Improvement of Superoxide Production in Monocytes From Patients With Chronic Granulomatous Disease by Recombinant Cytokines

Cytokines have been shown to modulate the respiratory burst of polymorphonuclear leukocytes and monocytes from normal controls. We have examined whether monocytes from children with chronic granulomatous disease (CGD) can be primed by cytokines other than interferon-γ (IFNγ), which has been demonstrated to improve the production of reactive oxygen species in vivo and in vitro. Monocytes isolated from peripheral blood were cultured without and with IFNγ (500 U/mL), tumor necrosis factor-α (500 U/mL), interleukin-1β (IL-1β) (100 U/mL), and IL-3 (100 U/mL). After 3 days of culture, the phorbol myristate acetate (2 ng/mL) and the formyl methionyl-leucyl-phenylalanine (0.1 μmol/L)-stimulated superoxide production was determined in a microtiter system. In nearly all of the 14 patients examined (5 autosomal, 5 X-chromosomal, and 4 of unknown inheritance), an improvement of superoxide production could be demonstrated. The most impressive effect with the cytokines newly tested was seen with monocytes from autosomal CGD patients treated with IL-3 and stimulated by phorbol myristate acetate. In single patients cultivation of monocytes with IL-6 and granulocyte-macrophage colony-stimulating factor resulted in only slight improvement of superoxide production. Our findings indicate that cytokines other than IFNγ can positively modulate the defective respiratory burst in CGD and that each patient reacts with an individual pattern to different cytokines.

© 1993 by The American Society of Hematology.

From the Universitätskinderklinik Göttingen, Göttingen; and the Universitätskinderklinik München, München, Germany.

Submitted April 6, 1992; accepted December 4, 1992.

Supported by grants from the Deutsche Forschungsgemeinschaft (AZ Ga 148/7), the Nordwestdeutsche Gesellschaft für Kinderheilkunde, and the Huebner-Stiftung im Stifterverband für die Deutsche Wissenschaft.

Address reprint requests to M. Gahr, MD, Universitätskinderklinik Göttingen, Robert-Koch-Str. 40, W-3400 Göttingen, Germany.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1993 by The American Society of Hematology.

0006-4971/93/8108-001883.00/0
suspensions were washed, submitted to hypotonic lysis by treatment with 155 mmol/L NH₄Cl to remove remaining erythrocytes, washed again, counted (PMN: staining with Türk solution [Merck, Darmstadt, Germany]; monocytes: nonspecific esterase stain [Technikon, Tarrytown, New York, NY]), and suspended in HBSS without phenol red. Superoxide production was determined as superoxide dismutase inhibitable cytochrome c reduction after stimulation of the cells with 1 ng/ml phorbol-12-myristate-13-acetate (PMA). Results are expressed in nanomoles of O₂ per 2.5 × 10⁶ cells per 60 minutes.

Cell culture of monocytes and superoxide assay of cultured monocytes. For culturing monocytes, mononuclear cell suspensions were washed three times with PBS, pH 7.4, without calcium and magnesium at 4°C. Cell count of monocytes in the mononuclear cell suspension was greater than 90% to 95% monocytes and greater than 99% viable (as determined by trypan blue exclusion test). Cells were cultured in 5% CO₂ at 37°C for 72 hours. Standard culturing conditions and optimal cytokine concentrations were established from preliminary experiments with blood from healthy donors. The superoxide production of cultured monocytes was measured as superoxide dismutase inhibitable cytochrome c reduction by a modified Pick and Mizel method. Stimulation was performed with PMA (2 ng/ml) or formyl-methionyl-leucyl-phenylalanine (FMLP; 0.1 μmol/L). The cumulative superoxide production was measured 120 minutes after the addition of the reaction mixture at 550 nm in a Dynatech Microtiter reader MR600 (Dynatech, Denkendorf, Germany) using absorbance at 490 nm as reference. The superoxide production was calculated from the difference of the optical densities between the wells with and without superoxide dismutase in nanomoles of superoxide per 10⁶ monocytes per 120 minutes.

Determination of adherent cell protein. To exclude the possibility that variable numbers of monocytes were eliminated by washing the culture wells, the amount of cell protein adherent in culture wells was determined after 72 hours of monocyte culture. The method of Bradford² modified by Baumgarten² with bovine serum albumin as a standard was used. The test was evaluated photometrically within 1 hour after the addition of the dye with a Dynatech Microplate Reader MR600 at 630 nm. The calibration was performed with bovine serum albumin solutions in 120 μL PBS by adding 30 μL of the dye solution. There were no statistically significant variations in the content of adherent cell protein between different culture wells in different compartments of the microtiter plates.

