THE REPEATED SEQUENCE (AT)x(T)y UPSTREAM TO THE β-GLOBIN GENE IS A SIMPLE POLYMORPHISM

To the Editor:

At position 0.5 kb upstream to the β-globin gene lies a repeated purine-pyrimidine sequence (AT)x(T)y, which exhibits a great variation in length and configuration.\(^1\) The different specific patterns of this sequence are in strict linkage disequilibrium with the β-globin haplotype.

The (AT)x,Ty motif has been identified several years ago in a carrier of silent β-thalassemia of Albanian descent.\(^2\) Later on a number of studies have confirmed the association between the (AT)x,Ty motif and silent β-thalassemia\(^3\) and showed the presence of the same motif in cis to the S mutation in Indian AS heterozygotes, who are characterized by a consistently lower expression of HbS compared with African AS carriers.\(^4\) The (AT)x(T)y sequence lies within a negative regulatory region between nucleotides -610 and -490 upstream from the β-globin gene and is the binding site for a putative negative regulatory transacting factor called BPl.\(^5\) Mobility shift analysis has recently shown that the (AT)x,Ty motif binds more strongly BPl compared with the reference sequence (AT)x,Ty, supporting the hypothesis that the (AT)x,Ty motif produces a very mild β-thalassemia phenotype.\(^6\) In contrast with these conclusions, the (AT)x,Ty motif has been detected in a large number of normal individuals of different racial origin.\(^7\)

However, the normal individuals included in these studies were not analyzed by globin chain synthesis analysis, which is the only method by definition to detect the silent β-thalassemia.

Table 1 summarizes the results. (AT)x,Ty sequence was found in 9 subjects, while (AT)x,Ty motif was present in 12 subjects in the heterozygous state and in 9 subjects in the homozygous one. (AT)x,Ty motif was found only in 2 subjects. Among these three groups no statistically difference was shown in mean corpuscular volume (MCV), HbA2, and a/β ratio. These features indicate that the sequence variations of the (AT)x,Ty repeated sequence are simple polymorphisms not affecting the function of the in cis β-globin gene. The remote possibility of some role under erythropoietic stress, as it happened for other sequence variation in the Gy promoter,\(^8\) still has to be verified.

ACKNOWLEDGMENT

Supported by a grant from: Assessorato Igiene e Sanità Regione Sardegna, L.R. n.11 30/4/1990, 40% to C.A.; National Research Council (CNR) Targeted project “Prevention and Control Disease Factors” (FATMA) Contract No. 92.00041.PF41 and Progetto strategico per il Mezzogiorno “Diagnostica delle Talassemie: organizzazione e standardizzazione del depressione dei portatori e della diagnosi prenatale” Contract No. 91.04193.ST75.

RENZO GALANELLO
ALESSANDRA MELONI
DANIELA GASPERINI
LUISELLA SABA
ANTONIO CAO
M. CRISTINA ROSATELLI
Istituto di Clinica e Biologia dell’Età Evolutiva
Università degli Studi di Cagliari
LUCIANA PERSEU
Istituto di Ricerca sulle Talassemie e Anemie Mediterranee
Cagliari, Italy

Table 1. Hematologic Features of Individual Carrying Variations in the Repeated Sequence (AT)x(T)y, at Position -530

<table>
<thead>
<tr>
<th>Sequence at Position -530</th>
<th>Genotype</th>
<th>No. of Subjects</th>
<th>MCV (fL)</th>
<th>HbA2 (%)</th>
<th>α/β (ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AT)x,Ty/(AT)x,Ty</td>
<td>9</td>
<td>87.6 ± 3.8</td>
<td>2.9 ± 0.3</td>
<td>0.98 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>(AT)x,Ty/(AT)x,Ty</td>
<td>12</td>
<td>87.6 ± 6.6</td>
<td>2.9 ± 0.3</td>
<td>0.94 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>(AT)x,Ty/(AT)x,Ty</td>
<td>9</td>
<td>89.2 ± 3.9</td>
<td>2.8 ± 0.3</td>
<td>0.99 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>(AT)x,Ty/(AT)x,Ty</td>
<td>1</td>
<td>90</td>
<td>3.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(AT)x,Ty/(AT)x,Ty</td>
<td>1</td>
<td>90</td>
<td>3.0</td>
<td>0.94</td>
<td></td>
</tr>
</tbody>
</table>

To define whether variations in the (AT)x(T)y sequence have any effect on the function of the in cis β-globin gene, in this study we have performed globin chain synthesis analysis and direct sequencing of the -0.5 region upstream to the β-globin gene in a group of normal individuals of Sardinian descent.

Table 1 summarizes the results. (AT)x,Ty sequence was found in 9 subjects, while (AT)x,Ty motif was present in 12 subjects in the heterozygous state and in 9 subjects in the homozygous one. (AT)x,Ty motif was found only in 2 subjects. Among these three groups no statistically difference was shown in mean corpuscular volume (MCV), HbA2, and a/β ratio. These features indicate that the sequence variations of the (AT)x,Ty repeated sequence are simple polymorphisms not affecting the function of the in cis β-globin gene. The remote possibility of some role under erythropoietic stress, as it happened for other sequence variation in the Gy promoter, still has to be verified.
REFERENCES

7. Wong SC, Stoming TA, Efremov GD, Huisman THJ: High frequencies of a rearrangement (+ATA; -T) at \(-530\) to the \(\beta\)-globin gene in different populations indicate the absence of a correlation with a silent \(\beta\)-thalassemia determinant. Hemoglobin 13:1, 1989

The repeated sequence (AT)x(T)y upstream to the beta-globin gene is a simple polymorphism [letter]

R Galanello, A Meloni, D Gasperini, L Saba, A Cao, MC Rosatelli and L Perseu