provoked a rapidly lethal GVHD, transplantation with only 10⁶ unmanipulated B6 or B10 BM cells (containing 2 to 3 × 10⁵ T cells) yielded healthy (B6→LP) or (B10→LP) chimeras. Recipient mice were complete donor-type chimeras with no signs of graft rejection, either untreated, or depleted with anti-Thy-1.2, anti-CD4, or anti-CD8 antibodies. Transplantation of B10 cells in LP recipients triggered an important T-cell-dependent 125I-UdR uptake in several organs that involved both CD4+ and CD8+ cells. Using Thy-1-congeneic mice we showed that in long-term chimeras practically all CD4+ and CD8+ T lymphocytes were derived from hematopoietic progenitors and not from mature T cells present in the BM graft. When (B10 → LP) BM chimeras were injected to secondary recipients, no proliferation was observed in any organ of LP hosts whereas normal proliferation was seen in H-2b allogeneic hosts. Thus, in these BM chimeras, tolerance encompasses MiHA expressed by all organs.

© 1994 by The American Society of Hematology.
C57BL/10Sn (MLs\(^2\)), B6.PL-Thy-1/Cy (B6-Thy-1.1), LPI (MLs\(^2\)), C3H.SW/Sn (MLs\(^2\)), 129/J (MLs uncharacterized), and A.BY/Sn (MLs\(^2\)). They are mutually unresponsive in primary mixed lymphocyte reaction because H-\(^2\) is a nonstimulatory haplotype in the recognition of MLs. Two strains of H-\(^2\) mice were also used: B10.BR/SgSn (MLs\(^2\)) and C3H/Hj (MLs\(^2\)). Adult male mice were purchased from the Jackson Laboratory (Bar Harbor, ME) and housed in a conventional facility. Irradiated (9.5 Gy) LR or B6 mice injected with \(10^7\) unmanipulated B10 BM cells are referred to as (B10 \(\rightarrow\) LR) and (B10 \(\rightarrow\) B10) chimeras, respectively. We used these chimeras as source of donor cells 100 to 150 days posttransplant because we had previously shown that chimeras were immunocompetent at that time. All chimeras were between 20 and 30 weeks of age when studied. Other mice used as cell donor and/or irradiated recipients were between 6 and 16 weeks of age.

Origin of CD4\(^\text{+}\) and CD8\(^\text{+}\) T cells in BM chimeras. Standard BM chimeras, described in the preceding paragraph, were reconstituted with \(10^7\) BM cells containing 2.5 \(\times\) 10\(^7\) T cells.\(^{13}\) To determine if in each long-term BM chimeras, T cells were derived from hematopoietic progenitors or were the progeny of mature T cells present in the graft, we transplanted irradiated LR host mice with a combination of Thy-1-congenic BM stem cells (T-depleted BM cells) and mature T cells (lymph node [LN] cells). Thus, irradiated LR recipient mice injected with an inoculum containing \(10^7\) B6 BM stem cells and \(3 \times 10^6\) B6-Thy-1.1 LN cells (containing 2.5 \(\times\) 10\(^7\) T cells) or \(10^7\) B6-Thy-1.1 BM stem cells and \(3 \times 10^6\) B6 LN cells.

Auxiliary and cervical LN from B6-Thy-1.1 or B6 mice were collected, teased apart, and washed. BM collected from B6 or B6-Thy-1.1 donors was T cell depleted with specific anti-Thy-1.2 or Thy-1.1 monoclonal antibodies (MoAbs); respectively, BM and LN cells were mixed and injected intravenously.

