Complement-Induced Vesiculation and Exposure of Membrane Prothrombinase Sites in Platelets of Paroxysmal Nocturnal Hemoglobinuria

By T. Wiedmer, S.E. Hall, T.L. Ortel, W.H. Kane, W.F. Rosse, and P.J. Sims

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired stem-cell disorder in which the glycolipid-anchored membrane proteins, including the cell-surface complement inhibitors, CD55 and CD59, are partially or completely deleted from the plasma membranes of mature blood cells. To gain insight into the pathogenesis of thrombosis that is frequently observed in this disorder, the procoagulant responses of PNH platelets exposed to the human terminal complement proteins C5b-9 were investigated. C5b-9 complexes were assembled on gel-filtered platelets by incubation with purified C5b6, C7, C9, and limiting amounts of C8. Platelet microparticle formation and exposure of plasma membrane-binding sites for coagulation factor Va were then analyzed by flow cytometry. PNH platelets exhibiting undetectable levels of surface CD59 antigen showed an approximately 10-fold increase in sensitivity to C5b-9–stimulated expression of membrane-binding sites for factor Va when compared with platelets from normal controls. Expression of catalytic surface for the prothrombinase complex (VaXa) paralleled the exposure of factor Va-binding sites; the rate of prothrombin conversion by C5b-9–treated PNH platelets exceeded that of C5b-9–treated normal controls by approximately 10-fold at the maximal input of C8 tested (500 ng/ml). These data indicate that PNH platelets deficient in plasma membrane CD59 antigen are exquisitely sensitive to C5b-9–induced expression of prothrombinase activity, and suggest that the tendency toward thrombosis in these patients may be due, at least in part, to the deletion of this complement inhibitor from the platelet plasma membrane.

© 1993 by The American Society of Hematology.

MATERIALS AND METHODS

Materials. Bovine serum albumin (BSA; globulin- and fatty acid–free), prostaglandin E1, and the chromogenic substrate S2238 (D-Phe-L-pipecolyl-Arg-p-nitroanilide) were from Sigma Chemical (St Louis, MO); fluorescein-5-isothiocyanate (FITC) was from Molecular Probes (Eugene, OR); and phycoerythrin-streptavidin conjugate was from Southern Biotechnology Associates (Birmingham, AL).
C5b-9–INDUCED PLATELET PROTHROMBINASE IN PNH

AL). Purified human plasma factor V was prepared and activated with the factor V activator from Russell’s viper venom as previously described.18 Human thrombin, factor Xa, and prothrombin were from Haematologic Technologies (Essex Junction, VT). Murine monoclonal antibody (MoAb) W5, specific for membrane glycoprotein (Gp)Ib, was a gift from Dr Rodger P. McEver (University of Oklahoma Health Sciences Center, Oklahoma City, OK). The MoAb 162 is specific for CD59 (courtesy of Dr Marilyn J. Telen, Duke University, Durham, NC). The light chain of bovine factor Va and MoAb V237, specific for the light chain of factor Va, were gifts from Dr Charles T. Esmon (Oklahoma Medical Research Foundation). All other chemicals were of reagent or analytical grade.

Solutions. Buffer 1 consisted of 145 mmol/L NaCl, 4 mmol/L KCl, 1 mmol/L MgCl2, 0.5 mmol/L sodium phosphate, 0.1% (wt/vol) glucose, 0.1% (wt/vol) BSA, and 5 mmol/L Pipes, pH 6.8. Buffer 2 consisted of 137 mmol/L NaCl, 4 mmol/L KCl, 1 mmol/L MgCl2, 1 mmol/L CaCl2, 0.5 mmol/L sodium phosphate, 0.1% (wt/vol) glucose, 0.1% (wt/vol) BSA, 20 mmol/L Hepes, pH 7.4. Platelets. Venous blood from aspirin-free healthy adult volunteers or from patients with PNH was drawn into 1/7 vol of acid citrate dextrose solution (National Institutes of Health formula A), and prostaglandin I2 was added to a final concentration of 250 ng/mL. Platelet-rich plasma was prepared by centrifugation for 20 minutes at 200g. platelets were sedimented for 20 minutes at 500g and gel-filtered over Sepharose CL-2B (Pharmacia, Piscataway, NJ) equilibrated with buffer 1.

