Growth Enhancement of Established Tumors by Allogeneic Blood Transfusion in Experimental Animals and Its Amelioration by Leukodepletion: The Importance of the Timing of the Leukodepletion

By José O. Bordín, Leslie Bardossy, and Morris A. Blajchman

We had reported previously (Blood 81:1880, 1993) that allogeneic blood transfusions (ABT) administered before the infusion of tumor cells in both inbred and outbred experimental animals promote tumor growth and that this effect can be ameliorated by leukodepletion. To better reproduce the human situation, we evaluated, in this present study, the effect of ABT in animals with established tumors using enumeration of pulmonary metastatic nodules as the end point.

The role of allogeneic blood component transfusions in promoting tumor growth and the relative efficacy of prestorage versus poststorage leukodepletion of the ABT in preventing tumor growth enhancement were also evaluated. In an inbred murine animal model, C57Bl/6J mice were administered nonleukodepleted allogeneic (ABT), leukodepleted allogeneic (LD-ABT), or syngeneic (SBT) blood transfusions after the intravenous infusion of syngeneic methylcholanthrene-induced fibrosarcoma cells using two different protocols. A significant increase in the number of pulmonary nodules was observed in those mice that received ABT, in both protocols, compared to animals transfused with SBT or LD-ABT. Significantly higher numbers of pulmonary nodules were also seen in mice transfused with allogeneic buffy coat leukocytes compared with mice that received either nonleukodepleted allogeneic plasma or LD-ABT. In an outbred animal (rabbit) model, recipient rabbits were administered either nonleukodepleted ABT, prestorage LD-ABT, or SBT on days +4 and +9 after the infusion of syngeneic epithelial tumor cells. A significant increase in the number of pulmonary nodules was seen in rabbits that received prestorage LD-ABT compared to animals transfused with SBT. Significantly lower numbers of pulmonary nodules were observed in rabbits that received poststorage LD-ABT compared to animals transfused with poststorage LD-ABT, but no significant difference was seen in rabbits that received prestorage LD-ABT compared with animals transfused with nonleukodepleted ABT. These studies show that ABT promote tumor growth of established animal tumors, that the ABT-induced tumor growth effect is related to the presence of donor allogeneic leukocytes, and that this effect can be ameliorated by prestorage leukodepletion. The present results also provide evidence for the lack of efficacy of poststorage leukodepletion in preventing ABT tumor growth promotion. Although data from animal models cannot necessarily be extrapolated to the clinical situation, these studies suggest that ABT may have a deleterious effect on recipients with established tumors and that the poststorage leukodepletion of allogeneic blood products may not be as effective as prestorage leukodepletion in preventing the tumor growth-promoting effect of allogeneic blood transfusions.

© 1994 by The American Society of Hematology.

Materials and Methods

Effect of ABT on established tumor growth in mice. Two different strains of mice were used. Adult male mice of the C57Bl/6J (MHC type H-2^b) and BALB/c (MHC type H-2^d) strains were purchased from the Jackson Laboratory (Bar Harbor, ME). On day 0, an intravenous (IV) infusion of 2.5 x 10^6 methylcholanthrene-induced fibrosarcoma (FSL-10) cells, syngeneic (H-2^b) to the C57Bl/6J mice, were administered to each recipient C57Bl/6J animal. The viability of the tumor cells, as determined by trypan blue exclusion, before infusion, was over 95%. Blood was collected, as described previously, from both strains of mice and transfused IV directly into the tail vein of recipient animals, within an hour of collection. Two different transfusion protocols were used. In the first, recipient C57Bl/6J mice were transfused with 0.2 mL of either...
ENHANCEMENT OF ESTABLISHED TUMORS BY TRANSFUSION

syngeneic (SBT), nonleukodepleted allogeneic (ABT), or leukodepleted allogeneic (LD-ABT) blood on days +4 and +9 after the inoculation of the FSL-10 tumor cells. In the other protocol, the transfusions took place on days +9 and +11 subsequent to the administration of the FSL-10 tumor cells. In terms of blood volume, the amount infused on each occasion (0.2 mL) to each recipient animal represents approximately 10% of the total blood volume of each animal. Leukodepletion of the allogeneic blood was performed as previously described using leukocyte filters, made of cellulose acetate fiber in a polycarbonate housing, with 1- to 5-mL capacity. These filters were constructed specifically for these studies by Miles, Inc (Berkeley, CA), and provide approximately 2 log₁₀ (99.9%) leukocyte removal. In the leukodepletion experiments, allogeneic whole blood was collected, as described above, and divided into two aliquots. One aliquot was transfused without leukocyte filtration, and the other aliquot was leukodepleted before transfusion. In all murine experiments, the animals were killed 21 days after tumor-cell infu-
sion, with the number of pulmonary metastatic nodules counted after the intratracheal injection of Bouin’s solution, as described previously. In all experiments, the enumeration of the pulmonary nodules was performed blindly, ie, by an individual who had no knowledge of the type of blood product received by that animal.

