Human T-Cell Leukemia Virus Type II Infection Frequently Goes Undetected in Contemporary US Blood Donors

By Brian Hjelle, Carla Wilson, Sherri Cyrus, Peggy Bradshaw, Jonathan Lo, Christine Schammel, Thomas Wittbank, and Steve Alexander

Serologic screening for human T-cell leukemia virus type I (HTLV-II) infection was begun in US blood banks with the licensure of enzyme-linked immunosorbent assays (ELISA) in December 1988. We examined the donation histories of the first 60 Western blot (WB)-confirmed HTLV-I/II positive donors to one blood center and found 8 had made 16 previous donations that scored negative on the screening ELISA. All 16 donations had ELISA absorbance below the cutoff for a positive assay, but still well above that of the average donation (17.6% ± 5.7% of the cutoff). In a more extensive study, 17 donations from a total of 61,752 at six blood centers were both ELISA-positive and WB-positive for HTLV-I (4) or HTLV-II (13), and 218 samples had ELISA absorbance greater than 50% of the ELISA cutoff. One hundred seventy-eight of the 218 were tested further by WB and 11 were found positive. All 11 positives were confirmed by polymerase chain reaction; 10 had HTLV-II and 1 had HTLV-I. Thus, the HTLV-I–based screening ELISA missed at least 10 of 23, or 43% (95% confidence interval, 23% to 66%), of HTLV-II infections, compared with 1 of 5, or 20%, of HTLV-I infections.

© 1993 by The American Society of Hematology.

MATERIALS AND METHODS

Identification of donors with anti-HTLV antibodies with negative ELISA. Two ways of determining the rate of HTLV infection in ELISA-negative donors were used. In the first method, the donation histories of ELISA-positive, WB-positive donors were retrospectively examined for previous donations that had passed the ELISA screen. In the second method, sera were collected prospectively from consecutive blood donors with high-negative screening ELISA (>50% of ELISA cutoff for positivity) over a 2.5-month period (February 13 through April 30, 1992), and subjected to WB. Because this interval is greater than 8 weeks (long enough that some donors could donate twice during the study), we looked for February donations among the 41 donors with high-negative samples who gave blood in the last 2 weeks of April. Seven of the 225 high-negative donations were found to be duplicate donations, and were subtracted from the total. A comparable fraction was subtracted from the total donations (63,735), based on the assumption that the average donor donates with a frequency comparable to that of the high-negative donors. Institutional Review Board approval was obtained in accordance with an assurance filed with, and approved by, the Department of Health and Human Services.

Serologic studies and PCR. Screening ELISA (Abbott Laborato- ries, North Chicago, IL) was performed as recommended by the manufacturer. All ELISA high-negative or positive samples in this study were subjected to rgg21 supplemented WB (Cambridge Bio- tech, Rockville, MD).19 WB-positive samples were subjected to peptide epitope ELISA (Coulter Select ELISA, Coulter Corp, Hialeah, FL). ELISA-negative, WB-positive sera were also tested with peptide-enhanced WB (Diagnostic Biotechnology Ltd, Singapore).20 as some ELISA-positive samples that were negative with the Coulter
Select peptide epitope ELISA. PCR was performed on donor PBMC DNA as described,3 using primers in \textit{tax} and \textit{pol}.

\textbf{Statistical methods.} The confidence intervals for proportions were determined using a two-tailed Fisher's exact test on the binomial. The \(P\) value for comparison of the gender distribution of ELISA-positive, WB-positive donors and ELISA-negative, WB-positive donors was determined using a two-tailed Fisher's exact test.

\textbf{RESULTS}

We examined the donation histories of the first 60 ELISA-positive, WB-confirmed donors to a single blood center with high HTLV-II prevalence (United Blood Services, Albuquerque, NM).4 Seropositive donations by these 60 donors were collected between December 1988 and June 1991. The 60 donors were determined to have HTLV-I (7) or -II (53) by PCR and/or peptide epitope ELISA in 57 cases; 3 were diagnosed with HTLV-II solely on the basis of WB pattern.5,12 Of the 60, 8 had made 16 previous donations that had passed the screening ELISA. Thus, the total donations made by the 60 HTLV-positive donors was 76; 16 of those were negative by screening ELISA, for a calculated rate of undetected anti-HTLV antibodies of 21\% (16/76). Six of the 8 donors were tested by PCR and were positive; for the remaining 2, viral type was determined by peptide epitope ELISA. One of the 8 (a man of African ancestry) had HTLV-I, and the remainder had HTLV-II. Of the 7 with HTLV-II, 3 had American Indian ancestry,5 each had distant IDU history or transfusion exposure, and 2 women had longstanding relationships with HTLV-II-seropositive IDU men. ELISA absorbance/cutoff values from the 16 ELISA-negative donations ranged from 41\% to 95\%, which was far above the average of 17.6\% ± 5.7\% (mean ± SD) for all ELISA-negative donations to the blood center in question. However, there were many other donations with ELISA absorption values comparable with the absorption of ELISA-negative donations from the infected cohort; there was no clear hiatus between the 16 donations by the infected cohort and donations at large. The high ELISA absorbances observed in the past donations, coupled with the risk histories suggesting distant exposure to the virus, led us to believe that these donors were infected at the time of their previous ELISA-negative donations, and were not undergoing recent seroconversion (Fig 1).

