Thrombospondin From Activated Platelets Promotes Sickle Erythrocyte Adherence to Human Microvascular Endothelium Under Physiologic Flow: A Potential Role for Platelet Activation in Sickle Cell Vasculo-Oclusion

By Henri A. Brittain, James R. Eckman, Robert A. Swerlick, Russell J. Howard, and Timothy M. Wick

Adherence of erythrocytes to vascular endothelium likely contributes to the pathophysiology of episodic vascular occlusion in patients with sickle cell disease (SCD). In addition, coagulation activation has been reported in sickle patients during complications such as pain episodes. To test the hypothesis that platelet activation contributes to sickle erythrocyte binding, we investigated whether factors released from activated sickle platelets promote adherence of sickle erythrocytes to human microvascular endothelial cells (MEC) under flow conditions. Activated sickle platelet supernatant (ASPS) promoted high levels of sickle erythrocyte adherence to MEC (55.4 ± 3.9 erythrocytes/mm²) but only moderate adherence of normal erythrocytes to MEC (14.1 ± 0.7 erythrocytes/mm²). When MEC were incubated with an antibody (OKM5) against CD36 (a thrombospondin [TSP] receptor), platelet supernatant-mediated sickle erythrocyte adherence was inhibited 86%, suggesting that TSP participated in the adherence. To further define the role of TSP in adherence, additional studies using purified TSP were performed. At a concentration of 0.2 μg/mL TSP in serum-free media (SFM), sickle erythrocyte adherence to MEC was 33.9 ± 2.7 erythrocytes/mm² and sixfold greater than either sickle erythrocyte adherence in the absence of TSP or normal erythrocyte adherence in the presence of TSP. Doubling the concentration of TSP to 0.4 μg/mL proportionally increased adherence of sickle erythrocytes. Incubation of MEC with OKM5 or anti-α1 monoclonal antibodies inhibited TSP-mediated sickle erythrocyte adherence more than 95%. These data suggest that activated platelet release factors, including α-granule TSP, which promote receptor-mediated sickle erythrocyte adherence to microvascular endothelium. Such factors released during in vivo platelet activation could contribute to vaso-occlusive complications by promoting erythrocyte adherence and microvascular occlusion.

© 1993 by The American Society of Hematology.

MATERIALS AND METHODS

Cell culture medium components, media supplements, and other chemicals were obtained from Sigma Chemical Co (St Louis, MO) or Gibco (Grand Island, NY) in liquid form or were reconstituted

From the School of Chemical Engineering and Cellular Biomechanics Laboratory, Georgia Institute of Technology; Georgia Sickle Cell Center at Grady Memorial Hospital, Atlanta, GA; the Department of Medicine, Division of Hematology/Oncology, and Department of Dermatology, Emory University School of Medicine, Atlanta, GA; and DNAX Research Institute, Palo Alto, CA.

Submitted May 20, 1992; accepted November 25, 1992.

Supported by The National Heart, Lung, and Blood Institute (Grant No. HL44960) and the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (Grant No. 900553).

Address reprint requests to Timothy M. Wick, PhD, Assistant Professor, School of Chemical Engineering, Georgia Institute of Technology, 778 Atlantic Dr, Atlanta, GA 30332-6100.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1993 by The American Society of Hematology.
according to manufacturers' instructions. Human AB serum, endothelial cell basal media (MCDB 131), and endothelial cell growth factor were purchased from Clonetics Corp (San Diego, CA).

Patients. All blood samples were obtained from patients with homozygous sickle cell anemia (HbSS) at the Georgia Sickle Cell Center at Grady Memorial Hospital, Atlanta, during routine follow-up in asymptomatic periods. Phenotype was determined by cellulose homozygous sickle cell anemia (HbSS) at the Georgia Sickle Cell

written informed consent was obtained from all participants for collection and transfer of blood. All research was performed according to the principles of the Declaration of Helsinki. Blood was collected by venipuncture into sodium citrate (105 mmol/L, 1.9 vol/vol) or EDTA (400 mmol/L, 1:100 vol/vol) Vacutainer tubes (Becton Dickinson, Rutherford, NJ) from normal volunteers and patients with homozygous (SS) sickle cell disease.

