Histamine Induces Interleukin-8 Secretion by Endothelial Cells

By Pascale Jeannin, Yves Delneste, Philippe Gosset, Sophie Molet, Philippe Lassalle, Qutayba Hamid, Anne Tsicopoulos, and André Bernard Tonnell

It has been shown that histamine induces early changes on endothelial cells (EC), such as a transient expression of P-selectin and secretion and/or surface expression of early mediators (eg, prostacyclin [PGI2], platelet-activating factor [PAF], and leukotriene B4 [LTB4]). However, delayed effects of histamine on EC and particularly on cytokine production are undefined. In this study, the effect of histamine on interleukin (IL)-8 production by EC was evaluated using an enzyme-linked immunosorbent assay (ELISA) method and mRNA expression. The results showed that histamine increased the secretion and the mRNA expression of IL-8 by EC. Histamine-induced IL-8 production was (1) dose-dependent (at a dose ≥ 10-3 mol/L), (2) potentiated by co-stimulation with tumor necrosis factor (TNF)-α, (3) inhibited by H1 or H2 histamine receptor antagonists, and (4) significantly increased 4 hours after the initial stimulation. These data suggest that histamine may be involved in the control of the late inflammatory reaction associated to allergic disorders through IL-8 secretion by EC.

© 1994 by The American Society of Hematology.

MATERIALS AND METHODS

EC culture. Human umbilical vein endothelial cells (HUVEC) were obtained as previously described.28 Briefly, HUVEC were collected after treatment of umbilical vein by 0.2% collagenase in 37°C prewarmed Hank’s Balanced Salt Solution (M.A. Bioproducts, Walkersville, MD) for 15 minutes and centrifuged for 10 minutes at 1,000g. The cell pellet was resuspended at concentration of 1.2 x 106 cells/mL in RPMI-1640 supplemented with 100 U/mL penicillin G, 10 μg/mL streptomycin, 20% heat-inactivated fetal calf serum (vol:vol; Gibco, Sergy Pontoise, France), 100 μg/mL heparin, and 25 μg/mL EC growth supplement (Sigma Chemical, St. Louis, MO). Then, HUVEC, cultured in 35-mm diameter tissue culture wells at 37°C in 5% CO2, were collected after trypsinization and cultured in 96-well plates precoated with 1% gelatin. All the experiments were performed with cells at confluency.

Histamine and TNF-α Activation of EC. EC were incubated at 37°C in 5% CO2 in the presence or in the absence of various concentrations of histamine (from 10-5 to 10-3 mol/L) in a final volume of 100 μL. Supernatants were harvested at different time points (from 1 to 24 hours) and stored at −80°C until IL-8 quantification. In some experiments, EC were stimulated by incubation with both histamine (used at concentrations from 10-7 to 10-5 mol/L) and human recombinant TNF-α (used at 50 U/mL; Genzyme, Boston, MA). To investigate the type of histamine receptors involved, HUVEC were also preincubated with H1, H2, and H3 receptor antagonists (dexchlorpheniramine maleate, dichloro isoproterenol, and thioperamide [a generous gift of Dr. J.Y. Bonnefoy], respectively) at different concentrations before activation with 10-4 mol/L histamine.

IL-8 immunological assay. IL-8 was quantified using a commercial kit (R & D systems, Minneapolis, MN) and results were expressed in nanograms per milliliter or as percent of increase as follows: [(H-T)/T] x 100, where H = histamine-induced IL-8 production, and T = IL-8 production by resting cells. The inhibitory effect of histamine antagonists was expressed as the percentage inhibition by reference to histamine-induced IL-8 production, according to the following formula: [(H-A)/H] x 100, where A = IL-8 prod...
duced after stimulation with histamine and histamine receptor antagonist, and H = histamine-induced IL-8 production.