Radioactive, chemical products and monoclonal antibodies (MoAbs). 5\(^{\text{[125I]}}\)-iodo-2'-deoxyuridine (\(\text{[125I-dUrd]}\); specific activity 6.25 Ci/mg) was obtained from NEN, DuPont (Markham, Ontario, Canada); fluoro-2-dUrd was purchased from Sigma (St. Louis, MO). Cytotoxic MoAbs anti-L3/T4 (YTS 191.1.2; rat IgG2b), anti-Ly2.2 [AD4(15); mouse IgM], anti-Thy-1.2 (5a-8; mouse IgG2b) and anti-Thy-1.1 (T11D7e; mouse IgM), and specific phycoerythrin (PE)-conjugated MoAbs anti-L3/T4 (YTS 191.1.2; rat IgG2b), anti-Ly2.2 (YTS 169.4; rat IgG2b), and their isotypic PE controls were obtained from Serotec (Toronto, Ontario, Canada) and Pharmingen (San Diego, CA); specific fluorochrome-conjugated MoAbs anti-Thy-1.2 (T5; mouse IgM) were purchased from ICN.

Cell transplantation and GVHD induction. Mice were transplanted as described previously. Briefly, recipient mice received 9.5 Gy total body irradiation from a \(\alpha\) source at a dose rate of 128 cGy/min 6 to 18 hours before their reconstitution with an inoculum of hematopoietic cells (2.5 \(\times\) 10\(^7\) spleen cells injected with \(2 \times 10^7\) BM cells). Spleen and BM cells, obtained from the tibiae and femurs (containing 2.5 \(\times\) 10\(^7\) T cells) or 10\(^7\) B6-Thy-1.1 BM stem cells and 3 \(\times\) 10\(^6\) B6 LN cells) or 10\(^7\) B6-Thy-1.1 BM stem cells and 3 \(\times\) 10\(^6\) B6 LN cells.

Cytotoxic and proliferative activity. We measured in vivo proliferation of grafted cells (Fig 1) in several host tissues and organs using a method originally developed by Spach and Motta.\(^{15}\) Briefly, on day 6 (H-2\(^\text{b}\) mice) or on day 8 (H-2\(^\text{a}\) mice) after irradiation and cell transplantation, mice received an intraperitoneal (ip) injection of fluoro-2-dUrd (10\(^{-7}\) mol in 0.1 mL saline) followed 1 hour later by an ip injection of \(\text{[125I]}\)-dUrd (1.5 mCi in 0.1 mL). Incorporation of \(\text{[125I]}\)-dUrd is lowered by competition with endogenous thymidine. The use of fluoro-2-dUrd, which acts as an inhibitor of thymidine synthesis, decreases this competition. One hour after labeling, mice were anesthetized for cardiac puncture and then killed by cervical dislocation. Twenty-one organs were excised, cleansed, and soaked in 70% ethanol and the DNA-bound radioactivity measured in a gamma counter. Results, corrected for isotope decay and background, were expressed either as cpm/organ, or in the form of an allogeneic/syngeneic (A/S) ratio calculated with the following formula: A/S ratio = mean cpm in allogeneic recipient/mean cpm in syngeneic B10 recipient. An A/S ratio \(\geq 3\) was considered positive. Results observed in various types of allogeneic recipients are depicted as vertical bars in Figs 2 through 6 and those observed in syngeneic controls as a clear horizontal area in Fig 2.

Depletion of Thy-1\(^\text{+}\), CD4\(^\text{+}\), and CD8\(^\text{+}\) cells. Cells to be treated were resuspended at a concentration of 1 \(\times\) 10\(^7\) cells/mL and incubated with MoAb at 4°C for 1 hour. They were then pelleted by centrifugation, resuspended in rabbit serum as a source of complement, and incubated at 37°C for 1 hour. Cell suspensions were washed three times, analyzed for efficacy of depletion by direct cytofluorometry, and then adjusted for injection. For proliferative activity assays, spleen and BM B10 cells were depleted separately and mixed in adequate concentration just before injection. To keep constant the number of non-T cells in each inoculum, the total quantity of spleen cells (2.5 \(\times\) 10\(^7\) in recipients of unmanipulated graft) injected to recipients of Thy-1\(^\text{-}\), CD4\(^\text{-}\), and CD8\(^\text{-}\)-depleted grafts was adjusted to 1.7 \(\times\) 10\(^7\), 2.07 \(\times\) 10\(^7\), and 2.2 \(\times\) 10\(^7\), respectively.
Fig 2. 125I-dUrd incorporation in 21 organs after irradiation and transplantation of hematopoietic cells (10^7 BM and 2.5×10^7 spleen cells) from B10 donors to lethally irradiated LP (vertical bars) recipients. LP mice were either transplanted with unmanipulated (M) or with Thy-1-depleted hematopoietic cells (○) or left unreconstituted (□). On day 8, recipients were injected with fluoro-2-dUrd and 1 hour later were labeled by a single ip injection of 125I-dUrd. One hour after labeling, mice were killed and incorporated radioactivity was measured. Each bar represents the mean ± 1 SD cpm for three to five experiments except for Thy-1 depletion, which was done only once. Clear area shows the mean ± 1 SD cpm observed in syngeneic B10 recipients of unmanipulated graft.
MoAbs was also assessed by labeling cells with FITC- and/or PE-conjugated isotype-matched controls.