Endothelial cell cultures. Human dermal MEC were isolated from neonatal foreskins as previously described. Cells were cultured to confluence in endothelial basal media (MCDB 131) supplemented with 30% (vol/vol) human AB serum; 0.1 μg/mL epidermal growth factor; 0.292 mg/mL L-glutamine; 0.1 mg/mL penicillin, streptomycin, and amphotericin; 0.01 μg/mL epidermal growth factor; and 0.001 mg/mL hydrocortisone at 37°C in a 5% CO2/95% air incubator. Medium was exchanged under sterile conditions at 48-hour intervals. For adherence assays, endothelial monolayers were subcultured onto single-well LabTek Permanox culture slides (Nunc, Inc, Naperville, IL) pretreated with 0.1% sodium citrate and citrate agar electrophoresis. β-Thalassemia was excluded by Coulter indices and quantification of HbA2 and HbF. α Gene number and β haplotypes were not performed. Patients were not receiving anticoagulant therapy and were without evidence of pregnancy, obvious infection, thromboembolic disease, or liver disease. Age-, sex-, and race-matched normal controls were recruited from Georgia Institute of Technology, and Grady Memorial Hospital.

Table 1. ASPS Promotes Sickle Erythrocyte Adherence to MEC

<table>
<thead>
<tr>
<th>Patient</th>
<th>SFM</th>
<th>ASPS</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>2.1 ± 0.4</td>
<td>18.4 ± 1.6</td>
<td>324 ± 23</td>
</tr>
<tr>
<td>S2</td>
<td>0.7 ± 0.3</td>
<td>126 ± 28</td>
<td>11.4 ± 1.4</td>
</tr>
<tr>
<td>S3</td>
<td>3.5 ± 0.6</td>
<td>94.8 ± 8.3</td>
<td>64.7 ± 6.3</td>
</tr>
<tr>
<td>S4</td>
<td>4.3 ± 0.9</td>
<td>82.7 ± 7.2</td>
<td>30.5 ± 5.4</td>
</tr>
<tr>
<td>S5</td>
<td>1.6 ± 0.6</td>
<td>30.7 ± 2.7</td>
<td>771 ± 59</td>
</tr>
<tr>
<td>S6</td>
<td>3.5 ± 1.0</td>
<td>29.2 ± 3.1</td>
<td>48.6 ± 4.7</td>
</tr>
<tr>
<td>S7</td>
<td>4.4 ± 0.7</td>
<td>70.5 ± 6.1</td>
<td>294 ± 17</td>
</tr>
<tr>
<td>S8</td>
<td>4.4 ± 0.7</td>
<td>520 ± 19</td>
<td>18.3 ± 3.5</td>
</tr>
<tr>
<td>S9</td>
<td>2.1 ± 0.5</td>
<td>17.0 ± 1.9</td>
<td>244 ± 34</td>
</tr>
<tr>
<td>S10</td>
<td>4.9 ± 0.6</td>
<td>22.3 ± 1.8</td>
<td>84.3 ± 6.2</td>
</tr>
<tr>
<td>S11</td>
<td>0.4 ± 0.2</td>
<td>12.2 ± 1.5</td>
<td>160 ± 10</td>
</tr>
<tr>
<td>S12</td>
<td>3.0 ± 0.6</td>
<td>25.2 ± 2.4</td>
<td>72.5 ± 5.6</td>
</tr>
<tr>
<td>S13</td>
<td>4.4 ± 0.7</td>
<td>47.5 ± 3.4</td>
<td>6.9 ± 1.4</td>
</tr>
<tr>
<td>S14</td>
<td>5.6 ± 0.6</td>
<td>76.9 ± 5.2</td>
<td>9.3 ± 1.3</td>
</tr>
<tr>
<td>S15</td>
<td>1.8 ± 0.5</td>
<td>164 ± 7.1</td>
<td>4.1 ± 0.9</td>
</tr>
<tr>
<td>S16</td>
<td>3.1 ± 0.8</td>
<td>36.9 ± 2.3</td>
<td>4.0 ± 0.9</td>
</tr>
<tr>
<td>S17</td>
<td>4.9 ± 0.7</td>
<td>65.7 ± 3.3</td>
<td>3.4 ± 1.0</td>
</tr>
<tr>
<td>S18</td>
<td>2.2 ± 0.6</td>
<td>9.3 ± 1.2</td>
<td>10.6 ± 1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adherent Erythrocytes/mm²</th>
<th>SFM</th>
<th>ASPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>4.3 ± 0.9</td>
<td>82.7 ± 23</td>
</tr>
<tr>
<td>54</td>
<td>3.5 ± 0.6</td>
<td>64.7 ± 6.3</td>
</tr>
<tr>
<td>55</td>
<td>4.4 ± 0.7</td>
<td>18.3 ± 3.5</td>
</tr>
<tr>
<td>56</td>
<td>1.6 ± 0.6</td>
<td>771 ± 59</td>
</tr>
<tr>
<td>57</td>
<td>3.5 ± 1.0</td>
<td>48.6 ± 4.7</td>
</tr>
<tr>
<td>58</td>
<td>4.4 ± 0.7</td>
<td>294 ± 17</td>
</tr>
<tr>
<td>59</td>
<td>2.1 ± 0.5</td>
<td>244 ± 34</td>
</tr>
<tr>
<td>60</td>
<td>4.9 ± 0.6</td>
<td>84.3 ± 6.2</td>
</tr>
<tr>
<td>61</td>
<td>0.4 ± 0.2</td>
<td>160 ± 10</td>
</tr>
<tr>
<td>62</td>
<td>3.0 ± 0.6</td>
<td>72.5 ± 5.6</td>
</tr>
<tr>
<td>63</td>
<td>4.4 ± 0.7</td>
<td>6.9 ± 1.4</td>
</tr>
<tr>
<td>64</td>
<td>5.6 ± 0.6</td>
<td>9.3 ± 1.3</td>
</tr>
<tr>
<td>65</td>
<td>1.8 ± 0.5</td>
<td>4.1 ± 0.9</td>
</tr>
<tr>
<td>66</td>
<td>3.1 ± 0.8</td>
<td>4.0 ± 0.9</td>
</tr>
<tr>
<td>67</td>
<td>4.9 ± 0.7</td>
<td>3.4 ± 1.0</td>
</tr>
<tr>
<td>68</td>
<td>2.2 ± 0.6</td>
<td>10.6 ± 1.8</td>
</tr>
</tbody>
</table>

