Resistance to All-Trans Retinoic Acid (ATRA) Therapy in Relapsing Acute Promyelocytic Leukemia: Study of In Vitro ATRA Sensitivity and Cellular Retinoic Acid Binding Protein Levels in Leukemic Cells

By Laurent Delva, Monique Cornic, Nicole Ballirand, Fabien Guidez, Jean-Michel Micléa, Alain Delner, France Teillet, Pierre Fenaux, Sylvie Castaingne, Laurent Delfner, and Christine Chornienne

All-trans retinoic acid (ATRA) induces leukemic cell differentiation and complete remission (CR) in a high proportion of patients with acute promyelocytic leukemia (AML3 subtype). However, relapses occur when ATRA is prescribed as maintenance therapy, and resistance to a second ATRA-induction therapy is frequently observed. An induced hypercatabolism of ATRA has been suggested as a possible mechanism leading to reduced ATRA sensitivity and resistance. CRABPII, an RA cytoplasmic binding protein linked to RA’s metabolism pathway, is induced by ATRA in different cell systems. To investigate whether specific features of the AML3 cells at relapse could explain the in vivo resistance observed, we studied the CRABP levels and in vitro sensitivity to ATRA of AML3 cells before and at relapse from ATRA. Relapse-AML3 cells (n = 12) showed reduced differentiation induction when compared with “virgin”-AML3 cells (n = 31; P < .05). Dose-response studies were performed in 2 cases at relapse and showed decreased sensitivity to low ATRA concentrations. CRABPII levels and in vitro differentiation characteristics of AML3 cells before and at relapse from ATRA therapy were studied concomitantly in 4 patients. High levels of CRABPII (median, 20 fmol/mg of protein) were detected in the cells of the 4 patients at relapse but were not detected before ATRA therapy. Three of these patients showed a decrease in differentiation induction of their leukemic cells, and a failure to achieve CR with a second induction therapy of ATRA 45 mg/m²/day was noted in all patients treated (n = 3). Results from this study provide evidence to support the hypothesis of induced-ATRA metabolism as one of the major mechanisms responsible for ATRA resistance. Monitoring CRABPII levels after ATRA withdrawal may help to determine when to administer ATRA in the maintenance or relapse therapy of AML3 patients.

© 1993 by The American Society of Hematology.

Submitted February 24, 1993; accepted June 17, 1993.

Supported in part by grants from 1 ‘Association pour la Recherche contre le Cancer, la Fondation de France contre la Leukémie, and la Ligue contre le Cancer.

Address reprint requests to Monique Cornic, Laboratoire de Biologie Cellulaire Hématopoïétique, Université Paris VII, Centre Hayem, the Service de Médecine Nucléaire, the Service Clinique des Maladies du Sang, Hôpital Saint-Louis; the Hôtel Dieu; the Hôpital Louis Mourier, Paris; and the Hôpital Claude Huriez, Lille, France.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1993 by The American Society of Hematology.
induced during ATRA therapy and result in overall insufficient nuclear-ATRA levels that lead to reduced RA-sensitivity in vivo.

MATERIALS AND METHODS

Patients. During the period September 1990 to September 1991, 12 AML3 patients with the specific translocation t(15;17) were studied at relapse after ATRA-induced CR. First induction ATRA therapy (45 mg/m2/d) was administered to these patients until CR was obtained (median, 3 months). After achievement of CR, the patients were given low-dose maintenance chemotherapy (6-mercaptopurine/methotrexate n = 11; cytarabine/methyl GAG n = 1), and 1 patient was kept on ATRA alone. Relapse occurred after a median withdrawal interval from ATRA of 6 months (0 to 26 months) (Table 1). Six patients were treated with a second ATRA induction therapy (45 mg/m2/d). Failure, as noted by an absence of in vivo cytologic signs of maturation in the blood and bone marrow (BM) and by a rapid increase of blast cells leading to the addition of conventional chemotherapy, was followed by early death in 5 cases after a median therapy of 15 days.

Cell samples and culture. BM samples were collected after informed consent in heparinized tubes before the first ATRA therapy and when relapse occurred. Leukemic cells were isolated after Ficoll-Hypaque (Eurobio, and when relapse occurred. Leukemic cells were isolated after Ficoll-Hypaque (Eurobio, Les Ulis, France) density gradient and adherence of monocytes to the plastic surface. Leukemic cells were maintained in suspension culture in culture medium consisting of RPMI 1640 (GIBCO, Paisley, UK) supplemented with 15% fetal bovine serum (FCS; Seromed, Berlin, Germany). L-glutamine (2 mM), penicillin (100 IU/mL), and streptomycin (1%; GIBCO), incubated at 37°C in a humidified atmosphere of 5% CO2 in air, were added to the culture medium at a concentration of 10−4 mol/L. Cell aliquots were taken at days 3 and 5 or later for assessment of viability and differentiation status. Differentiation was assessed on morphologic and functional criteria. Slides were stained with May-Grünwald-Giemsa stain (Laboratoire Central d’Hématologie, Hôpital Saint-Louis). The nitroblue tetrazolium (NBT) reduction test was performed using standard methodology with phorbol myristate acetate (PMA) as previously described. Differential counts were performed under light microscopy on a minimum of 200 cells. The percentage of cells containing intracellular-reduced black formazan deposits was thus determined.