The overall rate of undetected HTLV antibodies in our study of 60 seropositive donors was 21\%, including 1 of 8 (13\%) donations from HTLV-I-positive donors and 15 of 68 donations (22\%) from HTLV-II-positive donors. The 21\% rate of undetected HTLV-positive donations derived from study of the 60 HTLV-I/II-seropositive donors may be an underestimate, because we selected those donors who ultimately tested ELISA-positive. To estimate more precisely the actual rate, we prospectively collected 178 of the 218 sera from 61,752 (estimated) donations that scored "high-negative" (>50\% of the cutoff for positivity) in the ELISA. Sera were collected from donations made over a 2.5-month interval in early 1992 from six US blood centers (Albuquerque, NM; El Paso, TX; Phoenix, AZ; Lafayette, LA; Reno, NV; and Las Vegas, NV). Collectively, about 80\% of WB-positive donors to these six centers have had HTLV-II in past years.

During the 2.5 months we were collecting sera from donations with high-negative ELISA, 49 ELISA-positive donations were made. Seventeen of the 49 were found to be positive in the WB. Peptide epitope ELISA and "enhanced" WB11 studies indicated that 4 of the 17 had HTLV-I, 9 had HTLV-II, and for 4 donations the viral antibodies could not be subtyped by those methods. Of the 4 sera that could not be subtyped, all had an HTLV-II-pattern WB,12 and 2 of those donors were studied by PCR and found to have HTLV-II DNA; these results indicate that at least 11, and probably 13, of the 17 ELISA+/WB+ donors were infected with HTLV-II.

Sera with high-negative ELISA absorbance were stratified into two groups according to absorbance value relative to the cutoff for positivity. Of 178 high-negative ELISA donations tested, 119 had absorbance less than 70\% of the cutoff, and 57 (32\%) were positive in the WB. Of the 59 donations that scored higher than 70\% of the cutoff, 6 (10\%) were positive. WB patterns from 2 of the 11 WB-positive donors, both in the greater than 70\% ELISA absorbance group, were of the pattern usually seen with HTLV-I infection (p19 reactivity ≥ p24). The remaining nine positive samples had patterns typical for HTLV-II.13 Four of the 9 with HTLV-II-pattern WB also had antibodies reactive to the p40tax trans-activator gene product of HTLV-I/II.

Further serologic testing, donor interviews, and PCR were conducted to exclude the possibility of false-positive WB reactivity (Table 1). Seven of the 9 ELISA-negative sera with HTLV-II-pattern WB were positive for HTLV-II using peptide epitope ELISA, as was 1 of the 2 with HTLV-I-pattern WB (donation 2147). The remaining HTLV-I-pattern serum (5077) reacted only with the HTLV-I-specific peptide ELISA. Similar results were obtained using WB strips enhanced with
Table 1. Laboratory Results, Risk-Factor Histories, and Ethnic Backgrounds of 11 Donors With Negative ELISA and Positive WB

<table>
<thead>
<tr>
<th>Donor</th>
<th>ELISA (%)</th>
<th>WB Pattern</th>
<th>HTLV1</th>
<th>HTLV2</th>
<th>Select PCR</th>
<th>PCR Tax</th>
<th>PCR Pol</th>
<th>Ethnic</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>84</td>
<td>HTLV2</td>
<td>Neg</td>
<td>Neg</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>NHW</td>
<td>None</td>
</tr>
<tr>
<td>5077</td>
<td>81</td>
<td>HTLV1</td>
<td>1+</td>
<td>Neg</td>
<td>HTLV1</td>
<td>HTLV1</td>
<td>Neg</td>
<td>NHW</td>
<td>TxR</td>
</tr>
<tr>
<td>8235</td>
<td>84</td>
<td>HTLV2</td>
<td>Neg</td>
<td>1+</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>NHW</td>
<td>IDU-S</td>
</tr>
<tr>
<td>6872</td>
<td>96</td>
<td>HTLV2</td>
<td>Neg</td>
<td>1+</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>NHW</td>
<td>TxR</td>
</tr>
<tr>
<td>5211</td>
<td>61</td>
<td>HTLV2</td>
<td>Neg</td>
<td>1+</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>NHW</td>
<td>IDU-S</td>
</tr>
<tr>
<td>8737</td>
<td>69</td>
<td>HTLV2</td>
<td>Neg</td>
<td>Neg</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>His</td>
<td>None</td>
</tr>
<tr>
<td>2147</td>
<td>IR</td>
<td>HTLV1</td>
<td>Neg</td>
<td>2+</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>His</td>
<td>None</td>
</tr>
<tr>
<td>3785</td>
<td>51</td>
<td>HTLV2</td>
<td>Neg</td>
<td>1+</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>NHW</td>
<td>None</td>
</tr>
<tr>
<td>5211</td>
<td>61</td>
<td>HTLV2</td>
<td>Neg</td>
<td>1+</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>HTLV2</td>
<td>NHW</td>
<td>None</td>
</tr>
</tbody>
</table>

