In Vivo Effects of Recombinant Interleukin-11 on Myelopoiesis in Mice

By Giao Hangoc, Tinggui Yin, Scott Cooper, Paul Schendel, Yu-Chung Yang, and Hal E. Broxmeyer

Purified recombinant human interleukin-11 (rhIL-11) was assessed for its in vivo effects on the proliferation and differentiation of hematopoietic progenitors as well as its capacity to accelerate the recovery of a drug-suppressed hematopoietic system. Dosage and time sequence studies demonstrated that administration of IL-11 to normal mice resulted in increases in absolute numbers of femoral marrow and splenic myeloid (granulocyte-macrophage colony-forming unit [CFU-GM], burst-forming unit-erythroid [BFU-E], CFU-granulocyte, erythroid, macrophage, megakaryocyte) progenitor cells and in stimulation of these progenitors to a higher cell cycling rate. This was associated with increased numbers of circulating neutrophils. Administration of IL-11 to mice pretreated with cyclophosphamide decreased the time required to regain normal levels of neutrophil and platelet counts in peripheral blood. In addition, IL-11 accelerated reconstitution to normal range of myeloid progenitors from bone marrow and spleen of myelosuppressed mice. These data suggest that IL-11 may play an important role in the regulation of hematopoiesis, and the application of this novel cytokine may have clinical therapeutic benefits.

© 1993 by The American Society of Hematology.

From the Departments of Medicine (Hematology/Oncology), Microbiology and Immunology, Biochemistry and Molecular Biology, and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN; and Genetics Institute, Cambridge, MA.

Supported by US Public Health Service Grants No. RO1 DK43105 (to Y.C.Y.), R37 CA36464, RO1 HL46549, and RO1 HL49202 (to H.E.B.) from the National Cancer Institute and the National Institutes of Health.

Address reprint requests to Hal E. Broxmeyer, PhD, Indiana University School of Medicine, Walther Oncology Center, 975 W Walnut St, IB 301, Indianapolis, IN 46202-5121.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1993 by The American Society of Hematology. 0006-4971/93/8104-0015$3.00/0

Blood, Vol 81, No 4 (February 15), 1993: pp 965-972

965
Clonal growth assay for erythroid (BFU-E) and multipotential (CFU-GEMM) progenitor cells. These were carried out as previously reported. Briefly, 1 mL of 7.5 x 10^4 to 1 x 10^5 BM or 1 x 10^6 spleen cells in enriched Iscove's modified Dulbecco's medium (IMDM; Gibco) containing 30% non-heat-inactivated FCS were plated in 35-mm tissue culture dishes (Corning) with a final concentration of 1% methylcellulose (Fisher Scientific, Fair Lawn, NJ). Cells were cultured in the presence of 2 U/mL Epogen (Amgen, Thousand Oaks, CA) and 100 U/mL IL-3 contained in WEHI-3B cell line conditioned medium (CM) or 5% pokeweed mitogen mouse spleen cell CM (PWMSCM). Erythroid bursts and multipotential cell colonies were enumerated using an inverted microscope after 8 days of incubation at 37°C in 5% CO₂ at lowered (5%) oxygen tension.

Measurement of percentage myeloid progenitor cells in S-phase. The fraction of CFU-GM, BFU-E, and CFU-GEMM in DNA synthesis, S-phase of the cell cycle, was determined by exposing BM and spleen cells to 50 μCi tritiated thymidine (³HTrdR) for 20 minutes at 37°C prior to washing and plating. The reduction in the number of colonies after exposure of cells to ³HTrdR, compared with the control, estimates the proportion of cells in S-phase.

Peripheral blood cell counts. Hematologic analysis of white blood cell counts (WBC) and platelet counts were carried out from tail vein bleeds of mice using a Coulter Counter model ZM (Coulter Electronics Ltd., Luton Beds, UK). Differentials of WBC were done enumerating 200 cells on Wright-Giemsa-stained peripheral blood smears. Each animal was assessed individually with three to four plates per point assayed. Results are expressed as mean ±1 SD and the levels of significance for comparison between groups were determined with use of Student's t-test (two-tailed).