RESULTS

Proliferative activity of grafted cells from B10 donors.

\(^{125}\text{I}-\text{dUrd}\) incorporation in syngeneic B10 recipients showed major differences among the 21 organs tested as it ranged from \(10^1\) to \(10^5\) cpm/organ. Similar results were obtained in six experiments (Fig 2). When \(^{125}\text{I}-\text{dUrd}\) uptake was measured in allogeneic LP recipients and compared with syngeneic recipients, three patterns were observed. In most organs (thereafter referred to as type 1), \(^{125}\text{I}-\text{dUrd}\) uptake was greater in allogeneic than in syngeneic recipients: testes, heart, lungs, kidneys, pancreas, liver, muscles, skin, esophagus, and LN. In type 2 organs (BM, spleen, and gastrointestinal tract [GIT]) no allogeneic/syngeneic difference was detected. The thymus was the sole organ where incorporation was lower in allogeneic than in syngeneic recipients (type 3).

T-cell depletion of B10 inoculum before injection to irradiated LP recipients decreased \(^{125}\text{I}-\text{dUrd}\) uptake in type 1 organs down to levels observed in syngeneic hosts, but did not influence incorporation in type 2 organs. T-cell—indepen-
Fig 5. $^{32}
\text{P}-\text{dUrd}$ incorporation in lymphoid and nonlymphoid tissues from four strains of lethally irradiated mice grafted with hematopoietic cells from (B10 → LP) chimeras. Mice were treated as in Fig 2 and results were expressed as allogeneic/syngeneic ratios.

Fig 6. $^{32}
\text{P}-\text{dUrd}$ incorporation in lymphoid and nonlymphoid tissues from two types of lethally irradiated MHC-incompatible recipients grafted with hematopoietic cells from (A) B10 donors and (B) syngeneic (B10 → B10) and (C) allogeneic (B10 → LP) chimeras. Two to three mice per group were treated as in Fig 2 on day 6 and results were expressed as allogeneic/syngeneic ratios.
dent uptake in type 2 organs could be ascribed to two mechanisms. 125I-dUrd incorporation in hematopoietic organs (BM, spleen) was abrogated in irradiated ungrafted LP recipients and therefore resulted from the proliferation of donor-derived hematopoietic cells. On the other hand, high uptake in the GIT was independent of donor cells since it was observed in irradiated unreconstituted hosts. High GIT uptake may be caused by repair from the radiation induced damage or to incorporation by intestinal and gastric glandular secretions.

When B10 hematopoietic cells were injected to three other types of MiHA-incompatible H-2b recipients (C3H.SW, 129, and A.BY), organ-specific 125I-dUrd uptake showed some strain to strain variations but the same three patterns were observed (Fig 3). Thus, recognition of allogeneic MiHA induced a significant T cell, or at least T-dependent, proliferation in LN and a large variety of nonhematopoietic organs in the four types of H-2b recipients. High T-cell–independent 125I-dUrd uptake precluded evaluation of T-cell responses in type 2 organs.

Role of T-cell subsets. The effect of in vitro depletion of CD4$^+$ or CD8$^+$ lymphocytes on 125I-dUrd uptake by type 1 organs was evaluated in irradiated LP recipients grafted with B10 hematopoietic cells (Fig 4). Depletion of both CD4$^+$ and CD8$^+$ lymphocytes decreased, to a variable extent, proliferative activity in 9 to 10 of 12 organs tested. CD4-depletion had a greater impact on some organs but the reverse was true for others. Similar results were obtained in 129 recipients but a different organ pattern was observed (data not shown).