Activation of platelets by C5b-9. Gel-filtered human platelets were suspended in buffer 2 at 3 to 6 × 10^9/mL. Human complement proteins C5b6,19 C7,20 C8,21 and C922 were purified and analyzed for functional activity according to published procedures. To assemble membrane-bound C5b67 complexes, gel-filtered platelets (3 to 6 × 10^9/mL) were incubated for 3 minutes at 37°C with C5b6 (10 μg/10^6 platelets) and C7 (2.5 μg/10^6 cells). To assemble membrane-bound C5b9 complexes, C5b67 platelets were suspended to 10^11 platelets/mL in buffer 2. Then, C9 (10 μg/10^6 cells) and C8 at the concentration indicated in the legends to the figures were added, and the cells incubated for 10 minutes at 37°C. In all experiments, comparison was made to identical matched-pair controls (platelets incubated in the absence of the C5b-9 proteins).

Labeling of MoAbs. The MoAb V237 was labeled with FITC14 and MoAb W5 was conjugated with N-hydroxysuccinimide biotin14 as previously described.

Preparation of platelets for flow cytometry. A quantity of 2 × 10^8 C5b-9–treated or control platelets were incubated in the dark in a total volume of 25 μL for 10 minutes at 23°C in the presence of biotin-W5 (2 μg/mL) and factor Va light chain (2 μg/mL). FITC-V237 (30 μg/mL) and phycoerythrin-streptavidin (5 μL of a 1:10 dilution) were added, and the cells were incubated for an additional 10 minutes. Then, 1-mL aliquots of isotonic saline (Baxter Scientific Products, McGaw Park, IL) were added and the samples analyzed by flow cytometry. For quantitation of CD59 antigen levels, 25 μL of untreated platelet suspension (2.5 × 10^6 platelets) was incubated for 30 minutes with 25 μL of anti-CD59 MoAb 162 (1:1,000 diluted cell supernatant). The cells were washed twice and resuspended to the original volume, and 25 μL of FITC-labeled goat F(ab′)2 antimouse IgG (TAGO, Burlingame, CA) was added. Following incubation for 30 minutes in the dark, samples were analyzed by flow cytometry.

Flow cytometry. Samples were analyzed in a Becton Dickinson (Mountain View, CA) FACScan flow cytometer formatted for two-color analysis as described previously.15,23 In brief, the FL2 (red fluorescence) threshold was first set so as to exclude from analysis background noise and light-scattering particles that were not distinctly positive for platelet GPIb antigen (detected with phycocerythrin-labeled MoAb W5; see above). For each sample, 10,000 GPIb-positive events were recorded and analyzed for forward (FSC) and right-angle (SSC) light scatter and for FL1 (green) fluorescence, representing the binding of FITC-labeled antibody to factor Va light chain. For each experiment, two-dimensional analysis gates of forward and right-angle light scatter (FSC × SSC) were set using results for normal platelets (control and complement-activated), so as to maximally discriminate platelet microparticles from platelets,13 and all samples (normal and PNH) of the same day’s experiment analyzed using these gates. The number of microparticles was quantitated as the number of events falling within the microparticle gate, expressed as the percentage of all recorded events falling within either platelet or microparticle gates. Mean FL1 fluorescence per particle was determined for events in each gate (platelet or microparticle), with correction for autofluorescence.