Effect of allogeneic blood component transfusions on established tumor growth in mice. Allogeneic whole blood was collected from Balb/c mice as described above. Shortly after collection, one aliquot was transfused as whole blood. The other aliquot was centrifuged at room temperature at 10,000g for 3 minutes. The supernatant plasma and the buffy-coat were then removed. Recipient C57Bl/J6 mice were administered either allogeneic whole blood (0.2 mL), plasma, or buffy-coat on days +4 and +9 after the inoculation of the FSL-10 tumor cells. The volume of plasma oruffy-coat transfused on each occasion was estimated to represent the amount of each component found in 0.2 mL of whole blood. All mice were killed 21 days after the tumor cell infusion and the number of pulmonary metastatic nodules counted as described above.

Effect of ABT on established tumor growth in rabbits. Two different outbred strains of rabbits were used for these studies. California Black (CB) rabbits were used as the allogeneic blood donors and New Zealand White (NZW) rabbits were used as the recipients, as described previously. Because the NZW rabbits used for these studies were often littermates or siblings, we have chosen for the purpose of these experiments to regard donor blood from such animals as being “syngeneic” to the recipients. All animals were purchased from suppliers by the Animal Care Facility at McMaster University Medical Centre. On day 0, 10⁶ tumor cells derived from a spontaneously occurring rabbit epithelial tumor (VX-2 tumor cells) were administered IV via a marginal ear vein to each recipient NZW rabbit, as described previously. Blood was collected from animals of both strains of rabbits using the main auricular artery into the anticoagulant, citrate phosphate double-dextrose solution (CP2D), in a triple additive (AS-3) set with collection bag. The fresh whole blood was thoroughly mixed and then divided into three aliquots. One aliquot was transfused without leukodepletion. The second aliquot was leukodepleted before storage (prestorage leukodepletion) using a leukocyte-depletion system (Leukotrap Red Cell Storage System; Miles Inc) that provides 3 log₁₀ (99.9%) leukocyte removal, and then stored at 4°C for 1 week. The third aliquot was stored for 1 week at 4°C and then leukodepleted (poststorage leukodepletion) using the same leukocyte depletion system. Recipient NZW rabbits were administered 10 mL of either the nonleukodepleted allogeneic red blood cell (RBC) suspension, the prestorage leukodepleted allogeneic RBC suspension, the poststorage leukodepleted allogeneic RBC suspension, or the syngeneic RBC suspension on days +4 and +9 after the infusion of the VX-2 tumor cells. The amount (10 mL) of the RBC suspension infused on each occasion to each recipient animal represents approximately 10% of the total blood volume of each animal. All rabbits were killed 28 days after the infusion of the tumor cells, and the number of pulmonary metastatic nodules counted as described for the murine experiments. Again, the enumeration of the pulmonary metastatic nodules was performed by an observer who had no knowledge of the type of blood transfusion received by that animal.

Hematologic techniques and statistical methods. In both animal models, leukocyte counts were performed microscopically before leukodepletion as described previously. To evaluate leukocyte removal efficiency, white blood cell (WBC) counts were performed after leukodepletion, using the Nageotte hemocytometer (Paul Marienfeld, Bad Mergentheim, Germany). Statistical analyses were performed by comparing the median numbers of pulmonary metastatic nodules in the different groups of animals using the Mann-Whitney U-test. The statistical significance level was chosen to be 0.05.

RESULTS

Effect of blood transfusions on growth of established tumors in mice. Table 1 shows the results of the effect of blood transfusions on tumor growth as well as the efficacy of leukodepletion in preventing the ABT-related growth enhancement of established tumors in mice. Mice transfused with nonleukodepleted ABT on days +4 and +9 after the infusion of the FSL-10 tumor cells had a significantly higher median (P = 0.003) number of pulmonary metastatic nodules than animals that had received syngeneic blood. A statistically significant difference (P = 0.002) was also seen in experiments in which mice were transfused 9 and 11 days after tumor cell inoculation.