NBT test. The NBT reduction of isolated PMN was determined by using the method of Preisig and Hitzig.²⁶

Cytochrome b₅₅₈ determination in PMN. Cytochrome b₅₅₈ content of PMN was determined as sodium dithionite-induced difference spectrum, as described by Lutter et al.²⁷

FACS analysis of the cytochrome b₅₅₈ a-chain with 7D5 MoAb. PMN (1 × 10⁶) in 20 μL PBS without calcium and magnesium with 0.02% [wt/vol] sodium azide were incubated with 7D5 antibody or control antibodies (negative control: mouse IgG1 [Coulter Electronics, Krefeld, Germany]; positive control: Leu M1 [Becton

Table 1. Characterization of CGD Patients

<table>
<thead>
<tr>
<th>Patient/Sex</th>
<th>Inheritance</th>
<th>NBT Test (%)</th>
<th>PMN*</th>
<th>Monocytes*</th>
<th>Cytochrome b₅₅₈</th>
<th>7 DS (p22-phox)</th>
<th>47 Kd (p47-phox)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/M</td>
<td>AR</td>
<td>2</td>
<td>0.13</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>2/M</td>
<td>AR</td>
<td>2-4</td>
<td>1.14</td>
<td>2</td>
<td>0</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>3/M</td>
<td>AR</td>
<td>3-11</td>
<td>0.1</td>
<td>0.2</td>
<td>7.6</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4/F</td>
<td>AR</td>
<td>6</td>
<td>0.2</td>
<td>2.7</td>
<td>10.2</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>5/M</td>
<td>AR</td>
<td>3</td>
<td>2.1</td>
<td>0.4</td>
<td>10.4</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>6/M</td>
<td>X</td>
<td>80</td>
<td>1.7</td>
<td>0.8</td>
<td>0</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>7/M</td>
<td>X</td>
<td>14</td>
<td>2.7</td>
<td>2.4</td>
<td>0</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>8/M</td>
<td>X</td>
<td>11</td>
<td>3.2</td>
<td>0.7</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>9/M</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>—</td>
<td>ND</td>
</tr>
<tr>
<td>10/M</td>
<td>X</td>
<td>0</td>
<td>0.3</td>
<td>0.4</td>
<td>0</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>11/M</td>
<td>?</td>
<td>0</td>
<td>0.5</td>
<td>0.2</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>12/M</td>
<td>?</td>
<td>53</td>
<td>0.6</td>
<td>3.8</td>
<td>—</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>13/M</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>14/M</td>
<td>?</td>
<td>76</td>
<td>6.1</td>
<td>3.5</td>
<td>0.8</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td>99-100</td>
<td>23.1 ± 4</td>
<td>16.2 ± 4</td>
<td>9 ± 3</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* Freshly isolated from peripheral blood.

Abbreviations: ND, not determined; —, absent; +, detectable; AR, autosomal recessive; X, X chromosomal recessive.

Table 2. Source and Properties of Cytokines

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Manufacturer</th>
<th>Specific Activity (10⁶ U/mg)</th>
<th>Source</th>
<th>Test Concentration (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFNγ</td>
<td>Bioferon</td>
<td>20</td>
<td>E.coli</td>
<td>500</td>
</tr>
<tr>
<td>IFNβ</td>
<td>Bioferon</td>
<td>200</td>
<td>CHO cells</td>
<td>500</td>
</tr>
<tr>
<td>TNFα</td>
<td>Boehringer M.</td>
<td>20</td>
<td>Yeast</td>
<td>500</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Boehringer M.</td>
<td>10</td>
<td>E.coli</td>
<td>100</td>
</tr>
<tr>
<td>IL-2</td>
<td>Genzyme</td>
<td>350</td>
<td>Yeast</td>
<td>100</td>
</tr>
<tr>
<td>IL-6</td>
<td>Genzyme</td>
<td>200</td>
<td>E.coli</td>
<td>100</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Genzyme</td>
<td>50/250</td>
<td>Yeast</td>
<td>100</td>
</tr>
</tbody>
</table>