Prothrombinase activity. Platelet prothrombinase activity was measured essentially as described.24 Briefly, C5b-9–activated gel-filtered platelets (normals and patients) were suspended at 2 × 10^11/mL in 50 mmol/L Tris-Cl, pH 7.9, 175 mmol/L NaCl, 5 mg/mL BSA (TBS-BSA) in the presence of 2.7 μmol/L prothrombin, 2.5 mmol/L CaCl2, and 2.0 mmol/L factor Va. The reaction was initiated by the addition of factor Xa (final concentration, 1.0 mmol/L). At times 0, 30, 60, and 120 seconds, 25-μL aliquots of the reaction mixture were removed and diluted into 225 μL of ice-cold TBS-BSA containing 20 mmol/L EDTA. Thrombin generated was assayed using the chromogenic substrate S2238 (final concentration, 0.1 mmol/L) and measuring the rate of change in absorbance at 405 nm using a Vmax microtiter plate reader (Molecular Devices, Menlo Park, CA). Purified human thrombin was used as standard.

RESULTS

Generation of microparticles and factor Va-binding sites by activation of complement. PNH platelets were initially examined for their susceptibility to complement-induced microvesiculation. PNH platelets selected for these studies lacked detectable CD59 antigen. C5b-9 complexes were assembled on gel-filtered platelets by incubation with the purified complement proteins C5b6, C7, C9, and limiting amounts of C8. Platelet activation responses were analyzed by fluorescence-gated flow cytometry, using FITC-labeled MoAb V237 to monitor factor Va-binding sites. Figure 1 shows dot blots of FITC-V237 fluorescence versus forward light scatter (logarithmic scales). As illustrated by these data, platelets from the PNH patients tested were significantly more sensitive to complement C5b-9 when compared with normal controls, as evidenced by a marked increase in (1) the formation of plasma membrane-derived microparticles, and (2) exposure of new binding sites for factor Va on both platelets and microparticles. In these experiments, platelet microparticles were discriminated from platelets by analysis of forward and side-angle light scatter (see Materials and Methods).15 As is also evident from these data (see untreated samples of Fig 1), PNH platelets generally showed more basal activation in the absence of added complement proteins than normal platelets. This is likely to reflect the effects of prior complement activation at the surface of these cells either in vivo or during processing of platelet-rich plasma, due to deficiencies of the plasma membrane complement regulatory proteins CD55 (decay-accelerating factor) and CD59.

The newly formed population of microparticles was quantitated by setting a forward and side scatter gate so as to
exclude the majority of the platelets for analysis, as previously described. As illustrated in Fig 2, a complement dose-dependent increase in the formation of microparticles was observed for platelets from patients with PNH. For comparison, few microparticles were generated in suspensions of normal platelets under these conditions of limited deposition of C5b-9 complexes. It should be noted that, in these experiments, we observed sample-to-sample differences in the extent to which platelets and platelet-derived microparticles were resolved into distinct populations when analyzed by light scatter, and for certain samples (eg, patient PNH SS of Fig 1), the forward scatter of newly formed microparticles overlapped that of small platelets, suggesting heterogeneity in the size of the particles (activated platelets and plasma membrane vesicles) on which the factor Va-binding sites were expressed (see Discussion).

As shown in Fig 3, microparticle formation was accompanied by a complement dose-dependent expression of factor Va-binding sites, monitored by the binding of FITC-labeled V237 in the presence of a saturating amount of exogenously added factor Va light chain. Total binding of FITC-V237 was approximately 10-fold higher for C5b-9–treated PNH platelets than for normal controls at an input of C8 of 500 ng/mL. Under the conditions of these experiments, increased factor Va-binding sites were observed on both PNH platelets and platelet-derived microparticles.

Prothrombinase activity. To test whether these newly formed factor Va-binding sites detected by flow cytometry coincided with increased expression of functional procoagulant surface, the capacity of these C5b-9–treated platelets to assemble the platelet prothrombinase enzyme complex was investigated. As illustrated in Fig 4, the exposure of factor Va-binding sites was paralleled by the expression of catalytic surface for the prothrombinase complex; the rate of prothrombin to thrombin conversion by PNH platelets exposed to the C5b-9 proteins increased in a complement dose-dependent fashion, and again exceeded that of C5b-9–treated normal controls by approximately 10-fold at the maximal input of C8 tested. By contrast to results obtained with C5b-9, we were unable to detect increased sensitivity of the PNH platelets to activation by either collagen (0 to 10 μg/mL) or the calcium ionophore, A23187 (0 to 1 μmol/L; data not shown), suggesting that the increased sensitivity of PNH platelets to activation by C5b-9 is specifically related
to the loss of the complement-inhibitory function that is normally provided by cell-surface CD59.