Preparation of cytosolic extracts. Fresh human leukemic cells (30 × 106) were washed once in medium without FCS and in cold phosphate buffer before protein extraction. Cells were homogenized at 4°C in 500 μL of an ice-cold extraction buffer (Tris, 100 mmol/L; NaCl, 50 mmol/L; EDTA, 5 mmol/L; dithiothreitol, 2 mmol/L; pH 7.4) with three 30-second strokes of a Polytron (Kinematica; GmBH, Luzern, Switzerland) at full speed. Supernatants were obtained by centrifugation at 100,000g at 4°C for 60 minutes, distributed in 100 μL aliquots, and frozen at −20°C or used immediately.

Incubation of cytosolic extracts with ATRA. All manipulations were performed under dim or yellow light. Supernatant aliquots of 100 μL containing 300 μg protein were incubated with 300 nmol/L of [3H]-ATRA (specific activity, 2,035 GBq/mmol) from DuPont New England Nuclear (Boston, MA) at 4°C for 16 hours. For binding specificity a 200-fold excess of unlabeled ATRA (Sigma Chemical Co, St Louis, MO) was added in the same manner as for the radioactive compounds.

Slab polyacrylamide gel electrophoresis (PAGE). At the end of the incubation period, an aliquot of the supernatant (70 μL) was subjected to vertical slab PAGE under dim light at 14°C as described by Siegenthaler et al with slight modifications of the method. The proteins were separated according to their different electrophoretic mobilities in the gel, as a consequence of their net charge. This technique allows the separation of CRABPI and II. The bands were collected and treated overnight with 400 μL Protosol (DuPont, Boston, MA) in 5-mL scintillation vials before 4 mL of solubilization cocktail was added. The radioactivity was then determined in a scintillation counter.

Statistical analysis. Differences in the percentage of differentiated cells at onset and at relapse were assessed by the parametric Sign test.

RESULTS

In vitro differentiation of AML3 cells from patients relapsing from ATRA therapy. In vitro response to ATRA 10−6 mol/L was studied in 12 AML3 patients who relapsed after ATRA therapy (45 mg/m2/d). Table 1 summarizes the clini-

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age (yrs)/Sex</th>
<th>Length of First Induction ATRA Therapy (mo)</th>
<th>Disease Free Survival After ATRA Withdrawal (mo)</th>
<th>Response to Second Induction ATRA Therapy at Relapse</th>
<th>% BM Blasts Before ATRA Therapy</th>
<th>% BM Blasts at Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29/F</td>
<td>3</td>
<td>22</td>
<td>NT</td>
<td>80</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>49/M</td>
<td>3</td>
<td>2</td>
<td>Failure</td>
<td>90</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>36/M</td>
<td>2</td>
<td>8</td>
<td>Failure</td>
<td>65</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>47/M</td>
<td>3</td>
<td>4</td>
<td>Failure</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>33/F</td>
<td>11</td>
<td>10</td>
<td>NT</td>
<td>91</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>67/F</td>
<td>6</td>
<td>3</td>
<td>NT</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>35/M</td>
<td>3</td>
<td>1</td>
<td>NT</td>
<td>65</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>48/M</td>
<td>3</td>
<td>10</td>
<td>Failure</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>19/F</td>
<td>5</td>
<td>14</td>
<td>NT</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>28/F</td>
<td>3</td>
<td>0</td>
<td>Failure</td>
<td>100</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>57/F</td>
<td>3</td>
<td>3</td>
<td>Failure</td>
<td>69</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>54/F</td>
<td>3</td>
<td>7</td>
<td>NT</td>
<td>97</td>
<td>95</td>
</tr>
</tbody>
</table>

Abbreviation: NT, not treated with ATRA.
The purified leukemic cells were cultured for 5 days in the presence of ATRA 10^{-6} mol/L. Compared with 31 virgin AML3 cell samples studied during the same period, relapse cases achieved a lower percentage of differentiated cells (median 46% vs 90% NBT positive cells, $P < .05$; Fig 1A). Eight of the 12 relapse cases (case nos. 1 through 7 and 11) and only 4 of 31 virgin cases showed less than 70% differentiated cells using the oxidative burst function criteria (Fig 1A). Three of the relapse cases had less than 35% differentiated cells (case nos. 2, 3, and 5), and one case did not respond (case no. 1). Absence of morphologic modifications correlated with the poor functional achievement. Cell count was similar in these groups (med 1×10^6 cells/mL in virgin AML3 samples vs 0.8×10^6 cells/mL at relapse). Therefore, the failure of differentiation could not be due to an increased proliferation of the undifferentiated AML3 cells.