RESULTS

Effects of IL-11 on proliferation of myeloid progenitor cells in normal mice. IL-11 was first assessed for effects in previously untreated mice. These mice were injected with IL-
Fig 2. Time sequence study of the effects of rhuIL-11 (4 µg/injection, two times daily) on the cycling rates of femoral marrow (A) and splenic (B) myeloid progenitor cells. Control animals received a comparable number of injections of control diluent. Data show results (mean ± SD) of three mice/group/time point. For the calculation of percent of progenitors in S-phase, the number of colonies (mean ± SD) formed from marrow cells treated with control medium ranged from 40 ± 6 to 128 ± 5 for CFU-GM (stimulated with 200 U/mL rmuGM-CSF), from 63 ± 3 to 160 ± 7 for CFU-GM (stimulated with 200 U/mL rmuGM-CSF plus 50 ng/mL rmuSLF), and from 7 ± 2 to 25 ± 4 BFU-E, and from 5 ± 1 to 17 ± 1 CFU-GEMM (stimulated with 2 U/mL Epo, 5% vol/vol PWMSCM, and 0.1 mmol/L hemin). The number of colonies formed from spleen cells treated with control medium ranged from 10 ± 1 to 121 ± 10 CFU-GM (rmuGM-CSF), from 22 ± 3 to 149 ± 4 CFU-GM (rmuGM-CSF plus rmuSLF), and from 14 ± 2 to 52 ± 3 BFU-E and 6 ± 1 to 27 ± 5 CFU-GEMM (Epo, PWMSCM, hemin). *P at least <.05.

In initial studies, mice were inoculated with 1 µg IL-11/injection, a dosage that was previously shown to have significant, but not optimal, enhancing effects in vivo in mice on primary and secondary immune responses. In this set of experiments, the percentage of progenitor cells in S-phase was significantly enhanced (P < .005) for marrow CFU-GM (stimulated in vitro with granulocyte-macrophage colony-stimulating factor [GM-CSF]) from 36.2 ± 2.1 to 54.5 ± 1.1 and for splenic BFU-E and CFU-GEMM (stimulated in vitro with Epo plus WEHI-3BCM), respectively, from 24.0 ± 0.5 to 41.6 ± 5.3 and from 23.0 ± 0.3 to 44.0 ± 2.1 (combined results of three experiments from a total of 12 mice/group). In these experiments, the cycling rates of marrow BFU-E and CFU-GEMM and splenic CFU-GM were not significantly (P > .05) enhanced. No significant effect (P > .05) was observed on absolute numbers of CFU-GM, BFU-E, or CFU-GEMM per femur or per spleen (combined results of two experiments for a total of nine mice/group). Upon dose-response analysis (Fig 1) in which mice were inoculated with either 0.5, 1, 2, 4, or 8 µg IL-11/injection and killed 24 hours later, as little as 1 µg/injection IL-11 significantly (P at least <.05) enhanced the cycling rates of femoral marrow CFU-GM (stimulated in vitro with GM-CSF plus SLF), BFU-E, and CFU-GEMM (stimulated in vitro with Epo plus PWMSCM). Significant enhancement (P at least <.05) was also seen in the absolute numbers of CFU-GM, BFU-E, and CFU-GEMM in the marrow of mice inoculated with 4 to 8 µg IL-11/injection (Fig 1).
slightly, but significantly, enhanced absolute numbers of marrow CFU-GEMM (Fig 1). Based on the results of this dose-response analysis, a time sequence study was performed with mice injected two times daily with 4 μg IL-11/injection. As shown in Fig 2A and B, the cycling rates of femoral marrow and splenic CFU-GM, BFU-E, and CFU-GEMM were significantly (P at least <.05) enhanced as early as 3 hours after the first injection of IL-11 for most compartments, and this enhancing effect was sustained for all compartments at 24, 48, 72, and 96 hours during administration of IL-11. Significant enhancing effects were also noted on absolute numbers of myeloid progenitors in the marrow (Fig 3A) and spleen (Fig 3B), but these effects, which were first apparent at 24 hours, were not as consistent as the enhancing effects seen for progenitor cell cycling rates (Fig 2A and B). Evaluation of the effects of IL-11 on circulating leukocyte counts in the mice used for the studies in Figs 2 and 3 demonstrated significant increases (P at least <.05) in neutrophilic granulocytes (PMNs), but not other leukocyte compartments, as early as 3 hours after the first injection. Respective values for PMN/mL × 10⁶ at 3, 24, 48, 72, and 96 hours for mice given control diluent versus 4 μg IL-11/injection were 2.6 ± 0.6 versus 5.9 ± 0.4, 2.5 ± 1.1 versus 3.9 ± 0.9, 3.0 ± 1.3 versus 4.8 ± 0.8, 3.8 ± 0.4 versus 8.0 ± 1.1, and 3.8 ± 0.9 versus 9.2 ± 2.0.