Abbreviations: IDU-S, IDU spouse; TxR, transfusion recipient; NHW, non-Hispanic white; Ind, American Indian; His, Hispanic; IR, initially reactive, but repeated negative twice.

DISCUSSION

We estimate that at least 11 of 28 donations (39%) made by donors with HTLV infection were missed by the licensed Abbott screening ELISA. In addition, serum aliquots from 40 donations with high-negative ELISA absorbance were not sampled, suggesting that another two to three WB-positive donations may have been missed in our survey. Furthermore, we did not attempt to determine the prevalence of HTLV infection in those donors with ELISA absorbance less than 50%. Our review of previous donation history of infected donors identified in this study uncovered donations with absorbance less than 50% made by this group (see Fig 1 for examples).

Our donors with high-negative ELISA absorbance and positive WB are considered to be genuinely infected according to a variety of criteria. Ten of 11 WB-positive donors with negative ELISA were infected with HTLV-II, compared with 11 to 13 of 17 WB-positive donors with positive ELISA. It appears that by selecting for donors with negative ELISA, we may have enriched for HTLV-II infection at the expense of HTLV-I infection. These results suggest that HTLV-I-based screening ELISAs are detecting HTLV-II infections inefficiently among contemporary donors. This study may underestimate the sensitivity of the screening ELISA at detecting all HTLV infections because of the predominance of HTLV-II in the population studied, and because some donors with strongly positive screening ELISA have already been removed from the donor pool after more than 3 years of anti-HTLV antibody screening.

Of the 8 donors in our cohort of 60 ELISA-positives who had made previous donations with negative ELISA, 3 should have been deferred from donation because of past use of injectable drugs or sexual relations with IDU. There were also 3 donors with sexual exposure to IDU in the cohort of...
11 WB-positive donors identified in the prospective study (Table 1). Our experience has been that donors who continue to donate despite such risk history usually do so because (1) drug usage ended before the onset of the acquired immunodeficiency syndrome (AIDS) epidemic around 1980; and/or (2) the IDU partner has been tested and found to be seronegative for the human immunodeficiency virus (HIV). Few donors are aware that IDU and their partners have increased risk of acquiring viruses other than HIV.

The sensitivity of the Abbott screening ELISA is less than that determined for the same test in an HTLV-I-endemic population (93.2%),13 or in a population of HTLV-positive IDU in California in which the viral subtype had not been determined (91%).6 This may reflect the effect of long-term screening of blood donors in our study, the exclusion of “WB- indeterminate” sera that come from infected patients by use of WB strips lacking enhanced sensitivity to envelope product antibodies,13 or insensitivity of immunofluorescence assay confirmatory testing.6 However, the 57% (maximum) sensitivity to HTLV-II we obtained is very similar to that obtained with a licensed ELISA by Wiktor et al (58%) in a WB-positive IDU population with a high fraction of HTLV-II.

We do not know what factors predispose some infected persons to produce low levels of antibody in response to HTLV-II or -I infection. In our ELISA-negative group, there was an enrichment for female donors (10 of 11) compared with the ELISA-positive group (9 of 17; P < .05 by two-tailed Fisher’s exact test), and slight enrichment for donors with no known risk factors. One possible explanation is that poor antibody response may be more frequent in those who acquire infection later in life, especially via sexual exposure. In a single case (donor 8235), serial absorbance data from past donations suggested that a seroconversion in response to recent exposure to HTLV-II was occurring (Fig 1). Finally, HTLV-I-based ELISAs may be insufficiently sensitive to HTLV-II antibodies because of incomplete cross-reactivity. ELISA screening tests designed for greater sensitivity to HTLV-II antibodies are in development (G. Robertson, Abbott Laboratories, personal communication, August 1992).

ACKNOWLEDGMENT

We thank Dr M. Allen and Dr J. T. Quicutt, R. Castle, A. Decker, J. Dambowski, and D. Shakotko for generous assistance, and Drs Steven K. H. Foung and B. Skipper for helpful discussions.

REFERENCES

Human T-cell leukemia virus type II infection frequently goes undetected in contemporary US blood donors
B Hjelle, C Wilson, S Cyrus, P Bradshaw, J Lo, C Schammel, T Wiltbank and S Alexander