The leukodepletion of the fresh allogeneic donor mouse whole blood was 99.6% effective, resulting in a median leukocyte count reduction from 2.890 × 10⁹/L to 0.01 × 10⁹/L. A statistically significant (P = 0.0001) reduction in the numbers of pulmonary metastatic nodules was observed in animals that received leukodepleted ABT on days +4 and +9 compared to animals transfused with nonleukodepleted ABT. Leukodepletion of ABT before transfusion also prevented the ABT-related enhancement of tumors in mice transfused on days +9 and +11 (P = 0.003). The pooled data from three separate experiments performed to examine the effect of each type of blood transfusion on growth of established tumors in mice (n = 75) are also shown in Table 1. Animals transfused with nonleukodepleted ABT had higher numbers of pulmonary metastatic nodules than those that had received either leukodepleted ABT or SBT. There was not a difference between the median numbers of pulmonary nodules observed in mice that received leukodepleted ABT compared to mice transfused with syngeneic blood.

Effect of allogeneic blood component transfusions on growth of established tumors in mice. The results of a different set of experiments performed to examine the impact of allogeneic blood component transfusions on growth of established tumors in mice (n = 133) are described in Table 2. The median leukocyte number present in the blood products used in these studies was 0.42 × 10⁹/L in the whole blood, 0.41 × 10⁹/L in the buffy-coat, and 0.005 × 10⁹/L in the fresh plasma. Mice transfused with buffy-coat leukocytes had a significantly increased number of pulmonary meta-
either nonleukodepleted plasma or leukodepleted plasma. Comparably lower numbers of pulmonary metastatic nodules were observed in animals transfused with nonleukodepleted plasma compared to those transfused with leukodepleted plasma, and no difference was seen in the numbers of pulmonary nodules observed in rabbits that had received nonleukodepleted or poststorage leukodepleted plasma.

Effect of blood transfusions on growth of established tumors in rabbits. Table 3 shows the pooled data of two experiments in which NZW rabbits with established tumors were transfused with either SBT, nonleukodepleted ABT, prestorage ABT, or poststorage ABT. A significant (P < .0001) increase in the number of pulmonary nodules was observed in rabbits that received nonleukodepleted ABT compared to animals transfused with SBT. Prestorage leukodepletion produced 99.7% WBC, removal resulting in a median leukocyte count reduction from 2.025 to 0.996 × 10^9/L, whereas the poststorage leukodepletion was 99.6% effective, providing a median leukocyte count reduction from 1.638 to 0.007 × 10^9/L. Significantly lower numbers of pulmonary metastatic nodules were observed in rabbits that had received prestorage leukodepleted ABT compared with those detected in animals that had been transfused with either nonleukodepleted ABT (P < .0001), or poststorage leukodepleted ABT (P < .0001). In contrast, no difference was seen in the numbers of pulmonary nodules observed in rabbits that received poststorage leukodepleted ABT compared to those seen in animals transfused with nonleukodepleted ABT.

DISCUSSION

Previous studies in both inbred (mice) and outbred (rabbits) animals from our laboratory provide evidence that unmodified ABT have a tumor growth-promoting effect when

Table 1. Effect of SBT, ABT, or LD-ABT on Numbers of Pulmonary Metastatic Nodules in C57Bl/6J Mice With Established Tumors

<table>
<thead>
<tr>
<th>Time of Blood Transfusion After the Infusion of the Tumor Cells (d)</th>
<th>SBT</th>
<th>ABT</th>
<th>LD-ABT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Mice per Group</td>
<td>Median (range) No. of Pulmonary Metastatic Nodules</td>
<td>Median (range) No. of Pulmonary Metastatic Nodules</td>
<td>Median (range) No. of Pulmonary Metastatic Nodules</td>
</tr>
<tr>
<td>+4 and +9</td>
<td>14</td>
<td>6.5</td>
<td>(0-100)</td>
</tr>
<tr>
<td>+9 and +11</td>
<td>14</td>
<td>9.0</td>
<td>(1-100)</td>
</tr>
<tr>
<td>Both protocols</td>
<td>28</td>
<td>8.5</td>
<td>(0-100)</td>
</tr>
</tbody>
</table>

*Statistical significance (Mann-Whitney U-Test): SBT v ABT, P < .0001; SBT v LD-ABT, P < .0001; ABT v FP, P = .01; ABT v BC, P = .5; LD-ABT v FP, P = .002; LD-ABT v BC, P < .0001; FP v BC, P = .007.