Fig 1. Activated sickle platelet supernatant promotes sickle erythrocyte adherence to human microvascular endothelial cells. Sickle or ABO/Rh cross-matched normal erythrocytes were suspended in SFM or ASPS. The mean ± SEM is shown for six patients. ASPS > SFM for sickle (P < .05) and for normal (P < .05) erythrocytes. Sickle erythrocytes suspended in ASPS are more adherent than normal erythrocytes suspended in SFM (P < .05).

Adherence of washed sickle erythrocytes suspended in SFM, ASPS, or 30% autologous platelet-poor sickle plasma (PPP) in SFM to human MEC was quantified at 1.0 dyne/cm². Sodium citrate anticoagulated blood was used for patients S1 through S9 and EDTA anticoagulated blood was used for patients S10 through S18. Similar data were obtained for citrate and EDTA anticoagulated blood. ASPS ≠ SFM, P < .001 for each experiment. PPP > SFM, P < .001.

* P = not significant.

Purified TSP. TSP was purified from thrombin-activated normal human platelets as previously described by Santoro and Frazier.
Thrombospondin promotes sickle cell adherence

The mean ± SEM is shown for eight patients. Preincubation of endothelial cells with anti-CD36 antibody (OKMS) inhibited ASPS-mediated adhesion 86% (ASPS/OKM5-MEC) (P < .01).

Briefly, washed platelets were suspended in 20 mM/L Tris-HCl containing 150 mM/L NaCl and 100 mM/L CaCl2 at pH 7.6, also containing 5 mM/L glucose per unit of platelets. Cells were activated with 0.5 U/mL thrombin for 1 to 2 minutes at 37°C. Thrombin was inhibited by 2 U/mL hirudin and 2 mM/L phenylmethylsulfonyl fluoride (PMSF). Aggregated platelets were removed by centrifugation at 200g for 5 minutes at 4°C. An additional centrifugation of the supernatant at 20,000g for 30 minutes ensured removal of all particulate matter. The supernatant was then made 1 mM/L in CaCl2. TSP was purified from the supernatant by heparin-Sepharose affinity chromatography (Pharmacia-LKB Biotechnology, Uppsala, Sweden) and eluted stepwise with 250 to 600 mM/L NaCl. TSP-rich fractions were pooled and applied to a BioGel A-0.5 m column (BioRad Laboratories, Richmond, CA) to remove low molecular weight contaminants. TSP concentrations were determined by the method of Lowry et al39 or by its absorbance at 280 nm.30