From www.bloodjournal.org by guest on August 30, 2017. For personal use only.
Dickinson, Mountain View, CA) at 4°C for 60 minutes. After washing, PMN were incubated with fluorescein isothiocyanate (FITC)-conjugated F(ab')₂, goat antimouse IgG and IgM (Pelson & Lorei, Frankfurt, Germany) at 4°C for 30 minutes. The cells were fixed in 1% (wt/vol) paraformaldehyde and analyzed with a FACScan flow cytometer (Becton Dickinson). Fluorescent emission of 27-dichlorofluorescein of individual PMN was determined by computer gating (FACScan research software).²⁸

p47-phox analysis in PMN by immunoblot. A polyclonal rabbit antiserum was generated against a synthetic peptide (PDDKL-PTDNSQTKPETYLM) corresponding to amino acid residues 122 to 141 of the 47-Kd neutrophil cytosolic factor (p47-phox).³⁸,³⁹ The peptide was kindly prepared by Dr. B. Schmidt (Institute for Biochemistry II, University of Gottingen, Germany). The peptide was coupled to keyhole limpet hemocyanin (KLH) with glutaraldehyde as described elsewhere.³⁸ After incubation with the NCF-122 antiserum, the blots were incubated with alkaline phosphatase-conjugated F(ab'), goat antimouse IgG and Igl (BioRad, München, Germany) and developed with NBT chloride (BioRad, München, Germany) and AB-medium (BioRad, München, Germany) and AB-medium (BioRad, München, Germany) and AB-medium (BioRad, München, Germany). The differences between autosomal and X-chromosomal disease. This speculation could explain the milder clinical course of AR-CGD patients or AR-CGD, followed by IL-3, TNFa, and IL-1β (Fig 1A). In X-CGD and in patients with unknown inheritance, other cytokines than IFNγ (IL-3 and IL-1β) were more potent in inducing an increased O₂⁻ production. Only in one patient did the addition of cytokines into the culture medium result in reduced O₂⁻ production compared with untreated cells (patient 10).

In general, monocytes from patients with AR-CGD could be primed to higher O₂⁻ production after PMA stimulation than cells from patients with X-chromosomal disease. This could explain the milder clinical course of AR-CGD patients by speculating that IL-3 or TNFa produced during infections could stimulate phagocytes to become more efficient in destroying bacteria and other microorganisms. This speculation may be supported by looking at the absolute amounts of O₂⁻ produced; in some patients, nearly 80% of the O₂⁻ production of monocytes from healthy controls was observed after culture with a cytokine.

Monocytes from nearly all CGD patients cultured for 72 hours in the absence of a cytokine produced more O₂⁻ than when measured immediately after isolation from peripheral blood (Table 1 and Fig 1). If cultured in the presence of cytokines, monocytes from patients with CGD were able to improve their defective oxidative metabolism. Most effective in enhancing PMA (2 ng/mL)-stimulated superoxide production in AR-CGD was IFNγ, followed by IL-3, TNFa, and IL-1β (Fig 1A). In X-CGD and in patients with unknown inheritance, other cytokines than IFNγ (IL-3 and IL-1β) were more potent in inducing an increased O₂⁻ production. Only in one patient did the addition of cytokines into the culture medium result in reduced O₂⁻ production compared with untreated cells (patient 10).

In general, monocytes from patients with AR-CGD could be primed to higher O₂⁻ production after PMA stimulation than cells from patients with X-chromosomal disease. This could explain the milder clinical course of AR-CGD patients by speculating that IL-3 or TNFa produced during infections could stimulate phagocytes to become more efficient in destroying bacteria and other microorganisms. This speculation may be supported by looking at the absolute amounts of O₂⁻ produced; in some patients, nearly 80% of the O₂⁻ production of monocytes from healthy controls was observed after culture with a cytokine.

If stimulated by FMLP (0.1 μmol/L), IFNγ was again the most potent priming agent in AR-CGD, followed by IL-3, IL-1β, and TNFa, whereas in X-CGD and patients with unknown inheritance, IL-3 and IL-1β showed a more potent priming effect than IFNγ.

The differences between autosomal and X-chromosomal patients were not so striking when monocytes were stimulated by FMLP compared with PMA stimulation (Fig 1B). The influence of IL-6 (100 U/mL) and GM-CSF (100 U/mL) could be tested only in single patients. After monocyte culture with IL-6, an increase of PMA-stimulated superoxide production was observed only in two of four patients and after FMLP stimulation in one of four patients. Cultivation of

Table 3. Influence of Cytokines on Superoxide Production of Monocytes From Healthy Donors

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>PMA (2 ng/mL)</th>
<th>FMLP (0.1 μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>1.17 ± 0.36</td>
<td>0.54 ± 0.13</td>
</tr>
<tr>
<td>IFNγ (500 U/mL)</td>
<td>2.99 ± 0.62*</td>
<td>2.02 ± 0.6*</td>
</tr>
<tr>
<td>TNFα (500 U/mL)</td>
<td>2.58 ± 0.51*</td>
<td>2.60 ± 0.73*</td>
</tr>
<tr>
<td>IL-1β (100 U/mL)</td>
<td>3.59 ± 1.06*</td>
<td>0.98 ± 0.34</td>
</tr>
<tr>
<td>IL-3 (100 U/mL)</td>
<td>3.4 ± 0.8*</td>
<td>1.42 ± 0.47*</td>
</tr>
<tr>
<td>IL-6 (100 U/mL)</td>
<td>3.17 ± 0.6*</td>
<td>2.86 ± 0.57*</td>
</tr>
<tr>
<td>GM-CSF (100 U/mL)</td>
<td>2.00 ± 0.41</td>
<td>2.00 ± 0.53*</td>
</tr>
</tbody>
</table>