Table 2. Effect of Allogeneic Blood Component Transfusions on Numbers of Pulmonary Metastatic Nodules in C57Bl/6J Mice With Established Methylicholangiathrene-Induced Fibrosarcoma Tumors

<table>
<thead>
<tr>
<th>Allogeneic Blood Product Transfusion</th>
<th>No. of Mice per Group</th>
<th>Median* (range) No. of Pulmonary Metastatic Nodules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noneleukodepleted whole blood (ABT)</td>
<td>55</td>
<td>31.0 (2-150)</td>
</tr>
<tr>
<td>Buffy-coat (BC)</td>
<td>29</td>
<td>41.0 (6-150)</td>
</tr>
<tr>
<td>Noneleukodepleted fresh plasma (FP)</td>
<td>29</td>
<td>12.0 (1-150)</td>
</tr>
<tr>
<td>Leukodepleted blood (LD-ABT)</td>
<td>20</td>
<td>5.0 (0-15)</td>
</tr>
</tbody>
</table>

Transfusions were administered on days +4 and +9 after tumor cell infusion.

*Statistical significance (Mann-Whitney U-Test): ABT v LD-ABT, P < .0001; ABT v FP, P = .01; ABT v BC, P = .5; LD-ABT v FP, P = .002; LD-ABT v BC, P < .0001; FP v BC, P = .007.

Table 3. Effect of Syngeneic (SBT), Nonleukodepleted Allogeneic (ABT), Prestorage Leukodepleted Allogeneic (PRE-LD-ABT), or Poststorage Leukodepleted Allogeneic (POST-LD-ABT) Blood Transfusions on Numbers of Pulmonary Metastatic Nodules in Recipients NZW Rabbits With Established Tumors

<table>
<thead>
<tr>
<th>Blood Transfusion</th>
<th>No. of Rabbits per Group</th>
<th>No. of Pulmonary Metastatic Nodules Median* (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBT</td>
<td>72</td>
<td>17.5 (5-28)</td>
</tr>
<tr>
<td>ABT</td>
<td>20</td>
<td>50.0 (5-86)</td>
</tr>
<tr>
<td>PRE-LD-ABT</td>
<td>20</td>
<td>2.0 (2-50)</td>
</tr>
<tr>
<td>POST-LD-ABT</td>
<td>18</td>
<td>39.0 (22-86)</td>
</tr>
</tbody>
</table>

On day 0 each animal was inoculated with 10^6 VX-2 tumor cells. Transfusions were administered on days +4 and +9 after the infusion of the tumor cells.

*Statistical significance (Mann-Whitney U-Test): SBT v ABT, P < .0001; ABT v PRE-LD-ABT, P < .0001; ABT v POST-LD-ABT, P = .06; PRE-LD-ABT v POST-LD-ABT, P < .0001.
administered before the infusion of the tumor cells. These observations were made in animals who received ABT before the tumor cells. To better simulate the human situation, we explored, in these present studies, the role of ABT administered before the infusion of the tumor.

To confirm and extend our previous observations that the prestorage leukodepletion of ABT reduces the growth enhancement of nonestablished animal tumors, we also showed in the present study that WBC reduction shortly after collection (prestorage leukodepletion) of ABT significantly ameliorates the ABT-induced growth enhancement of experimentally established tumors in both inbred and outbred animals. Interestingly, we showed, in the rabbit model, that WBC reduction after storage just before transfusion (post-storage leukodepletion) of ABT did not prevent the ABT tumor-growth promotion, even though the number of WBCs removed was similar in both instances. In this context, it has been shown that platelet transfusions may be accompanied by acute febrile nonhemolytic transfusion reactions associated with the transfusion of cytokines actively synthetized and released by leukocytes in the donor blood during storage.

The immunosuppressive effects caused by ABT have been noted to develop higher numbers of pulmonary metastatic nodules compared to animals transfused with allogeneic leukodepleted blood components.

In conclusion, this report shows clearly that ABT signifi-
cantly enhance the growth of established animal tumors and that this effect can be ameliorated by the prestorage leukodepletion of the allogeneic blood products. The data also provide evidence for the lack of efficacy of poststorage leukodepletion in preventing this ABT tumor-growth promotion effect. Although results obtained from experimental animals cannot necessarily be extrapolated to the clinical situation, these studies suggest that the bedside (poststorage) leukodepletion of allogeneic blood products may not be effective in preventing the tumor growth-promoting effect of ABT. Properly designed prospective clinical studies are necessary to provide data for decision making about the appropriate use of leukodepletion in patients with a malignant tumor.

ACKNOWLEDGMENT

The authors thank Raleigh A. Carmen (Blood Management Systems Research and Development, Miles Inc, Covina, CA) for providing the leukocyte depletion filters used for these studies, and the Miles/CRCs R&D Fund for supporting some of this work.