Proliferation of transplanted (B10 → LP) chimera cells. After transplantation of (B10 → LP) chimera cells into irradiated B10 recipients, the tissue-specific pattern of 125I-dUrd incorporation was similar to the one obtained with normal B10 donors (data not shown). However, results were strikingly different when chimera cells were transplanted in secondary LP recipients (Fig 5). Contrary to what was observed in recipients of B10 cells, no T-cell–dependent proliferation was seen in any type 1 organ of LP mice transplanted with chimera cells (ie, A/S ratio < 3). The pattern of 125I-dUrd incorporation was similar to the one observed after syngeneic transplantation or T-depleted allogeneic transplantation. Thus, in vivo, (B10 → LP) chimera cells were totally unresponsive to MiHA expressed on all tissues from LP mice.

When (B10 → LP) chimera hematopoietic cells were transplanted in third-party recipients such as C3H.SW, 129, and A.BY, T-cell–specific proliferation in type 1 organs was much lower than what was measured in recipients of B10 cells (compare Figs 3 and 5). T-cell–dependent uptake was completely abrogated in some organs and significantly decreased in others. Although we had shown with a number of in vivo and in vitro tests that our 100-day-old BM chimeras were immunocompetent,5 in healthy BM patients some T-cell responses take up to four years to normalize.3 To determine if hematopoietic (B10 → LP) chimera cells have the capacity to generate a normal proliferative response in vivo, they were transplanted into irradiated major histocompatibility complex (MHC)-incompatible recipients with or without minor lymphocyte stimulating loci (Mls) difference (Fig 6). The proliferation of (B10 → LP) chimera cells in type 1 organs was normal when compared with that of (B10 → B10) chimera and B10 donor cells. The pattern of 125I-dUrd incorporation showed the same level of uptake in all organs. Thus, although responsiveness of chimera cells to third-party MiHA was significantly depressed, their responsiveness to MHC antigens was normal.

Origin of T cells in (B10 → LP) BM chimeras. After observation that cells from long-term BM chimeras were tolerant to all MiHA expressed by host cells, we questioned the origin of their T lymphocytes. Do they derive from maturation of hematopoietic progenitors or from expansion of mature T cells present in the original BM inoculum? Table I shows the results of two sets of experiments using a combination of Thy-1–congenic hematopoietic progenitors (T-depleted BM cells) and mature T cells (LN cells). Phenotyping with anti–Thy-1.1 and anti–Thy-1.2 MoAbs showed that all thymic cells were derived from hematopoietic progenitors. In the spleen, 92% to 96% of the CD4$^+$ and 78% to 88% of the CD8$^+$ T lymphocytes were also derived from hematopoietic progenitors whereas a minority had the same phenotype as LN cells present in grafted cells.

DISCUSSION

The first evidence that “in vivo mixed lymphocyte reaction” could detect MiHA incompatibilities was provided some years ago by Spach and Motta in a strongly Mls stimulatory H-2d strain combination: (B10.D2 × DBA/2)F1 (Mlsb × Mlsd) recipients were reconstituted with B10.D2 (Mlsa) hematopoietic cells. At this time, Ms superantigens were confused with MiHA under the imprecise denomination of “non-MHC antigen.” The present studies confirm and expand these original observations by showing that disparity for multiple MiHA can induce significant and measurable in situ proliferation of transplanted T cells in Ms nonstimulatory donor/recipient combinations. We detected T-cell proliferation in all extrathymic lymphoid and nonlymphoid organs, except for the GIT and hematopoietic organs (BM, spleen) where the high basal 125I-dUrd uptake precluded further evaluation. This is consistent with histologic description of tissues obtained 7 to 8 days after BMT across various types of MiHA barriers showing widespread lymphocytic infiltrates in the skin, liver, pancreas, lungs, and kidneys. The thymus was an exception because we observed a decreased T-cell–dependent 125I-dUrd uptake in allogeneic recipients compared with syngeneic recipients. We hypothesized that maturation in an MiHA-incompatible thymus may possibly increase negative selection by causing deletion of T-cell clones recognizing both donor- and host-type MiHA expressed on hematopoietic antigen-presenting cells and epithelial cells, respectively. However, this hypothesis remains highly speculative.