Effects of IL-11 on proliferation of myeloid progenitor cells in CYC-pretreated mice. Based on the enhancing effects of IL-11 on the proliferation of myeloid progenitor cells noted above in previously untreated mice, a more in-depth analysis of the effects of IL-11 (1 μg/injection) was undertaken in mice recovering from CYC. As seen in Fig 4, 24 hours after CYC administration the absolute numbers of marrow and
In vivo effects of IL-11 in mice

Fig 4. Effects of rhuIL-11 (1 μg/injection, two times daily) on absolute numbers of marrow and splenic myeloid progenitors in mice pretreated with CYC. Data show the combined results of three experiments (mean ± SD) with 9 to 12 animals per group. Control animals received a similar number of injections of control diluent (pyrogen-free saline). a, \(P < .005 \); b, \(P < .05 \); c, \(P < .1 \) (= not significant). (m) Control; (□) CYC; (■) CYC + IL-11.

Spleenic myeloid progenitor cells were significantly depleted and then with time increased to normal or above-normal levels. Although the time sequence varied for the different progenitor cell compartments in marrow and spleen, IL-11 significantly enhanced the absolute numbers of marrow and splenic myeloid progenitor cells in these CYC-pretreated mice and in a number of cases accelerated recovery of these cells (Fig 4).

Effects of IL-11 on the recovery of peripheral blood cell counts in CYC-pretreated mice. We first evaluated effects in mice given 1 μg/injection, two times daily. The results from one of two reproducible experiments are shown in Fig 5. Total leukocyte counts decreased drastically 24 hours after the administration of CYC (Fig 5, upper panel). The counts then increased gradually but did not return to normal levels until 7 days later. In mice pretreated with CYC and injected daily with IL-11, the recovery of total leukocytes was only slightly enhanced. Significant increases of leukocyte counts were observed at 7 and 14 days of IL-11 treatment compared with the controls and with the animals injected with CYC alone. As seen in Fig 5 (lower panel), in mice injected with CYC alone, platelet counts decreased to the lowest level by 3 days and then gradually increased and attained normal levels by 14 days. In mice injected with IL-11, recovery of platelet counts to normal levels was accelerated with normal platelet levels attained by 7 days. At 14 days after CYC, mice treated with IL-11 still showed significantly increased numbers of platelets. In another set of similar experiments, mice were injected two times daily with 4 μg IL-11/injection (Fig 6). IL-11 again accelerated recovery of platelets, with the higher dosage of IL-11 shown in Fig 6 having an apparently greater effect in enhancement of platelet numbers than that noted for the lower dosage of IL-11 in Fig 5. Effects on recovery of peripheral blood leukocytes was the same using 4
As shown in Fig. 6, the significant IL-11–enhancing effects on peripheral blood leukocytes were entirely because of increases in PMNs. There was no difference in recovery of lymphocytes (Fig. 6) or monocytes (data not shown). Circulating erythrocyte values were only slightly decreased by CYC at day 3 from control values, and there were no significant differences in erythrocyte counts in CYC-treated mice given control diluent versus IL-11 (data not shown).