DISCUSSION

Thrombotic complications are a major cause of morbidity and mortality in patients with PNH. Previous studies have demonstrated that platelets treated with complement proteins C5b-9 release procoagulant microparticles that promote assembly of the prothrombinase enzyme complex. Data of the present study demonstrate that PNH platelets, which lack the CD59 antigen, are significantly more sensitive to activation by complement proteins C5b-9 than platelets from normal controls, as shown by a 10-fold increase in complement-induced exposure of membrane-binding sites for factor Va, which was accompanied by a corresponding increase in membrane-catalyzed prothrombinase activity. The results obtained with PNH platelets are similar to data that we previously obtained using normal platelets in which platelet activation responses were potentiated in vitro by a functionally blocking antibody against CD59. Enhanced complement-induced release of serotonin and thromboxane B2 from PNH platelets has previously been observed by Blaas et al, who attributed this increased sensitivity to activation by the terminal complement proteins to the lack of C8-binding protein in these cells. The relationship between C8-binding protein (or 64-Kd homologous restriction factor) and CD59 and the relative contribution of these factors to homologous restriction of the C5b-9 proteins on blood cells remain unresolved, and await molecular characterization of C8-binding protein.

By contrast to results obtained with normal platelets, the factor Va-binding sites exposed on complement-treated PNH platelets increased prominently on both platelets and platelet-derived microparticles. Furthermore, in certain experiments, the population of microparticles (defined by light scatter) were poorly resolved from remnant PNH platelets (see Fig 1). This apparent difference between normal and PNH platelets is likely to reflect an increased fragmentation of PNH platelets, due to loss of complement regulatory function, resulting in membrane fragments that overlap the microparticle gate; or (2) decreased capacity of the remnant PNH platelets to resequester acidic phospholipids.
that are exposed upon C9 insertion and induced vesicula-
tion of the plasma membrane, due to inactivation of the
aminophospholipid translocase in the remnant cells and
membrane fragments. In this context, it is of note that, by
contrast to recent results reported for calcium ionophore,
we did not observe either impaired vesiculation or dimin-
ished expression of prothrombinase activity in PNH plate-
lets exposed to C5b-9 complexes.

This ability of the PNH platelet to shed nascent C5b-9
complexes by vesiculation may account for the normal sur-
vival in the circulation of the platelets in this disorder. In
the case of erythrocytes, which also lack CD59, C5b-9 com-
plexes accumulate on the membrane and the cells are lysed;
this may explain why the survival of PNH erythrocytes is
shortened to less than 10% that of normal red blood cells,
while platelet survival is unaffected.

The results of the present study indicate that deletion of
the regulatory protein, CD59, from platelets is accompa-
nied by a marked increase in the susceptibility of these cells
to the effects of the C5b-9 proteins, leading to thrombin
generation, which may contribute to the thrombotic risk
associated with this disorder.

ACKNOWLEDGMENT

The contributions of MoAbs W5 (Dr R.P. McEver) and V237
(Dr C.T. Esmon) are gratefully acknowledged. The collaboration of
Dr M.J. Telen in the use of MoAb 162 is also gratefully acknowl-
edged.

