Human Erythrocyte Acetylcholinesterase Bears the Yt\(^{a}\) Blood Group Antigen and Is Reduced or Absent in the Yt(a-b\(^{-}\)) Phenotype

By Neeraja Rao, Carolyn F. Whitsett, Sarah M. Oxendine, and Marilyn J. Telen

The Cartwright (Yt) blood group antigens have previously been shown likely to reside on a phosphatidylinositol-linked erythrocyte membrane protein. In this study, an unusual individual whose red blood cells (RBCS) were of the previously unreported Yt(a-b\(^{-}\)) phenotype were used, along with normal Yt(a+) cells, to investigate serologically and biochemically the relationship of the Yt\(^{a}\) antigen to known phosphatidylinositol-linked erythrocyte proteins. Yt(a-b\(^{-}\)) RBCS expressed normal amounts of various phosphatidylinositol-linked proteins except acetylcholinesterase. Further, human anti-Yt\(^{a}\) reacted with acetylcholinesterase in immunoprecipitation and immunoblotting studies. Thus, acetylcholinesterase is now identified as the protein bearing the Yt blood group antigens.

© 1993 by The American Society of Hematology.

From the Department of Medicine, the Division of Hematology/Oncology, Duke University Medical Center, Durham, NC; and the Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA.

Submitted August 31, 1992; accepted September 29, 1992.

Supported by Grant Nos. HL33572 and HL44042 from the National Institutes of Health (NIH). M. J. T. is the recipient of Research Career Development Award HL02233 (NIH).

Address reprint requests to Marilyn J. Telen, MD, Box 3387, Duke University Medical Center, Durham, NC 27710.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1993 by The American Society of Hematology.
0006-4971/93/8103-0078$3.00/0

From www.bloodjournal.org by guest on November 16, 2017. For personal use only.
Acetylcholinesterase (AChE) epitopes. P3x63Ag8 ascitic fluid, as well as buffer alone, was used as negative control.

Enzyme assays. AChE activity was measured at room temperature using the assay of Ellman et al.\(^2^5\) with 1 mmol/L acetylthiocholine iodide and 250 μmol/L 5,5'-dithiobis(2-nitro-benzoic acid) in 100 mmol/L sodium phosphate buffer, pH 7.4. After the reaction was stopped with absolute alcohol, optical density (OD) was measured spectrophotometrically at 412 nm (Spectronic 101; Milton Roy Co, Rochester, NY).

Radioimmunoprecipitation. Erythrocytes were obtained from EDTA-anticoagulated whole blood. Three washes three times in PBS and were labeled with \(^1^2^5^1^1\)I by using Iodo-Gen (Pierce, Rockford, IL), as described previously.\(^1^6\) Immunoprecipitation with anti-Yt\(^a\) and AE4 antibodies was then performed according to previously described procedures.\(^2^8,2^9\) For immunoprecipitation with human antiserum, 5 x 10\(^7\) washed, radiolabeled cells were incubated with 400 μL of adsorbed and eluted Yt\(^a\) antibody or a similar preparation made from nonreactive serum, for 1 hour at 22°C, washed, and then lysed with hypotonic buffer.\(^2^0\) Membranes from 5 x 10\(^7\) cells were then solubilized in 400 μL of 0.015 mol/L NaCl, 0.05 mol/L Tris, 0.005 mol/L EDTA, pH 7.4 with 1% (vol/vol) Nonidet P-40 (Sigma, St Louis, MO), 0.003 mol/L phenylmethylsulfonyl fluoride (PMSF), and 0.1% gelatin (Rip buffer) for 30 minutes at 4°C. After centrifugation to remove unsolubilized material, supernates were then used for immunoprecipitation. “Preclearing” was accomplished by two incubations of this membrane protein solution with 200 μL of gelatin-Sepharose (Pharmacia Fine Chemicals, Uppsala, Sweden) suspended in Rip buffer. Immune complexes were then precipitated by using Sepharose beads conjugated to anti-human antibody (Cappel, West Chester, PA). Elution of immunoprecipitated protein and analysis by polyacrylamide gel electrophoresis (PAGE) and autoradiography were then accomplished as described previously.\(^2^8,2^9\) Radioimmunoprecipitation and analysis with the use of MoAb AE4 and P3x63/Ag8 ascitic fluid (negative control) were performed simultaneously to control for AChE level of expression.\(^1^5\)