Virgin AML3 cells are extremely sensitive to ATRA, with 80% of the cell population already reducing NBT 10^{-7} mol/L and 45% at 10^{-8} mol/L (Fig 1A and B). Sensitivity to low ATRA concentrations was studied in 2 AML3 samples at relapse after ATRA therapy (case nos. 2 and 10). In both cases, absence of sensitivity to ATRA concentrations of 10^{-7} mol/L and 10^{-8} mol/L was observed (Fig 1B).

The in vitro response to ATRA 10^{-6} mol/L of 12 AML3 patients at relapse was compared with the differentiation achieved on the AML3 cells of these same 12 patients before any ATRA therapy. A decrease in the percentage of differentiated cells in the leukemic cell culture was clear in half of the cases ($P < .03$; 5 cases [nos. 1 through 5] with a reduction of at least 23% at 10^{-6} mol/L of ATRA; Fig 2A). Low dose-response analysis was possible in 1 patient (case no. 10) before ATRA therapy and when relapse occurred. A shift to the right of the dose-response curve at relapse was observed (Fig 2B). These data suggest that a decrease in ATRA sensitivity may not be detected in all AML3 cell samples at relapse with a saturating $1 \mu\text{mol/L}$ concentration of ATRA and that lower doses should be tested at onset and at relapse.

In 4 cases (nos. 2, 4, 5, and 10), higher ATRA concentrations were studied to test the hypothesis that relapse-AML3 cells could be triggered to differentiate with higher ATRA concentrations. Effective restoration of differentiation was only observed in 1 case (no. 2) after incubation with 10^{-7} mol/L ATRA. Cases no. 4 and 10 already had a relatively good response at 10^{-8} mol/L and case no. 5, which had a poor response, was not improved by higher RA concentrations (Table 2).

Presence of CRABPII in relapse-AML3 cells. In a previous study, we reported the induction of the CRABPII in normal hematopoietic cells of AML3 patients undergoing ATRA therapy (Figs 3A and B; and Figs 4A, B-1, and B-2). CRABPII is distinguished from CRABPI by a different binding affinity for retinoids and a different isoelectric point detected by PAGE. Cytosol extracts of 4 AML3-
Fig 2. (A) In vitro differentiation of AML3 cells of 12 patients with ATRA 10^{-8} mol/L before and after ATRA therapy at relapse (expressed as the percentage of NBT positive cells at relapse minus the percentage at onset of ATRA therapy). (B) Dose-effect of ATRA on patient no. 10 AML3 cells at onset (○) and at relapse after ATRA therapy (△).

cell samples at onset and at relapse (patients no. 2, 4, 5, and 10) were incubated with [3H]-ATRA and subjected to vertical PAGE. The purified leukemic cell samples from these patients averaged 74.5% and 67.4% blasts at onset and at relapse, respectively (Table 1). A specific radioactive peak of [3H]-ATRA was detected between fraction 18 and 22 of migration and abolished by incubation with 200-fold excess of unlabeled ATRA (Fig 3D, patient no. 2). This peak eluted at the fractions corresponding to the CRABPII. The amount of CRABPII levels detected in the 4 relapse-AML3 cells (Fig 4C) were above the amounts observed in normal BM cells of ATRA-treated patients (Fig 3B, Fig 4B-1 and B-2). It is to be noted that CRABPII levels were not detected either in AML3 cells before ATRA therapy (Fig. 3A and Fig 4A) or, in weaker amounts, in normal BM cells after 1 month of withdrawal from ATRA (Fig 3C and Fig 4B-3). The presence of CRABPII was linked to a reduced sensitivity to ATRA 10^{-8} mol/L in the 2 patients (Table 2) and to a failure to achieve CR with ATRA 45 mg/m^2/d in 3 of these 4 patients (patient nos. 2, 4, and 5; Table 1).

DISCUSSION

The secondary resistance to ATRA induction therapy in AML3 patients has tarnished the novelty and straightforwardness of the first differentiation therapy in malignancy. This secondary resistance hinders consolidation and/or maintenance therapy with ATRA and precludes the use of a second induction therapy with ATRA if relapse occurs. Defining the mechanisms responsible for this resistance and their induction is crucial for the management of ATRA therapy in AML3 and in other cancers. The inefficacy of ATRA to maintain or induce a second CR in AML3 patients suggests that the residual leukemic cells no longer respond to ATRA’s in vivo differentiation effect.