Monocytes from healthy donors have been cultured for 72 hours without a cytokine (medium) and with the cytokines indicated as described under Materials and Methods. After stimulation with PMA or FMLP, the production of superoxide has been determined. Means ± SD are given (number of experiments: medium, n = 27; medium with cytokines, n = 3 to 6).

* p < .05 compared with monocytes cultured in medium without a cytokine.
Fig 1. Superoxide production of monocytes (nmol O₂/10⁶ monocytes/2 h) from patients with CGD cultured for 72 hours without and with cytokines (500 U/mL for IFNγ and TNFα, 100 U/mL for IL-1β and IL-3) after stimulation with PMA (2 ng/mL) (A) or FMLP (0.1 μmol/L) (B). The patient numbers relate to Table 1.
monocytes with GM-CSF was performed in five patients for PMA-induced stimulation (four without effect and one with an increase) and in three for FMLP-induced stimulation (slight increase in all, including the patient whose monocytes showed an increase after PMA stimulation).

The superoxide assay of cultured monocytes could be repeated in seven patients. The constancy of superoxide production in individual patients could be demonstrated by repeating assays on cells from seven patients (in two of these patients even three determinations were performed). Setting the results of the first assay as 100%, the repeated assays varied between 82% and 134%.

Ezekowit and Mühlebach et al., who examined the effects of in vivo administered IFNγ on phagocyte function in vitro, did not observe an IFNγ-induced improvement of the phagocyte respiratory burst activity. In contrast to our investigation, in only 25% of the patients was the monocyte oxidative metabolism determined or only PMN had been examined. Thus, the “negative” results of both examinations relate mostly to PMN. In addition, the IFNγ effect on superoxide production was tested after stimulation with very high concentrations of PMA (660 ng/mL or 200 ng/mL). In our investigation, we used a lower PMA concentration (2 ng/mL) because in preliminary experiments with monocytes from healthy donors we found that the cytokine effects on superoxide production of cultured monocytes can be shown better after stimulation with suboptimal doses of PMA. The diverging results could also be explained by the fact that in the IFNγ study the major part of the patients were classical X-CGD patients, who in our study also showed only little responsiveness to cytokines, whereas the variant AR-CGD patients did respond more.

Recently, an evaluation of long-term IFNγ treatment confirmed the nonresponsiveness of PMN oxidative metabolism to in vivo administrated IFNγ. In contrast, in some AR-CGD patients with deficiency of p47-phox, IFNγ improved monocyte oxidative metabolism as determined by PMA-stimulated NBT reduction. Thus, the positive effect of IFNγ in CGD patients in vivo could be caused at least partially by improved oxidative metabolism of monocytes.

In our study, the variant CGD patients were more responsive to cytokines than the classical X-CGD patients. It is possible that in the variant CGD patients with residual superoxide production the deficient NADPH-oxidase components are produced at a low rate that is enhanced by monocyte culture and/or cytokine treatment. This would explain the improved superoxide production of cultured monocytes from these patients. The influence of the cytokines tested on the expression of cytosolic factors (supposed to be deficient in some AR patients) especially has to be discussed.

We have shown that not only IFNγ but also other cytokines increase the stimulated superoxide production in cultured CGD monocytes from patients with variant CGD. Each patient showed an individual pattern of reactivity to cytokines. Testing various cytokines in monocytes of individual patients in vitro could give information about the possible therapeutic use of cytokines other than IFNγ. Identification of the mechanisms responsible for priming the respiratory burst in phagocytes of CGD patients and normal controls will be important in understanding the regulation and modulation of the NADPH-oxidase system.

ACKNOWLEDGMENT

We thank M. Nakamura (Tokyo, Japan) for kindly providing us the monoclonal antibody TDS, and J. Roesler (Hannover, Germany) for helpful advice.

REFERENCES

18. Kharazmi A, Nielsen H, Bendtzen K: Recombinant interleukin 1α and β prime human monocyte superoxide production but have no effect on chemotaxis and oxidative burst response of neutrophils. Immunobiology 177:32, 1988

Improvement of superoxide production in monocytes from patients with chronic granulomatous disease by recombinant cytokines

V Jendrossek, AM Peters, S Buth, J Liese, U Wintergerst, BH Belohradsky and M Gahr