Dot-blot analysis. Serial dilutions of purified AChE were applied to nitrocellulose and allowed to bind for 2 hours at 22°C. The membrane was then washed with Tris-buffered saline containing 0.05% Tween 20 and incubated with either human anti-Yt\(^a\) or normal human sera, 5 x 10\(^7\) washed, radiolabeled cells were incubated with 400 μL of adsorbed and eluted Yt\(^a\) antibody or a similar preparation made from nonreactive serum, for 1 hour at 22°C, washed, and then lysed with hypotonic buffer. Membranes from 5 x 10\(^7\) cells were then solubilized in 400 μL of 0.015 mol/L NaCl, 0.05 mol/L Tris, 0.005 mol/L EDTA, pH 7.4 with 1% (vol/vol) Nonidet P-40 (Sigma, St Louis, MO), 0.003 mol/L phenylmethylsulfonyl fluoride (PMSF), and 0.1% gelatin (Rip buffer) for 30 minutes at 4°C. After centrifugation to remove unsolubilized material, supernates were then used for immunoprecipitation. “Preclearing” was accomplished by two incubations of this membrane protein solution with 200 μL of gelatin-Sepharose (Pharmacia Fine Chemicals, Uppsala, Sweden) suspended in Rip buffer. Immune complexes were then precipitated by using Sepharose beads conjugated to anti-human antibody (Cappel, West Chester, PA). Elution of immunoprecipitated protein and analysis by polyacrylamide gel electrophoresis (PAGE) and autoradiography were then accomplished as described previously.\(^2^8,2^9\) Radioimmunoprecipitation and analysis with the use of MoAb AE4 and P3x63/Ag8 ascitic fluid (negative control) were performed simultaneously to control for AChE level of expression.\(^1^5\)

Identification of Yt(a–b–) propositus. A 60-year-old white man, with cardiomyopathy and previous aortic valve replacement, was undergoing evaluation for heart transplant. He had no history of neurologic dysfunction. Routine pretransfusion antibody screening for RBC alloantibodies showed presence of an antibody reactive with all cells but the patient’s. Family members’ RBCs were incompatible. The patient’s cells had a weakly positive (1+) direct antiglobulin test with anti-complement only, and extensive antigen typings of the patient’s RBCs showed them to be Yt(a–b–) using standard blood bank (agglutination) techniques. However, during studies performed by several consulting labs (to be reported elsewhere), very weak expression of Yt\(^a\) was suggested by the fact that some, but not all, examples of anti-Yt\(^a\) could be adsorbed onto and eluted from the patient’s cells. The patient’s antibody reacted with all cells tested except complement-sensitive PNH RBCs, suggesting that it recognized a PI-anchored structure. Chromium survival studies confirmed apparent presence of anti-Yt\(^a\) in that both Yt(a+b–) and Yt(a+b+) cells had reduced survival: 74% and 12% of Yt(a+b–) cells survived 1 and 24 hours, respectively, whereas 75% and 46% of Yt(a+b+) cells survived 1 and 24 hours; 96% of autologous cells survived at 24 hours.