RBC suspensions. Fresh erythrocytes separated from plasma were washed three times in Delbecco’s phosphate-buffered saline (DPBS; 0.100 g/L NaCl, 0.180 g/L KCl, 0.200 g/L anhydrous K2HPO4, 8.000 g/L NaCl, 1.150 g/L anhydrous NaH2PO4, Sigma, St Louis, MO) without calcium chloride supplemented with 0.2% (wt/vol) human albumin, 5.0 μg/mL human transferrin, and 5.0 μg/mL bovine insulin. For adherence assays, washed erythrocytes were suspended in 1% hematocrit in SFM ASPS, SFM containing 30% autologous plasma, SFM containing 0.2 μg/mL TSP, SFM containing 0.4 μg/mL TSP, SFM containing 0.1 U/mL thrombin, or SFM containing 1.0 U/mL thrombin.

Erythrocyte adherence assay. Confluent MEC monolayers formed the base of a parallel-plate flow chamber as described previously.32 The assembled chamber was mounted on the stage of an inverted, phase-contrast microscope (Nikon TMS; Tokyo, Japan) and adherence was monitored at 37°C under dynamic conditions. Briefly, the endothelial cell monolayer was rinsed for 5 minutes at a post-capillary venule shear stress6 of 1.0 dyne/cm2 with SFM to remove serum and adhesive proteins secreted during culture. Washed erythrocytes suspended at 1% hematocrit were then perfused over the endothelial cell monolayer for 10 minutes. Nonadherent erythrocytes were removed from the chamber by a 20-minute rinse with serum-free medium at the same wall-shear stress without interruption of flow. The number of adherent erythrocytes was counted in 24 random microscope fields at 300X magnification (0.2827 mm2 endothelium per field of view) ranging over the entire endothelial cell monolayer and results were normalized to adherent erythrocytes per square millimeter of endothelium (erythrocytes/mm2).

In an attempt to inhibit sickle erythrocyte adherence, MEC monolayers were incubated with 5 μg/mL anti-CD36 monoclonal antibody (MoAb) OKM5 (generously donated by Dr Patricia Rao, Ortho Diagnostic, Raritan, NJ), 10 μg/mL monoclonal anti-α, antibody 3F12, which has affinity for the α chain of the αβ3 vitronectin receptor,22 or 50 μg/mL of the peptide Arg-Gly-Asp-Ser in endothelial cell culture media for 1 hour at 37°C before an adherence assay. Antimajor histocompatibility complex (MHC) Class I antibody (W6/32) at 10 μg/mL was used as a negative control antibody.34

Statistical methods. The mean ± SEM adherent erythrocytes/mm2 was calculated for individual experiments and a combined mean ± SEM was determined using a pooled variance as an estimate of

Fig 3. Purified TSP promotes higher sickle erythrocyte adherence to human MEC. Sickle or normal erythrocytes from six patients were suspended in SFM or SFM containing 0.2 μg/mL purified TSP. Adherence was significantly higher in the presence of TSP versus SFM for sickle (P < .05) but not normal (P > .05) erythrocytes. Sickle erythrocytes suspended in TSP were more adherent than normal erythrocytes suspended in TSP (P < .05).

Fig 4. TSP-mediated sickle cell adherence is concentration-dependent. The mean ± SEM adherent erythrocytes is shown separately for four sickle patients at TSP concentrations of 0.0, 0.2, and 0.4 μg/mL.
The thrombin concentration in ASPS was 2.9 uL/mL (a thrombin concentration 10 times that present in ASPS), which contributed to sickle cell adherence. Adherence of sickle cells to microvascular endothelium was significantly greater (P < .001 for each experiment) than the adherence recorded when sickle cells were suspended in SFM alone (0.4 ± 0.2 to 5.5 ± 0.6 erythrocytes/mm²). For the same patients, adherence of sickle erythrocytes suspended in SFM containing 1.0 U/mL thrombin was significantly elevated as compared with adherence in SFM. More importantly, the adherence recorded in SFM containing thrombin alone was much less than that observed when sickle erythrocytes were suspended in ASPS.