REFERENCES

1. Ross WB, Yap PL: Blood transfusion and organ transplanta-
2. Triulzi DJ, Heal JM, Blumberg N: Transfusion-induced immu-
nomodulation and its clinical consequences, in Nance SJ (ed): Trans-
fusion Medicine in the 1990s. Arlington, VA, American Association
of Blood Banks, 1990, p 1
3. Alexander JW: Transfusion-induced immunomodulation and
infection. Transfusion 31:195, 1991
4. Francis DMA: Relationship between blood transfusion and tu-
5. Chung M, Steinmetz OK, Gordon PH: Perioperative blood
transfusion and outcome after resection for colorectal carcinoma. Br
J Surg 80:427, 1993
6. Vamvakas E, Moore SB: Perioperative blood transfusion and
colorectal cancer recurrence: A qualitative statistical overview and
meta-analysis. Transfusion 33:754, 1993
7. Bordin JO, Heddle NM, Blajchman MA: Biologic effects of
leukocytes present in transfused cellular blood products. Blood 1994
(in press)
8. Blajchman MA, Bardosy L, Carmen R, Sastry A, Singal DP:
Allogeneic blood transfusion-induced enhancement of tumor growth:
Two animal models showing amelioration by leukodepletion and
passive transfer using spleen cells. Blood 81:1880, 1993
9. Shirwadkar S, Blajchman MA, Frame B, Orr FW, Singal DP:
Effect of blood transfusions on experimental pulmonary metastases
in mice. Transfusion 30:188, 1990
10. Shirwadkar S, Blajchman MA, Frame B, Singal DP: Effect
of allogeneic blood transfusion on solid tumor growth and pulmonary
N, Beaumarie F: Validation of a simple method to count very low
white cell concentrations in filtered red cells or platelets. Transfusion
32:565, 1992
12. Woolson RF: Statistical Methods for the Analysis of Biomedical
13. Francis DMA, Clunie GJA: Influence of the timing of blood
1993
and suppressor macrophages cause tumor-bearing host CD8+ T cells
to suppress recognition of allogeneic and syngeneic MHC class II
molecules. J Leukoc Biol 52:661, 1992
15. Mizoguchi H, O'Shea JJ, Longo DL, Loeffler CM, McVicar
DW, Ochoa AC: Alterations in signal transduction molecules in T
lymphocytes from tumor-bearing mice. Science 258:1795, 1992
16. Meryman HT: Transfusion induced alloimmunization and im-
munosuppression and the effect of leukocyte depletion. Transfus
17. Busch MP, Lee TH, Heitman J: Allogeneic leukocytes but
not therapeutic blood elements induce reactivation and dissemination
of latent human immunodeficiency virus type I infection: Implica-
tions for transfusion support of infected patients. Blood 80:2128,
1992
18. Mincheff MS, Meryman HT, Kapoor V, Alsop P, Wotzel M:
Blood transfusion and immunomodulation: A possible mechanism.
Vox Sang 65:18, 1993
19. Fuchs EJ, Matzinger P: B cells turn off virgin but not memory
T cells. Science 258:1156, 1992
20. Muylle L, Joos M, Wouters E, Peetersmans ME: Increased tumor
necrosis factor alpha (TNFalpha), interleukin 1, and inter-
leukin 6 (IL-6) levels in the plasma of stored platelet concentrates:
Relationship between TNFalpha and IL-6 levels and febrile transfusion
reactions. Transfusion 33:195, 1993
21. Heddle NM, Klama LN, Griffith L, Roberts R, Shakla G,
Kelton JG: A prospective study to identify the risk factors associated
with acute reactions to platelet and red cell transfusions. Transfusion
33:794, 1993
22. Smith KJ, Sierra E, Seamer L, Nelson E: Platelet concentrates
(PC) prepared after pre-storage leukodepletion of platelet rich plasma
(PRIP) using an integral filter in Leukotrap PL bags: In vitro studies
and in vivo survivals. Blood 80:215a, 1992 (abstr, suppl 1)
23. Busch ORC, Hop WCJ, van Papendrecht MAW, Marquet
24. Heiss MM, Jauch KW, Delanoff C, Mempel W, Schildberg
FW: Blood transfusion modulated tumor recurrence—a randomized
study of autologous versus homologous blood transfusion in colo-
Growth enhancement of established tumors by allogeneic blood transfusion in experimental animals and its amelioration by leukodepletion: the importance of the timing of the leukodepletion

JO Bordin, L Bardossy and MA Blajchman