Northern blot analysis of IL-8 mRNA. After 4 hours of EC activation with 10⁻⁴ mol/L histamine or with recombinant human TNF-α (200 U/mL), total cellular RNA was isolated by a guanidium isothiocyanate method with cesium chloride modification. Equal amounts of RNA were denatured at 50°C for 1 hour in glyoxal buffer and then fractionated by electrophoresis through 1.0% agarose gel. RNA transfer to nylon membrane was accomplished by capillary blotting for 18 hours. After RNA transfer, membranes were dried and baked at 80°C in vacuum. Prehybridization was performed at 43°C in buffer containing 50% formamide, 50 mmol/L phosphate buffer, 5× SSC (1× SSC = 0.15 mol/L NaCl + 0.015 mol/L sodium citrate), 2 mmol/L EDTA, 0.1% (vol:vol) sodium dodecyl sulfate, and 2.5× Denhardt's solution (Sigma). 32P-labeled DNA probe of IL-8 was obtained by Klenow fragment transcription of a Sma I-Xba I fragment of IL-8 cDNA (subcloned in pGEM-plasmid). Hybridization was performed for 18 hours at 43°C in prehybridization buffer with 2 × 10⁶ cpm/mL of labeled probe. After washings at 43°C, the blot was dried and exposed to Kodak X Omat x-ray film (Kodak, Rochester, NY). The Northern blots were then hybridized with β-actin probe. In each condition, the intensity of the signal was assessed using a densitometer. The results were normalized to represent equivalent RNA loading in each lane based on the intensity of the actin bands, and the intensity of the IL-8 bands were then expressed as a percentage of the maximal intensity for each blot.

Statistical analysis. Results were expressed as the mean ± SEM and statistical analysis was performed using nonparametric tests.

RESULTS

Histamine induces IL-8 secretion by human EC. HUVEC were incubated with increasing amounts of histamine (from 10⁻² to 10⁻³ mol/L) and IL-8 was measured in the supernatants. Figure 1 shows the amounts of IL-8 produced by HUVEC following 6 hours (Fig 1A) and 24 hours (Fig 1B) of incubation with histamine. It appeared that IL-8 secretion by histamine-stimulated HUVEC was dose-dependent and that the highest amount of IL-8 was induced by histamine used at 10⁻³ mol/L. After a 6-hour incubation, histamine concentrations ≥10⁻⁵ mol/L induced a significant increase in IL-8 production, as shown in Fig 1A. Nevertheless, after a 24-hour incubation, 10⁻⁶ mol/L histamine also induced a significant increase in IL-8 production.

Kinetics of IL-8 production. Kinetic studies presented in Fig 2 were performed with a single dose of histamine (10⁻³ mol/L). When the incubation time was increased from 4 to 24 hours, increasing amounts of IL-8 were quantified in the supernatants of the resting EC. Higher levels of IL-8 were detected with HUVEC stimulated with histamine; the difference became significant after a 4-hour stimulation. The maximal percentage of IL-8 increase was observed 24 hours after stimulation (≥200%).

Northern blot analysis. IL-8 neosynthesis was assessed by Northern blot analysis (Fig 3). When cells were cultured for 4 hours with histamine (10⁻⁴ mol/L) (lane c) or with the positive control, TNF-α 200 U/mL (lane b), there was an increase of 1.8 kb IL-8 mRNA expression compared with basal expression in resting EC (lane a). The IL-8 results were adjusted based on the intensity of the actin bands to represent equivalent mRNA loading in each lane. Whereas the intensity of the IL-8 band in the unstimulated cells was 1% of that observed in TNF-stimulated cells (maximal intensity, 100%), IL-8 mRNA expression in cells activated with histamine was 36% of the maximal intensity.

H1 and H2 histamine receptor antagonists inhibit histamine-induced IL-8 secretion by HUVEC. The effects of the pretreatment with increasing amounts of H1 or H2 receptor antagonists on histamine (10⁻⁴ mol/L)-induced IL-8 production by HUVEC are shown in Fig 4. Fifty percent inhibition of histamine-induced IL-8 production was observed with H1 and H2 receptor antagonists concentrations of 3.10⁻⁵ mol/L and 5.10⁻⁷ mol/L, respectively. Thus, histamine-induced IL-8 secretion by HUVEC appeared to be mediated through both H1 and H2 receptors. Only 30% inhibition was observed with an H3 receptor antagonist at 10⁻⁴ mol/L concentration (data not shown).

Histamine and TNF-α synergize in the induction of IL-8 production by HUVEC. Previous reports have shown that TNF-α is released concomitantly with histamine by mast
Histamine induces IL-8 by endothelial cells

Fig 2. Time course of IL-8 secretion by EC. At the indicated time points, IL-8 produced by EC either unstimulated or activated with histamine at 10^{-4} mol/L was quantified. Results are expressed in ng/mL as the mean ± SEM of six experiments.

In this study, histamine induced significant IL-8 production by EC, as soon as 4 hours after stimulation. This production was dose-dependent and potentialized by both H1 and H2 receptor antagonists, whereas H3 receptor antagonist was ineffective.