Preincubation of microvascular endothelium with monoclonal anti-CD36 (a TSP receptor) antibody (OKM5) inhibited ASPS-mediated sickle erythrocyte adherence by 86% (Fig 2). Anti-MHC Class I antibody (W6/32) did not inhibit ASPS-mediated sickle erythrocyte adherence (data not shown). These observations suggest that TSP released from platelet α-granules may be involved in sickle cell adherence to microvascular endothelium.

To directly test the role of TSP in promoting adherence of sickle erythrocytes to vascular endothelium, we examined the ability of purified TSP to promote sickle erythrocyte adherence to MEC. As shown in Fig 3, addition of 0.2 μg/mL TSP to SFM significantly elevated sickle erythrocyte adherence to MEC. In these experiments, adherence ranged from 8.1 ± 0.8 to 83.9 ± 6.9 erythrocytes/mm² and averaged 33.9 ± 2.7 erythrocytes/mm². TSP at 0.2 μg/mL also promoted moderate levels of normal erythrocyte adherence (1.2 ± 0.5 to 9.4 ± 1.2 erythrocytes/mm²) (Fig 3), which was significant for only 4 (P < .05) of the 6 normal donors studied. When the TSP concentration was doubled from 0.2 to 0.4 μg/mL, a corresponding increase in adherence was observed for the four patients studied (Fig 4). Preincubation of MEC with either monoclonal anti-CD36 antibody (OKM5) or monoclonal anti-α₅ antibody (3F12) inhibited TSP-mediated adherence (at 0.2 μg/mL) of sickle erythrocytes by 99% (range: 89% to 100%) and 96% (range: 87% to 100%), respectively (Fig 5). Similarly, preincubation of microvascular endothelium with the tetrapeptide Arg-Gly-Asp-Ser inhibited 97% of the TSP-mediated adherence for two patients studied (data not shown).

RESULTS

At a shear stress of 1.0 dyne/cm², ASPS-mediated adherence of sickle erythrocytes to microvascular endothelium ranged from 9.3 ± 1.2 to 520 ± 19 erythrocytes/mm² (mean ± SEM) for 18 sickle patients studied (Table 1). This was significantly greater (P < .001) than the adherence recorded when sickle cells were suspended in SFM alone (0.4 ± 0.2 to 5.5 ± 0.6 erythrocytes/mm²). For the same patients, adherence of sickle erythrocytes suspended in 30% autologous plasma ranged from 3.4 ± 1.0 to 771 ± 59 erythrocytes/mm² (Table 1). Similar results were observed for citrate and EDTA anticoagulated blood. Adherence in plasma did not correlate with adherence in ASPS. ASPS promoted fourfold higher adherence of sickle erythrocytes (23.1 ± 1.9 to 147 ± 6.7 erythrocytes/mm²) as compared with the moderate levels of adherence (6.9 ± 1.0 to 20.2 ± 1.4 erythrocytes/mm²) observed with normal erythrocytes from antigen-matched donors (Fig 1).

Experiments were also performed to determine whether the thrombin (used to activate platelets) present in ASPS contributed to sickle cell adherence. Adherence of sickle cells suspended in SFM containing 0.1 U/mL human thrombin (equivalent to the thrombin concentration in ASPS) was 2.9 ± 0.3 erythrocytes/mm² and was not significantly different than adherence of sickle erythrocytes suspended in SFM alone (3.3 ± 0.3 erythrocytes/mm²) for six sickle patients. In two experiments testing the effect of thrombin alone at 1.0 U/mL (a thrombin concentration 10 times that present in ASPS) adherence was 1.5 ± 2.5 and 2.4 ± 2.5 erythrocytes/mm² (mean ± SD), respectively, in SFM and 10.6 ± 5.9 and 1.6 ± 1.8 erythrocytes/mm², respectively, in SFM containing 1.0 U/mL thrombin. Thus, even in the presence of 1.0 U/mL thrombin, the sickle erythrocyte adherence was not significantly elevated as compared with adherence in SFM. More importantly, the adherence recorded in SFM containing thrombin alone was much less than that observed when sickle erythrocytes were suspended in ASPS.

Preincubation of microvascular endothelium with monoclonal anti-CD36 (a TSP receptor) antibody (OKM5) inhibited ASPS-mediated sickle erythrocyte adherence by 86% (Fig 2). Anti-MHC Class I antibody (W6/32) did not inhibit ASPS-mediated sickle erythrocyte adherence (data not shown). These observations suggest that TSP released from platelet α-granules may be involved in sickle cell adherence to microvascular endothelium.