DISCUSSION

The cDNA encoding IL-11 was originally isolated from a primate BM-derived stromal cell line based on its ability to stimulate the proliferation of an IL-6-dependent mouse plasmacytoma cell line. IL-11 has subsequently been shown to have pleiotropic effects on the regulation of hematopoiesis in both murine and human in vitro culture systems. In vivo studies have previously demonstrated that IL-11 significantly enhanced in vitro antigen-specific antibody responses and augmented antigen-specific antibody responses in both normal and immunosuppressed mice. In this report, we evaluated the capability of IL-11 to accelerate hematopoietic reconstitution of myelosuppressed C3H/HeJ mice following CYC pretreatment.

IL-11 appears to have no effect on the in vitro proliferation of hematopoietic progenitors when added to the cultures alone. In our present studies, the most remarkable in vivo effect of IL-11 administered to normal mice was to promote marrow and splenic CFU-GM, BFU-E, and CFU-GEMM to a higher proliferative state. This is consistent with the previous observation that IL-11, like other blast cell growth factors such as IL-6, G-CSF, and c-kif ligand, can bring the early hematopoietic progenitors out of the G0 stage of the cell cycle to respond to other growth factors. A significant enhancement of absolute numbers of marrow and splenic myeloid progenitor cells was observed in normal mice (although these results were not as consistently significant as the cycling studies) and in mice pretreated with CYC and administered with IL-11. These data plus the observed synergistic interactions of IL-11 with IL-3 in vitro suggest that the in vivo effects of IL-
IN VIVO EFFECTS OF IL-11 IN MICE

Fig 6. Effects of rhIL-11 (4 μg/injection, two times daily) on cell counts from peripheral blood of mice pretreated with CYC. The results (mean ± SD) are from four mice/group. a, P at least < .05 for CYC-treated mice given IL-11 compared with CYC-treated mice given control diluent; b, P at least < .05 for CYC-treated mice given IL-11 compared with normal (non–CYC-treated) mice. [] Normal; () CYC; () CYC + IL-11.

IL-11 may be caused by cooperation of this cytokine with other endogenous biomolecules produced in mice. Dose-response and time sequence studies in normal mice demonstrated that cycling effects on progenitors are seen within 3 hours, but increases in absolute numbers of progenitors are seen by 24 hours. That IL-11 enhanced neutrophil release from these mice as early as 3 hours after administration suggests that IL-11 may also induce release of neutrophils. This early induced release is not likely because of endotoxin contamination because little or no endotoxin was in the IL-11 preparations and we used C3H/HeJ mice, which do not respond well to endotoxin, as recipients. Recent studies demonstrating that IL-11 synergizes with IL-3 to stimulate the proliferation and maturation of megakaryocytes, along with our current study in which IL-11 accelerated the recovery of platelet counts in CYC-pretreated mice, suggest that IL-11 may play an important role in the regulation of megakaryocytopoiesis in vivo.

In human BM transplant patients, reconstitution of the immunohematopoietic system proceeds slowly over a period of months because of histocompatibility mismatching, the presence of graft versus host disease, or the persistence of viral infection. The results presented in this report and our recent studies on the effects of IL-11 on antigen-specific antibody responses suggest that IL-11 administration may have therapeutic benefit in accelerating the recovery of a drug-suppressed immunohematopoietic system.

ACKNOWLEDGMENT

We thank Linda Cheung and Becki Robling for the preparation of this manuscript.

REFERENCES

19. Atkinson K: Reconstruction of the hematopoietic and immune systems after marrow transplantation. Bone Marrow Transplant 5:209, 199
In vivo effects of recombinant interleukin-11 on myelopoiesis in mice

G Hangoc, T Yin, S Cooper, P Schendel, YC Yang and HE Broxmeyer