Expression of PI-linked proteins by Yt(a–b–) erythrocytes. Expression of various PI-linked proteins was examined by RIA, using a variety of monoclonal antisera. In initial studies, Yt(a–b–) RBCs bound antibodies to LFA-3, CD59, JMH protein, and DAF in amounts similar to those bound by normal controls (Table 1). However, in the same study, 4% as much AE1 antibody to AChE was bound by Yt(a–b–) cells as by random donor cells (Table 1). When binding of other anti-AChE MoAbs was measured and compared with control cells, the amount of binding seen was 17%, 8%, and 17% of normal for antibodies AE2, AE3, and AE4. AE2 antibody recognizes an epitope that overlaps but is not identical to that which binds AE1, while the AE3 and AE4 antibodies recognize two other independent epitopes of AChE.\(^2^1\) Antibody AE4 was then used to compare expression of AChE by Yt(a–b–) cells with that of a larger number of random donors. When compared with 13 additional normal cell samples, the Yt(a–b–) cells bound only 10% as much AE4 antibody as did the normal cells (64 cpm v 643 cpm ± 35 SEM). Thus, Yt(a–b–) cells expressed a level of AChE antigenic activity more than 4 SDs below the mean for normal individuals.

AChE enzyme activity. To confirm that lack of AChE antigenic activity correlated with lack of AChE enzyme activity, a colorimetric assay of AChE was performed.\(^1^5,2^7\) \(^Yt(a–b–)\) cells expressed 15% as much AChE enzyme activity, as did normal, sample age-matched controls (OD\(_{412}\) of 0.058 v a mean of 0.385 for three normal controls). Thus, the level of AChE enzyme activity correlated with AChE antigenic activity.

Immunochemo assays of Yt(a–b–) RBCs. To confirm further that AChE was absent on Yt(a–b–) RBCs, immunoprecipitation studies were performed using variant and normal cells in parallel. As shown in Fig 1A, AChE could be immunoprecipitated by antibody AE4 from the lysate of normal radiolabeled RBC membranes but not from Yt(a–b–) cell membrane lysate.

Immunoprecipitation and dot-blot studies using human anti-Yt\(^a\). Confirmation of the relationship between AChE and the high-frequency antigen Yt\(^a\) was obtained using human anti-Yt\(^a\) in immunoprecipitation studies. In experiments performed using human anti-Yt\(^a\) and murine monoclonal anti-AChE in parallel (Fig 1B), all three antisera immunoprecipitated a single protein band of approximately 160 Kd

<table>
<thead>
<tr>
<th>Specific cpm Bound</th>
<th>LFA-3</th>
<th>MRL</th>
<th>JMH</th>
<th>DAF</th>
<th>AChE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yt(a–b–)</td>
<td>1,820</td>
<td>2,284</td>
<td>872</td>
<td>1,759</td>
<td>19</td>
</tr>
<tr>
<td>Normal no. 1</td>
<td>1,427</td>
<td>2,396</td>
<td>802</td>
<td>1,720</td>
<td>543</td>
</tr>
<tr>
<td>Normal no. 2</td>
<td>1,743</td>
<td>2,674</td>
<td>630</td>
<td>1,731</td>
<td>278</td>
</tr>
</tbody>
</table>
ACETYLCHOLINESTERASE BEARS Yt ANTIGEN

Mr x 10-3

![Image](https://via.placeholder.com/150)

Fig 1. Immunoprecipitation studies using murine anti-AChE antibody AE4 and human anti-Yt. (A) Antibody AE4 (lanes 1 and 3) and control murine ascites fluid P3x63/Ag8 (P3) (lanes 2 and 4) were used to immunoprecipitate proteins from lysed radiolabeled Yt(a-b-) erythrocytes (lanes 1 and 2) and normal Yt(a+) erythrocytes (lanes 3 and 4), and the results were analyzed under nonreducing conditions. AE4 precipitated AChE (Mr approximately 160,000) only from the Yt(a+) cells. (B) Two different examples of human anti-Yt (lanes 1 and 2), as well as nonreactive human serum (lane 3) and murine antibody AE4 (lane 4), were used in immunoprecipitation experiments with normal Yt(a+) erythrocytes. Both examples of anti-Yt precipitated a 160,000-Da band (lanes 1 and 2) of similar molecular weight to the protein immunoprecipitated by antibody AE4 (lane 4). Nonreactive human serum (lane 3) did not precipitate a similar band, nor did murine myeloma protein P3 (data not shown). The protein of approximately 92,500 Da in lanes 1 through 3 is band 3, nonspecifically immunoprecipitated by all human sera.