To directly test the role of TSP in promoting adherence of sickle erythrocytes to vascular endothelium, we examined the ability of purified TSP to promote sickle erythrocyte adherence to MEC. As shown in Fig 3, addition of 0.2 μg/mL TSP to SFM significantly elevated sickle erythrocyte adherence to MEC. In these experiments, adherence ranged from 8.1 ± 0.8 to 83.9 ± 6.9 erythrocytes/mm² and averaged 33.9 ± 2.7 erythrocytes/mm². TSP at 0.2 μg/mL also promoted moderate levels of normal erythrocyte adherence (1.2 ± 0.5 to 9.4 ± 1.2 erythrocytes/mm²) (Fig 3), which was significant for only 4 (P < .05) of the 6 normal donors studied. When the TSP concentration was doubled from 0.2 to 0.4 μg/mL, a corresponding increase in adherence was observed for the four patients studied (Fig 4). Preincubation of MEC with either monoclonal anti-CD36 antibody (OKM5) or monoclonal anti-α₅ antibody (3F12) inhibited TSP-mediated adherence (at 0.2 μg/mL) of sickle erythrocytes by 99% (range: 89% to 100%) and 96% (range: 87% to 100%), respectively (Fig 5). Similarly, preincubation of microvascular endothelium with the tetrapeptide Arg-Gly-Asp-Ser inhibited 97% of the TSP-mediated adherence for two patients studied (data not shown).

Fig 5. TSP-mediated sickle erythrocyte adherence occurs via endothelial CD36 and α₅β₃ (vitronectin) integrin receptors. Sickle erythrocytes from six patients were suspended SFM or 0.2 μg/mL purified TSP in SFM (TSP). Preincubation of endothelial cells with (A) anti-CD36 antibody (TSP/OKM5-MEC) or (B) anti-α₅ integrin antibody (TSP/α₅-MEC) inhibited TSP-mediated adhesion by 99% (P < .05) or 96% (P < .05), respectively.
THROMBOSPONDIN PROMOTES SICKLE CELL ADHERENCE

not shown). Preincubation of MEC with monoclonal anti-MHC Class-I antibody (W6/32) did not inhibit TSP-mediated sickle erythrocyte adherence to microvascular endothelium (data not shown).

DISCUSSION

Vaso-occlusive episodes in SCD are believed to result from ischemic damage to tissue and organs secondary to obstruction of small blood vessels. Although the antecedents of vascular occlusion remain to be identified, arteriolar or capillary erythrocyte sickling are requisites of tissue ischemic damage. The delay time to hemoglobin polymerization and morphologic sickling after deoxygenation is reportedly of sufficient duration to render capillary sickling an isolated occurrence.36 Factors that impede blood flow and delay erythrocyte capillary transit could lead to precapillary and capillary sickling and entrapment of erythrocytes precipitating vaso-occlusive episodes and other complications. A number of studies suggest that adherence of erythrocytes to the endothelium11,13 may delay erythrocyte capillary transit allowing for significant sickling.

Significant data support activation of the coagulation system in sickle patients during asymptomatic periods and vaso-occlusive complications. Platelet counts have been reported to decrease22 or increase11 during crisis and may circulate as aggregates in steady state.18 In addition, platelet counts decrease precipitously in sickle patients experiencing severe pain episodes complicated by multiorgan failure, supporting a role of platelet activation in this complication.37 The present study shows that platelet activation could potentially initiate attachment of sickle erythrocytes to the vascular endothelium, impeding microvascular blood flow (Fig 1). If these observations are relevant to in vivo events, patients with higher platelet counts may be more susceptible to microvascular erythrocyte adherence and vaso-occlusive complications. This hypothesis is supported by the observation that elevated TSP concentrations (which would result from a greater number of platelets activated) increase sickle erythrocyte adherence (Fig 4). This hypothesis could be further tested by additional studies that attempt to correlate erythrocyte adherence with TSP levels in plasma and ASPS.

Evidence that TSP in the ASPS is responsible for the adherence of sickle erythrocytes to microvascular endothelium is supported by experiments using specific antagonists and agonists. The MoAb to CD36 inhibits binding to a receptor identified on microvascular endothelium20 that reportedly binds TSP.39 Preincubation of the MEC monolayers with br~nectin,~' VWF (including the high molecular weight bodies to CD36.