Our depletion experiments with anti–CD4 and anti–CD8 MoAbs provided evidence that both T-cell subsets responded to allogeneic MiHA after BMT. The relative contribution of each lymphocyte subset showed significant variation among various organs. This is consistent with a number of observations: firstly, MiHA peptides are associated with both MHC class I and class II molecules; secondly, both CD4$^+$ and CD8$^+$ T cells can contribute to anti-MiHA GVHD; and thirdly, both subsets have significant proliferative potential.31

The aim of the present work was to characterize the state
of tolerance to host MiHA in lethally irradiated BM chimeras reconstituted with T-cell undepleted graft. Specifically, we wanted to determine if (B10 → LP) chimeras' T cells would be unresponsive to MiHA expressed on all tissues of the LP host. Our analysis of ^{3}H-dUrd incorporation in tissues and organs of secondary LP recipients injected with chimeras' T cells clearly showed that the latter did not proliferate in any organ. This is consistent with previous observations that chimera cells cannot trigger GVH reaction when injected into secondary LP recipients and are unresponsive to host MiHA when tested in CTL assays against LP Con A blast targets. Thus, according to both in vitro CTL assays and in vivo proliferation studies (Fig 5), BM chimeras are tolerant to MiHA expressed by all organs of the host.

Although the number of MiHA gene differences between various inbred strains of mice is probably greater than 40 and the product of many of these can probably stimulate in vivo T-cell proliferation, we must remember that T-cell response to MiHA is characterized by the phenomenon of immunodominance. When an animal is immunized with cells from an MHC-identical animal presenting multiple incompatible MiHA loci, T-cell responses are directed against the product of all MiHA genes. However, the conclusion of the preceding paragraph applies to MiHA that are immunodominant in our model and not necessarily to other MiHA when tested in CTL assays against LP Con A blast targets. Thus, according to both in vitro CTL assays and in vivo proliferation studies (Fig 5), BM chimeras are tolerant to MiHA expressed by all organs of the host.

We thank the Department of Nuclear Medicine of the Maisonneuve-Rosemont Hospital and our animal caretakers for their excellent technical assistance.

ACKNOWLEDGMENT

Table 1. Origin of Thymic and Splenic (B6 → LP) Chimera T Cells

<table>
<thead>
<tr>
<th>Source of Grafted Cells</th>
<th>CD4$^+$</th>
<th>CD8$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Depleted BM</td>
<td>LN</td>
<td>Population</td>
</tr>
<tr>
<td>B6</td>
<td>B6-Thy-1.1</td>
<td>Thymus</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>Mean</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>Spleen</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>Mean</td>
<td>1.2</td>
<td>25</td>
</tr>
<tr>
<td>B6-Thy-1.1</td>
<td>B6</td>
<td>Thymus</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>Mean</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Spleen</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td>23.7</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Irradiated (960 Gy) LP recipient mice were reconstituted with a combination of 10^7 T-depleted BM stem cells and 3×10^5 LN cells containing 2.5×10^5 mature T cells (the same number as found in 10^7 undepleted BM cells). On day 65 ± 15 after transplantation, lymphocytes isolated from host thymus and spleen were analyzed for Thy-1.1 or Thy-1.2 antigen expression by direct flow cytometry. Results are expressed as percentage of double-stained lymphocytes for both CD4 and CD8 and Thy-1.1 or Thy-1.2 antigens as determined by double-immunofluorescence staining and corrected for nonspecific binding by isotype-matched control MoAbs.
REFERENCES

From www.bloodjournal.org by guest on September 24, 2017. For personal use only.
Graft-host tolerance in bone marrow transplant chimeras. Absence of graft-versus-host disease is associated with unresponsiveness to minor histocompatibility antigens expressed by all tissues

S Brochu, C Baron, R Belanger and C Perreault