To date, accelerated catabolism of ATRA is the favored explanation for the in vivo resistance to ATRA observed in AML3 patients.41 We bring evidence to support this hypothesis by showing that the emerging leukemic cells of AML3 patients in relapse after ATRA therapy harbor high levels of CRABPII. The exact function of this protein is not known, but recent data point to its role in the transport of ATRA to its metabolizing enzymes, thus acting as a modulator of intracellular ATRA concentrations.28 In F9 teratocarcinoma cells, reduced sensitivity to ATRA is correlated with decreased ATRA intracellular concentrations and with high levels of CRABP.28 The effect of ATRA in AML3 cells is exquisitely dose-dependent whether for induction of cell differentiation in vitro,38 for PML/RARα transactivation of ATRA-inducible genes,5 or for normal RARα induction in AML3 cells.31 Thus, it may be expected that variations in ATRA concentrations may result in reduced biological response. The presence of high levels of CRABPII in relapse-AML3 cells could reduce the effective cellular concentration of ATRA and may result in reduced differentiation. However, in the present study, a decrease in the sensitivity of AML3 cells in vitro to 10^{-8} mol/L ATRA was observed in only half of the cases. In vitro response could have predicted in vivo failure in only 4 of 6 cases, whereas in virgin AML3 cells, in vitro response has always been correlated with in vivo remission.38,42

Table 2. Dose-Effect of ATRA Differentiation in Relapse-AML3 Cells

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>In Vitro Response to RA at Onset</th>
<th>Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control 10^{-6} mol/L</td>
<td>Control 10^{-9} mol/L</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>100</td>
</tr>
</tbody>
</table>

Values are the percentage of differentiated cells after 5 days of in vitro culture with ATRA.

Abbreviation: ND, not determined.
Two explanations may be forwarded for this apparent discrepancy between in vitro and in vivo response at relapse. The first is that the concentration of ATRA prevailing in most in vitro differentiation assays (10^{-7} mol/L) is above the maximal effective concentration in the AML3 system. We have previously stressed the potency of a 10^{-7} mol/L concentration to induce maximal differentiation in AML3 cells. A decrease in ATRA-induced differentiation might have been observed in all relapse cases if nonsaturating concentrations (10^{-7} mol/L) had been used. In fact, in the only 2 cases in which this could be tested, we were able to show a clear shift to the right of the dose-response curve at low ATRA concentrations, suggesting that AML3 cells at relapse may well have a reduced sensitivity to ATRA. To study this hypothesis, in vitro models are being set up in the laboratory.

The second explanation is that poor in vivo response may not necessarily be attributed to the characteristics of the relapsing leukemic cell alone. Low ATRA plasma levels have been reported during ATRA therapy. We have previously linked low plasma ATRA concentrations to increased clearance rate and poor in vivo response. An overall increase of ATRA catabolism in cell tissues by an increase of CRABP enzymes has been observed in ATRA-treated hamsters and linked to the hypercatabolic state observed in AML3 patients treated with ATRA. For some of these patients, we have different data showing that, at one point during CR, CRABP levels were no longer detectable. This suggests that a residual leukemic clone that was CRABP positive during ATRA therapy persisted at CR. Furthermore, the fact that high levels of CRABP are detected both in the normal and leukemic BM cells of AML3 patients during ATRA therapy suggests that the hypercatabolic state may be responsible both for the relapses observed if ATRA is maintained as consolidation therapy and for the subsequent resistance to ATRA when relapse occurs.

The majority of the patients in this early clinical trial (1990) were either still under ATRA therapy or after a short withdrawal period from ATRA when they relapsed, forwarding an explanation for the presence of CRABPII in the leukemic cells. CRABPII levels decrease slowly (median, 1 month) after ATRA withdrawal. Therefore, it may be expected that the hypercatabolic state may eventually be reduced after ATRA withdrawal and sensitivity to ATRA restored. In fact, 2 relapse-AML3 patients have been recently shown to respond to a second ATRA therapy, after withdrawal period of 6 months and 2 years (S. Castaigne, and R.P. Warrell Jr, personal communications, 1992). Although one of the patients in this study relapsed and failed to respond to ATRA after a withdrawal period of 10 months, one must keep in mind that most of the patients in this study had already relapsed after previous chemotherapy before receiving their first induction ATRA therapy and may have had other factors leading to reduced RA sensitivity in vitro and in vivo. It is equally important to stress that, although the increased ATRA metabolism may be acquired in all AML3 patients undergoing ATRA therapy, alternative or coexisting factors of resistance, such as molecular changes and selection of non-AML3 clones, cannot be ex-

Resistance to all-trans retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: study of in vitro ATRA sensitivity and cellular retinoic acid binding protein levels in leukemic cells [see comments]

L Delva, M Cornic, N Balitrand, F Guidez, JM Miclea, A Delmer, F Teillet, P Fenaux, S Castaigne and L Degos