MHC Class-I antibody (W6/32) did not inhibit TSP-mediated sickle erythrocyte adherence to microvascular endothelium (data not shown).

The interaction between CD36 and TSP is somewhat controversial. In some reports, TSP binding to the CD36 receptor is observed, and the MoAb OKM5 abolishes the binding of TSP to the surface of stimulated platelets.39,45 Other data indicate that OKM5 antigen may not bind TSP.27 More recent studies with purified human TSP and CD36 have shown that these proteins bind to each other.46 The data of Lawler and Hyne~:~ on the other hand, indicate that under some conditions the vitronectin receptor (a,b integrin), and not CD36, functions as the TSP receptor. One possible explanation of some of these observations is that CD36 and a,b are closely associated on the endothelial cell surface48 and antibody binding to one receptor causes steric inhibition of binding to the other. The present data do not directly address which receptor binds TSP. However, our data clearly indicate that incubation of endothelial cells with an antibody against either of the proposed TSP receptors quantitatively inhibits sickle erythrocyte binding mediated by TSP and ASPS. Furthermore, incubation with an antibody to an epitope not thought to be involved in adhesion (anti-MHC Class I)33 does not inhibit ASPS or TSP-mediated sickle RBC adhesion.

The mechanism of TSP enhancement of sickle erythrocyte binding to MEC is uncertain. TSP may serve as a molecular bridge between receptors on the endothelial and erythrocyte membranes. Alternatively, TSP binding to the endothelial cell could induce conformational changes in the cell surface receptors that potentiate membrane interactions between sickle erythrocytes and endothelial cells. CD36 is known to be expressed early in erythroid development49 and has recently been identified on normal erythrocytes.50 Although
the level of CD36 expression on normal RBCs is low (approximately 50 surface molecules per RBC), it is sufficient to play a role in biologically important cell-cell adhesion events such as the CD36-dependent rosetting of normal erythrocytes around *Plasmodium falciparum*-infected erythrocytes. The higher levels of platelet supernatant and TSP-mediated adhesion of sickle erythrocytes over normal erythrocytes observed here could reflect higher CD36 expression on the generally younger erythrocytes in sickle blood as well as conformational changes in CD36 on sickle cells elicited by membrane damage.

The present data suggest a role for acute-phase reactants in sickle cell pain episodes. Possibly, platelet activation promotes sickle erythrocyte adherence and vaso-occlusion. This hypothesis would suggest that aspirin or antiplatelet therapy should ameliorate or modulate the frequency and/or severity of pain episodes. Several investigators have reported that use of prophylactic anticoagulant therapy in SCD was associated with clinical improvement, although in some studies the benefits appeared minimal. However, these data do not rule out a role for platelet activation in pain events because the small number of patients studied, the relative infrequency of pain events in the study populations, and the low compliance were all cited as factors that made demonstration of an intervention effect difficult. In light of the present data that define a potential role for platelet activation in vaso-occlusion via erythrocyte adherence, additional, larger prospective studies may show the efficacy of anticoagulant therapy in eliminating or reducing sickle cell vaso-occlusive episodes.

In summary, the present data suggest that activated platelets release factors, including α-granule TSP, which promote receptor-mediated sickle erythrocyte adherence to microvascular endothelium. Such factors released during platelet activation could contribute to vaso-occlusive complications by promoting erythrocyte adherence and microvascular occlusion. Clearly, additional studies will further ascertain the role of intravascular coagulation and vaso-occlusion via this mechanism. These studies should include investigations of receptors on sickle erythrocytes, modulation of binding to microvascular endothelium, and evaluation of TSP levels in patients during vaso-occlusive complications and asymptomatic periods. Such studies will further elucidate the role of intravascular coagulation in the initiation of vascular occlusion in SCD and lead to potential therapies targeting this mechanism.

ACKNOWLEDGMENT

The authors thank Joyce Howard, PA-C, for obtaining blood from normal donors and sickle cell patients at Grady Memorial Hospital, Atlanta, GA. We are also grateful to Kersten Morehead for technical assistance. We also thank Dr Patricia Rao, Ortho Diagnostic Systems, Inc, Raritan, NJ, for kindly donating MoAb OKM5.

REFERENCES

47. Lawler J, Hynes RO: An integrin receptor for normal and thrombathemic platelets that binds thrombospondin, Blood 74:2022, 1989
Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion

HA Brittain, JR Eckman, RA Swerlick, RJ Howard and TM Wick