Histamine acts on target cells through distinct H1, H2, and H3 receptors, which are detected on the surface of EC. Most of the effects of histamine in allergic disorders are mediated through H1 (smooth muscle contraction and increased vasopermeability) or H1 and H2 receptors (vasodilation-related symptoms). Histamine-induced IL-8 production by EC appeared to be mediated through an interaction of histamine with H1 and H2 receptors, as it was reduced by both H1 and H2 receptor antagonists, whereas H3 receptor antagonist was ineffective.

Amounts of histamine ranging from 10^{-6} to 10^{-3} mol/L induced a dose-dependent IL-8 production by EC. In fact,
although it was difficult to define precisely the histamine concentration in the target organ, concentrations of histamine from 10^{-6} to 10^{-4} mol/L have been reported to be comparable to those measured in tissues after mast cell degranulation. For example, concentrations such as 100 nmol/L were detected in nasal lavages collected in patients with allergic rhinitis after allergen challenge; however, the histamine concentration was diluted 10- to 100-fold by the lavage procedure. On the other hand, we observed that histamine and TNF-α, which are in vivo concomitantly released by mast cells, synergized in vitro in the induction of IL-8 production by EC. Moreover, this costimulation increases the endothelial sensitivity to histamine (from 10^{-5} to 10^{-3} mol/L). Thus, according to these different points, these in vitro effects of histamine probably reflect its in vivo activity at inflammatory sites.

The production of IL-8 can have several consequences on the tisular environment. IL-8 has in vitro an attractant activity for neutrophils, lymphocytes, basophils, and eosinophils. Moreover, IL-8 induces activation and transendothelial migration of neutrophils; opposite effects have been reported that might be explained by neutrophil desensitization to IL-8 under some experimental conditions. In experimental studies, IL-1β, TNF-α, or lipopolysaccharide-stimulated EC have been demonstrated to produce IL-8, which is responsible for leukocyte transmigration. In addition, only eosinophils primed, for example, with granulocyte-macrophage colony-stimulating factor or IL-3 respond in vitro to IL-8 and this priming is suggested in allergic diseases.

Furthermore, as histamine-induced IL-8 production by EC was observed from 4 to 24 hours after stimulation, it may participate in vivo in the late inflammatory reaction that is sometimes observed in allergic patients several hours after allergen challenge. In fact, the involvement of histamine in the modulation of the leukocyte infiltrate has been confirmed by data showing a significant increase in neutrophil, mastocyte, and lymphocyte numbers in bronchoalveolar lavage from healthy subjects obtained after histamine challenge.

In addition to its chemotactic activity for basophils, IL-8 has been demonstrated to modulate basophil histamine release. IL-8 at very low concentration (10^{-9} mol/L) could inhibit histamine release induced by cytokine- and histamine-releasing factor. In contrast, IL-8 could induce histamine release, either at high concentrations (10^{-6} mol/L) or at lower levels on IL-3-primed basophils (10^{-7} and 10^{-8} mol/L). In allergic patients, the IL-3 priming of basophils can be hypothesized. The IgE-dependent release of mast cell mediators observed immediately after allergen challenge is sometimes followed, in allergic patients developing a late-phase reaction several hours after challenge, by a second pick of histamine; different observations have suggested that basophils were the effector cell type in this late reaction. Thus, if the local concentration of IL-8 that occurs several hours after histamine stimulation reaches 10^{-4} mol/L, it may also trigger the activation of basophils involved in the pathogenesis of the late inflammatory reaction. However, other studies are needed to confirm the involvement of histamine-induced IL-8 production in the development of the chronic inflammatory reaction associated with allergic asthama.

In conclusion, these data add arguments to recent studies suggesting that histamine should be considered as an integral component of immune and inflammatory responses. Indeed, this early mediator is not only involved in the early changes associated with allergic diseases, but also in the regulation of the production of proinflammatory cytokines involved in the late-phase reaction. Parallely, these data underline the central and complex role of EC that respond with various changes (in CAM expression and secretion products) at different time points (concomitant with the early- or late-inflammatory-phase reaction) to histamine stimulation.

REFERENCES

HISTAMINE INDUCES IL-8 BY ENDOTHELIAL CELLS

27. Smith WB, Gamble JR, Clark-Lewis I, Vadas MA: Chemotactic desensitization of neutrophils demonstrates interleukin-8 (IL-8) dependent and IL-8 independent mechanisms of transmigration through cytokine-activated endothelium. Immunology 78:491, 1993
Histamine induces interleukin-8 secretion by endothelial cells

P Jeannin, Y Delneste, P Gosset, S Molet, P Lassalle, Q Hamid, A Tsicopoulos and AB Tonnel