(anaalyzed under nonreducing conditions), whereas control sera (normal human serum and murine P3 myeloma protein) failed to precipitate such protein bands.

Because RBC membranes contain only very small numbers of AChE molecules, a fact that makes Western blotting of membrane proteins for AChE difficult, and, because human anti-Yt immunoprecipitates protein only when antibody is applied to intact cells, a third technique was used to prove the identity of the protein recognized by anti-Yt.

Physicochemically purified AChE18 was applied to nitrocellulose at varying concentrations, and the bound protein was reacted with both human anti-Yt as well as normal human serum. The anti-Yt reacted with AChE in this system, whereas the normal serum did not (Fig 2).

DISCUSSION

This study shows that deficient expression of human RBC AChE and normal expression of other PI-anchored proteins are associated with the first reported example of the Yt(a-b-) blood group phenotype. Furthermore, human anti-Yt, the antibody directed against the high-frequency Yt antigen, recognizes AChE in immunoprecipitation and immunoblotting experiments. Thus, this study confirms previous work demonstrating that both the Ytt and Ytb antigens were absent from the affected cells of patients with paroxysmal nocturnal hemoglobinuria and thus were probably resident on a PI-anchored membrane protein.2 While this report was being prepared, confirmation of this work was presented by Spring and Anstee.31
In addition, recent mapping of the Yt blood group system to chromosome 7q now provides a locus for the human AChE gene. Extensive study and follow-up of the Yt(a−b−) propositus (to be reported elsewhere) has shown that this patient developed the Yt(a−b−) phenotype in conjunction with an antibody probably directed to the AChE molecule. Over many months, expression of Yt+, as well as of AChE, increased, so that Yt+ became detectable, although weakly so, by routine blood banking methods 4 months after initial study. Quantitation of AChE at the end of the follow-up period showed increased expression of AChE to 57% of normal levels concomitantly with appearance of the Yt+ antigen. Loss of expression of blood group antigens while an autoantibody to the antigen or molecule is present has been described previously and is perhaps most common in the acquired JMH-negative phenotype. However, it is important to note that the function of AChE on RBCs is unknown and that isolated hereditary erythrocyte AChE deficiency is at least theoretically possible. Recent work has shown that RBC AChE uses a small exon not expressed in other tissues; it is this exon that provides the sequence necessary for posttranslational cleavage and attachment of a PI anchor. Thus, a mutation in that exon might be predicted to cause isolated AChE deficiency. However, genetic studies have not been performed in the current study because of the transient nature of the Yt(a−b−) phenotype.

In summary, PI-anchored proteins have now been confirmed to bear antigens of at least four different blood groups: Cromer, JMH, Holley/Gregory (Hy/Gy), and Cartwright (Yt). In addition, Dombrock antigens appear to reside on a PI-linked protein. Utilization of human antisera to these proteins of the erythrocyte membrane. Baillieres Clinical Haematol 4: 849, 1991

REFERENCES
ACETYLCHOLINESTERASE BEARS Yt' ANTIGEN

17. Spring F, Reid M: Evidence that the human blood group antigens Gy and Hy are carried on a novel glycosphatidylinositol-linked erythrocyte membrane glycoprotein. Vox Sang 60:53, 1991

23. Daniels GL, Knowles RW: A monoclonal antibody to the high frequency red cell antigen JMH. J Immunogenet 9:57, 1982

31. Spring FA, Anstee DJ: Evidence that the Yt blood group antigens are located on human erythrocyte acetylcholinesterase (AChE). Transfus Med 1:42, 1991 (abstr, suppl 2)

Human erythrocyte acetylcholinesterase bears the Yta blood group antigen and is reduced or absent in the Yt(a-b-) phenotype

N Rao, CF Whitsett, SM Oxendine and MJ Telen