REFERENCES

1. Rosse WF: Phosphatidylinositol-linked proteins and parox-
2. Yamashina M, Ueda E, Kinoshita T, Takami T, Ojima A,
Ono H, Tanaka H, Kondo N, Orii T, Okada N, Okada H, Inoue K,
Kitani T: Inherited complete deficiency of 20-kilodalton homolo-
gous restriction factor (CD59) as a cause of paroxysmal nocturnal
3. Müller-Eberhard HJ: Molecular organization and function of
4. Esser AF: The membrane attack pathway of complement.
Year Immunol 6:229, 1990
5. Sims PJ, Wiedmer T: The response of human platelets to acti-
vated components of the complement system. Immunol Today
12:338, 1991
6. Wiedmer T, Ando B, Sims PJ: Complement C5b-9-stimu-
lated platelet secretion is associated with a Ca2+ -initiated activation
proteins C5b-9 induce secretion of high molecular weight mul-
timers of endothelial von Willebrand factor and translocation of
granule membrane protein GMP-140 to the cell surface. J Biol
Chem 264:9053, 1989
KF: Isolation of a human erythrocyte membrane glycoprotein with
decay-accelerating activity for C3 convertases of the comple-
ment system. J Immunol 129:184, 1982
9. Sugita Y, Nakano Y, Tomita M: Isolation from human eryth-
rocytes of a new membrane protein which inhibits the formation of
complement transmembrane channels. J Biochem (Tokyo)
104:633, 1988
10. Hoilquin MH, Fredrick LR, Bernshaw NJ, Wilcox LA,
Parker CJ: Isolation and characterization of a membrane protein
from normal human erythrocytes that inhibits reactive lysis of the
erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin In-
vest 84:7, 1989
11. Rollins SA, Sims PJ: The complement-inhibitory activity of
CD59 resides in its capacity to block incorporation of C9 into mem-
12. Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG,
Waldmann H, Lachmann PJ: Human protectin (CD59), an 18-20
kD complement lysis restricting factor, inhibits C5b-8 catalyzed
insertion of C9 into lipid bilayers. Immunology 71:1, 1990
human erythrocyte membrane protein capable of inhibiting expres-
sion of homologous complement transmembrane channels. Proc
Natl Acad Sci USA 83:6975, 1986
H, Hänsch GM: Homologous species restriction in lysis of human
erythrocytes: A membrane-derived protein with C8-binding capacity
proteins C5b-9 cause release of membrane vesicles from the platelet
surface that are enriched in the membrane receptor for coagulation
factor Va and express prothrombinase activity. J Biol Chem
263:18205, 1988
SJ: Platelet-derived microparticles express high affinity receptors
17. Sims PJ, Rollins SA, Wiedmer T: Regulatory control of
complement on blood platelets: Modulation of platelet procoagu-
lation responses by a membrane inhibitor of the C5b-9 complex. J
Biol Chem 264:19228, 1989
18. Kane WH, Majerus PW: Purification and characterization of
19. Podack ER, Müller-Eberhard HJ: Limited proteolysis of
124:332, 1980
20. Podack ER, Kolb WP, Esser AF, Müller-Eberhard HJ: Struc-
tural similarities between C6 and C7 of human complement. J Biol
human complement: Purification and physicochemical
characterization of its unusual subunit structure. J Biol Chem
22. Biesecker G, Müller-Eberhard HJ: The ninth component of
human complement: Purification and physicochemical
23. Shattil SJ, Cunningham M, Hoxie JA: Detection of activated
platelets in whole blood using activation-dependent monoclonal
24. Wiedmer T, Esmon CT, Sims PJ: Complement proteins
C5b-9 stimulate procoagulant activity through the platelet
symal nocturnal hemoglobinuria. Enhanced stimulation of plate-
lets by the terminal complement components is related to the lack
26. Chang C-P, Zhao J, Wiedmer T, Sims PJ: Contribution of
platelet microparticle formation and granule secretion to the trans-
membrane migration of phosphatidylinerine. J Biol Chem
268:7171, 1993
Cells lacking glycan phosphatidylinositol-linked proteins have im-
paired ability to vesiculate. Blood 81:510, 1993
28. Devine DV, Siegel RS, Rosse WF: Interactions of platelets in
paroxysmal nocturnal hemoglobinuria with complement. Rela-
tionship to defects in the regulation of complement and to platelet
Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria

T Wiedmer, SE Hall, TL Ortel, WH Kane, WF Rosse and PJ Sims

Updated information and services can be found at:
http://www.bloodjournal.org/content/82/4/1192.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml