Activation of the Kallikrein-Kinin System After Endotoxin Administration to Normal Human Volunteers

The objective of this study was to determine the role of the kallikrein-kinin system in healthy humans after intravenous administration of either Escherichia coli endotoxin or saline. We studied a total of 18 healthy nonsmoking volunteers, 23 to 38 years old, in an open-label study at the Critical Care Medicine Department, Clinical Center, National Institutes of Health (Bethesda, MD) in which some of the patients served as their own controls. After baseline data collection, the subjects received intravenously either E. coli endotoxin (n = 15, 4 ng/kg of body weight) or saline (n = 8, controls). Signs, symptoms, systemic blood pressure, factor XII, plasma prekallikrein (PK), factor XI (FXI), antithrombin III (AT-III), high molecular weight kininogen (HK), and α2-macroglobulin–kallikrein complexes were measured at baseline and 1, 2, 3, 5, and 24 hours after injection of either saline or endotoxin. After infusion of endotoxin, we found the functional plasma levels of FXI decreased at 2 hours (P < .05) and at 5 hours (P < .05). Functional PK was significantly depressed by 2 hours (P < .05), at 5 hours (P < .05), and at 24 hours (P < .01), whereas the PK antigen was only low at 5 hours (P < .05). These changes were accompanied by a significant increase in circulating α2-macroglobulin–kallikrein complexes at 3 hours (P < .05) and 5 hours (P < .01). No significant changes occurred in the plasma levels of factor XII or HK. We concluded that clinical response to intravenous endotoxin in healthy human volunteers is associated with activation of the kallikrein-kinin systems. Further investigation is needed with specific inhibitors of the kallikrein-kinin system to define its primary or secondary role in the endotoxin-mediated reactions.

© 1993 by The American Society of Hematology.

SEPTIC SHOCK is a frequent underlying cause of severe progressive failure of multiple organ systems. Hypotensive bacteremia is characterized by cell damage or necrosis and vascular damage. Endotoxin, a major cell wall component of gram-negative bacteria, interacts with inflammatory cells, releasing endogenous mediators such as cytokines, hydrolyses, peptides, prostaglandins, and amines that contribute to the pathophysiology of septic shock.

The contact system is composed of plasma factor XII (FXII), factor XI (FXI), prekallikrein (PK), and high molecular weight kininogen (HK). FXII, FXI, and PK are serine protease zymogens, and HK is a bradykinin (Bk) precursor that functions as a cofactor in most of the reactions involved in contact activation. This activation is initiated by binding of plasma FXII to a negatively charged surface, where autoactivation of zymogen FXII occurs, yielding activated FXII (FXIIa). A small amount of FXIIa leads to the subsequent activation of its substrates, PK, FXI, and HK, resulting in consumption and decreased plasma levels of these zymogens and the procofactor. Kallikrein, which results from PK activation, has been shown to be a chemoattractant for neutrophils, which it stimulates to aggregate and release lysosomal enzymes such as elastase. Additionally, kallikrein efficiently hydrolyzes HK to release Bk, a potent vasodilator. Kallikrein further amplifies contact activation by catalyzing the conversion of FXII to FXIIa. The major regulators of activation of this system are the naturally occurring plasma protease inhibitors, C1-inhibitor (for FXIIa and kallikrein), α2-macroglobulin (for kallikrein), and α1-antitrypsin (for FXIa).

Mason et al were the first to describe decreased PK, FXII, and kallikrein inhibitor (C1-inhibitor) in human septic shock. Information is limited regarding the effect of endotoxin on human coagulation in vivo. Kimball et al were the first to show that Bk was increased in all subjects during administration of 3 to 5 ng/kg endotoxin, with a peak response at 1 hour. Van Deventer et al failed to show contact activation measuring C1 inhibitor complexes with kallikrein and FXIIa, while administering 2 ng/kg of endotoxin to their subjects. Studies in animals have shown that the contact system of blood coagulation participates in the biochemical and hemodynamic changes induced by bacterial cell products. Lerner et al showed a decrease in FXII to 61% 6 hours after endotoxin infusion in rabbits. Gallimore et al showed a decrease in PK and high molecular weight kininogen (HK) in dogs receiving endotoxin in lethal doses.

In the present study, we performed quantitative assays to determine the role of the contact system as well as to define

From The Sol Sherry Thrombosis Research Center, Department of Medicine, and Department of Pathology, Temple University School of Medicine, Philadelphia, PA; the Critical Care Medicine Department, Critical Center, National Institutes of Health, Bethesda, MD; and Rush-Presbyterian-St Luke's Medical Center, School of Medicine, Chicago, IL.

Submitted August 13, 1992; accepted January 28, 1993.

Supported in part by a National Institutes of Health (NIH) Clinical Investigator Award, HL02681-01 (R.A.C.), Grant-in-Aid 46B (R.A.C.), Grant-in-Aid 890156 (J.D.P.), Grant-in-Aid (R.A.P.), and Special Investigatorship 63 (J.D.P.) from the American Heart Association, Southeastern Pennsylvania Affiliate; a grant from the US Navy Research and Development Command N00014-88-K0606; and a NIH SCOR in Thrombosis, HL45486.

Address reprint requests to Raul A. DeLa Cadena, MD, Department of Pathology and The Sol Sherry Thrombosis Research Center, Room 403 OAMS, Temple University School of Medicine, 3400 N Broad St, Philadelphia, PA 19140.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1993 by The American Society of Hematology.
the sequence of events that occurs in response to intravenous administration of endotoxin. In addition, we compared the data with previously reported effects of endotoxin (on the same group of normal volunteers) upon the cardiovascular and fibrinolytic systems as well as on the neutrophil function.

MATERIALS AND METHODS

Subjects and protocol. Eighteen healthy nonsmoking volunteers, 23 to 38 years old, participated in the study. The current investigation was performed simultaneously with an evaluation of the effects of endotoxin on hemodynamic and fibrinolytic systems. The results of these parts of the study have been published elsewhere. Five of the subjects underwent repeat control studies without endotoxin 3 months later. The protocol was approved by the Institutional Review Board on Human Experimentation at the National Institutes of Health, and written consent was obtained from all subjects.

Blood collection. Blood samples were obtained through the indwelling radial artery catheter at 1, 2, 3, and 5 hours after infusion of endotoxin or normal saline. Samples obtained 24 hours after the infusion were drawn from a peripheral vein. All samples were collected in plastic syringes and immediately transferred to plastic tubes containing 3.8% sodium citrate (9:1, vol:vol) that were kept on ice. The samples were centrifuged at 2,500 rpm at 4°C for 10 minutes, and the top two-thirds of the plasma layer was removed and stored at −70°C until the time of assay.

Endotoxin preparation. Purified lipopolysaccharide from *Escherichia coli* (US Standard Reference Endotoxin, lot EC-5, Bureau of Biologics, Food and Drug Administration, Bethesda, MD) was supplied as a sterile dry powder containing 1 mg (≈10,000 U) of endotoxin, which was reconstituted before infusion with 5 mL of sterile water.

Assays of coagulation and contact activation. Antithrombin III (AT-III) was measured by a functional microplate assay using the Coatest Antithrombin Kit (Kabi Pharmacia, Franklin, OH). The assay measured the extent of hydrolysis of a chromogenic substrate, S-2238, by AT-III. The residual thrombin after inhibition of a fixed amount of thrombin by the inhibitor in the plasma sample. C1 inhibitor was measured by the inhibition of plasma kallikrein using an amidolytic assay as previously described, with the following modifications. The plasma was methanamine treated as described and kallikrein was added to the methanamine-treated plasma as per the referenced method to form the reaction mixture. The assay was adapted to a microplate by the addition of 10 mL of reaction mixture at precise time intervals (0.5, 1, 1.5, 2 and 4 minutes) to a microplate well containing 190 mL of 50 mmol/L Tris-Cl, 0.1% polyethylene glycol, 2 mmol/L S-2238, pH 7.9. Each assay point was allowed to incubate with substrate for 10 minutes before addition of 50 mL of 5% acetic acid to stop the cleavage of amidolytic substrate. The absorbance was read at 405 nm and the apparent rate constant determined as described and converted to micromoles per milliliter of C1 inhibitor. PK levels were determined by a functional assay, using the chromogen substrate, S-2302 (Pro-Arg-P-nitroanilide). Plasma was depleted of proteolytic inhibitors by incubation with diithie for 15 minutes. Zymogen PK in the plasma samples was then activated by incubation with plasma PK activator (Kabi) containing HK-activated FXII and elagic acid. S-2302 was subsequently added to each sample, and the extent of hydrolysis of the substrate was proportional to the amount of PK in the plasma samples.

FXI functional activity was determined by a method developed in this laboratory. In brief, plasma FXI was activated by kaolin (0.1 μg/mL) for 50 minutes at 23°C after acid treatment. This reaction was performed in the presence of soybean trypsin inhibitor (1.6 μmol/L) to inhibit plasma kallikrein generation during the activation step. Corn trypsin inhibitor (0.01 μg/mL) prevented hydrolysis of the chromogenic substrate S-2366 by FXIIa, and after 10 minutes of incubation, the chromogenic substrate was added. HK and FXII coagulant activities were determined by a slight modification of the method described elsewhere. One hundred microliters of FXII-deficient plasma (George King Biomedical, Inc, Overland Park, KS), or total kininogen-deficient plasma (Williams plasma), 100 μL of 20 mmol/L Tris (hydroxymethyl)-aminomethane (Tris) HCl, pH 7.4, containing 0.15 mol/L NaCl, 100 μL of kaolin (5 mg/mL in saline), and 100 μL of 0.2% inosithin in buffer were mixed together. Normal pooled human plasma (10, 5, 2, and 1 μL) was added and incubated at 37°C for 8 minutes. Coagulation time was determined after the addition of 100 μL of 30 mmol/L CaCl2. This procedure was used to generate a standard curve (log-log relationship). Samples for analysis were assayed under the same conditions, using 10 μL of the human plasma sample, and data were expressed as a percentage of normal pooled human plasma. One unit is defined as the amount of activity in 1 mL of normal pooled human plasma.

PK antigen was measured by a sandwich-type enzyme-linked immunosorbent assay (ELISA) using two mouse monoclonals against the heavy chain of PK. These two monoclonal antibodies (MoAbs) have previously been shown to have nonoverlapping binding sites. Microplate wells were coated with the first monoclonal, 13G11, at a concentration of 5 μg/mL in 0.166 mol/L H3BO4, 0.125 mol/L NaCl, pH 8.5 overnight at 23°C. The following day, the microplate wells were blocked with 0.5% bovine serum albumin (BSA) in phosphate-buffered saline (PBS)-Tween for 1 hour at 23°C. Samples were diluted in PBS-Tween + BSA and incubated in the microplate wells for 2 hours at 23°C. The second monoclonal used, 10B6, was directly conjugated with alkaline phosphatase by the method of Voller et al. This conjugated monoclonal was diluted in PBS-Tween + BSA to approximately 2 μg/mL and incubated in the wells for 2 hours. Finally, substrate (p-nitrophenyl phosphate, 1.5 mg/mL) was added to the microplate wells, and the absorbance read at 405 nm.

PK antigen levels were significantly decreased (Fig 3) with a slight recovery by 24 hours. The concentration of functional PK decreased further and remained low throughout the rest of the experimental protocol (5 and 24 hours, P < .05 and P < .01, respectively, Fig 1), suggesting that this contact phase protein may serve as an indicator of contact activation by endotoxin.

PK antigen levels were significantly decreased (Fig 2) only
during the 5-hour time interval \((P < .05)\), paralleling the decrease in the functional levels at the same time interval. The ratio of PK function to antigen did not differ significantly for the endotoxin group when compared with the saline group.

FXI levels were significantly decreased (Fig 3) by the 2-hour time interval \((P < .05)\). Like the PK levels, a recovery was observed by the 3-hour time interval, with a subsequent decrease in the circulating levels by the 5-hour interval \((P < .01)\). Unlike the PK levels, the FXI levels were found normal by 24 hours after infusion of endotoxin.

There were no significant differences between functional levels of FXII, HK, C1 inhibitor, or AT-III in the endotoxin group compared with the saline control (data not shown).

The concentration of \(\alpha_2\)-M-Kal complexes was elevated fourfold in the endotoxin-treated group by 3 hours \((P < .05)\) and fivefold by 5 hours \((P < .01)\), with a decrease to normal in the circulating levels of complexes by 24 hours (Fig 4). All patients receiving endotoxin but none receiving saline showed elevated \(\alpha_2\)-M-Kal complexes at 3 hours (range, 6.9 to 23 nmol/L) and at 5 hours (range, 11.4 to 17.5 nmol/L).

DISCUSSION

Our observations show that within 2 hours after the administration of endotoxin to normal humans, contact activation is initiated. PK and FXI decrease, and by 5 hours reach a nadir that is accompanied by a fivefold increase in \(\alpha_2\)-M-Kal complexes. The latter increase in the enzyme-inhibitor complexes confirms the activation of kallikrein by endotoxin in vivo. Only PK functional levels remain significantly low at 24 hours, possibly reflecting its longer half-life or depressed hepatic synthesis. The concentrations of FXII necessary are very small compared with the concentrations of the zymogen, and thus no significant change in FXII coagulant activity was observed.

The temporal relationship of these responses to endotoxin can be related to previously published observations for the same or similar subjects describing hemodynamics and fibrinolytic responses to endotoxin. Endotoxin administration to normal humans results in a hyperdynamic cardiovascular state characterized by an elevated cardiac index and heart rate and by a decreased mean arterial pressure (MAP) and systemic vascular resistance. In retrospect, the initiation of this hyperdynamic cardiovascular response was associated with a decrease in functional levels of PK (2 hours), indicative of kallikrein generation. Activation of PK to kallikrein results in the generation of Bk from HK. Bk is one of the mediators of the pain and increased capillary permeability characteristic of the inflammatory response. We have recently shown, in an experimental model of lethal bacteremia (baboons), a significant correlation (Spearman \(R\) value of .929) between the decline in the levels of HK and the development of irreversible hypotension. In the current study, the small amount of kallikrein generated is...
not sufficient to detectably alter the concentration of HK or C1 inhibitor. A modest decrease of 10% of HK would result in a concentration of 65 nmol/L Bk, which can contribute to the observed hemodynamic changes.

Previous work has shown that a small dose of endotoxin promotes plasminogen activation and its subsequent inhibition in normal subjects.16 Tissue plasminogen activators were found to be 7 times higher when compared with control values by 3 hours. We detected α_2-M-Kal complexes by 3 hours (Fig 4), with a maximum concentration by 5 hours, indicating formation of the active enzyme, kallikrein, and its subsequent inhibition. The pathophysiologic role of intrinsic plasminogen activators as opposed to tissue plasminogen activators and urokinase is unclear. In vitro, kallikrein converts plasminogen to plasmin in an apparently stoichiometric reaction.20 FXIa, FXIIa, and FXIIia also convert plasminogen to plasmin.29,30 However, the activity of activated FXI or FXIIia in plasma is calculated to be only 5% that of kallikrein.29 Recently, kallikrein has been shown to convert single-chain urokinase to the two-chain enzyme,31 which might account for enhanced fibrinolysis after exposure to activating surfaces. Whatever the mechanism, it is possible that contact activation may enhance the fibrinolytic system, which may lower the risk of fibrin deposition during endotoxemia.

Neutrophil activation with release of the neutral protease, elastase, occurs by 3 hours after endotoxin administration.16 Preliminary data has shown that neutrophils are primed in vivo to produce enhanced amounts of superoxide after endotoxin administration to humans.32 The priming of neutrophils occurred by 4 hours, but not at 15 minutes after endotoxin administration. Increased levels of α_2-M-Kal complexes, which result from kallikrein generation due to contact activation, become significant at 3 hours. Because kallikrein can induce neutrophil degranulation,33,34 this result suggests that contact activation contributes to the activation and priming of neutrophils in vivo after endotoxin administration.

Recently, it has become apparent that many of the biologic effects of endotoxin are mediated by cytokines, mainly synthesized and released by macrophages, monocytes, and endothelial cells, including tumor necrosis factor (TNF),35 interleukin-1 (IL-1),36 IL-6, and IL-8.37 Michie et al35 reported release of TNF into the circulation after infusion of endotoxin but were unable to detect IL-1 in circulation and did not measure IL-6. Fong et al38 detected IL-6 in plasma, and Van Deventer et al10 confirmed that both TNF and IL-6 are released after endotoxin administration in human volunteers. In another study,9 the levels of cytokines correlated with fever. Furthermore, 30 to 45 minutes after endotoxin-induced release of TNF into the circulation, a steep increase in the plasma tissue plasminogen activator (t-PA) concentration was noted, followed by a decrease in MAP. In vitro, endotoxin39 and TNF40 both stimulate the release of plasminogen activator inhibitor (PAI) by endothelial cells, but decrease the synthesis of t-PA.

Activation of the contact system in this study occurred within 120 minutes after the peak concentration of TNF (60 minutes). In agreement with the study of Van Der Poll et al,9 we found that in patients receiving a high dose of TNF as part of a protocol for cancer treatment (unpublished results), no activation of the contact system was detected even with sensitive techniques such as measurement of α_2-M-Kal complexes. These results suggest that TNF by itself cannot support contact activation and that endotoxin or other cytokines may be required for initiation of contact activation.

It has recently been shown that TNF primes human neutrophils for enhanced superoxide production in vitro,41 and kallikrein, which stimulates neutrophil degranulation,33,34 may enhance the effects.

We conclude that experimental endotoxemia in humans induces activation of the contact system. The activation of the contact system was found to be temporarily associated with the hemodynamic changes induced by endotoxemia, as well as with changes in the neutrophil function and fibrinolytic system. The results indicate that a low dose of endotoxin can induce a prolonged activation of the contact system. Studies with contact system inhibitors are required to prove that it is an important mediator of the changes induced by the administration of endotoxin. Our most recent finding,27 that an MoAb to FXII, which blocks contact activation, ameliorates secondary hypotension in vivo in septic baboons, supports this proposition.

ACKNOWLEDGMENT

The authors thank Rita Stewart for manuscript preparation.

REFERENCES

THE KALLIKREIN-KININ SYSTEM AFTER ENDOTOXIN

11. Colman RW, Flores DN, DeLa Cadena RA, Scott CF, Coul-
ten L, Barr PJ, Hoffman IB, Kueppers F, Fisher D, Idell S, Pisa-
rello J: Recombinant alpha-1-antitrypsin Pittsburgh attenuates
experimental gram negative septicemia. Am J Pathol 130:418, 1988
JH, Back N, Bedi GS, Fisher RS, Colman RW: Role of the
kal-likrein-kinin system in the pathogenesis of bacterial cell wall-in-
13. Pixley RA, DeLa Cadena RA, Page JD, Kaufman N, Wysh-
ock EG, Chang A, Taylor FB Jr.: Activation of the
contact system in lethal hypotensive bacteremia in a baboon model.
Am J Pathol 140:897, 1992
14. Lerner RG, Rapaport SI, Spitzer JM: Endotoxin-induced
intravascular clotting: The need for granulocytes. Thromb Diath
Haemorrh 20:430, 1968
15. Gallimore MJ, Aasen AO, Lyngaas KHN, Larsbraaten M,
Amundsen E: Falls in plasma levels of prekallikrein, high molecular
weight kininogen, and kallikrein inhibitors during lethal endotoxin
16. Suffredini AF, Harpel PC, Parrillo JE: Promotion and sub-
sequent inhibition of plasminogen activator after administration of
intravenous endotoxin to normal subjects. N Engl J Med 320:1165,
1990
17. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs
JA, Wesley RA, Parrillo JE: The cardiovascular response of normal
humans to the administration of endotoxin. N Engl J Med 321:280,
1989
18. Scott CF: Determination of anithrombin III (AT-III) using
the Coatest Antithrombin Kit and a microplate system. Ann NY
Acad Sci 485:443, 1982
19. Schapira M, Silver LD, Scott CF, Colman RW: New and
rapid functional assay for C1-inhibitor in human plasma. Blood
59:719, 1982
20. DeLa Cadena RA, Scott CF, Colman RW: Evaluation of a
microassay for human plasma prekallikrein. J Lab Clin Med
109:601, 1987
21. Scott CF, Colman RW: A simple and accurate microplate
assay for the determination of factor XI in plasma. J Lab Clin Med
111:708, 1988
22. Proctor RR, Rapaport SI: The partial thrombopsonin time
with kaolin: A simple screening test for first stage plasma clotting
23. Page JD, Colman RW: Localization of distinct functional
domains on prekallikrein for interaction with both high molecular
weight kininogen and activated factor XII in a 28 kDa fragment
24. Voller A, Bidwell DE, Bartlett A: Enzyme immunoasays in
25. Kaufman N, Page JD, Pixley RA, Schein R, Schmaier AH,
Colman RW: Alpha-2-macroglobulin-kallikrein complexes detect
contact system activation in hereditary angioedema and human
26. Glantz SA: The special case of two groups: The t test, in
Glantz SA (ed): Primer of Biostatistics: The Program. New York,
NY, McGraw-Hill, 1987, p 64
27. Pixley RA, DeLa Cadena R, Page JD, Kaufman N, Wyshock
EG, Chang A, Taylor FB Jr, Colman RW: The contact system con-
tributes to hypotension but not disseminated intravascular coagula-
tion in lethal bacteremia: In vivo use of a monoclonal anti-factor
XII antibody to block contact activation in baboons. J Clin Invest
91:61, 1993
28. Colman RW: Activation of plasminogen by human plasma
29. Miles LA, Greengard JS, Griffin JH: A comparison of the
abilities of plasma kallikrein, beta-factor XIIa, factor XIa, and uro-
30. Goldsmith G, Saito H Jr, Ratnoff OD: The activation of
plasminogen by Hageman FXII (factor XII) and Hageman factor
31. Hauer J, Nicoloso G, Schleuning WD, Bachmann F, Scha-
pira M: Plasminogen activators in dextran sulfate-activated euglo-
bulin functions: A molecular analysis of factor XII- and prekal-
32. Martich GD, Danner RL, Van Dervort AL, Patterson E,
Suffredini AF: Priming of neutrophils after intravenous endotoxin
33. Wachtfogel YT, Kuicich U, James HL, Scott CF, Schapira
M, Zimmerman M, Cohen AB, Colman RW: Human plasma kal-
lkrein releases neutrophil elastase during blood coagulation. J Clin
Invest 72:1672, 1983
34. Stanickova M, Rybak K, Simonianova K, Ondradik M: In-
fuence of human plasma kallikrein on lysosomal enzyme release
from polymorphonuclear leukocytes. Agents Actions 32:209, 1991
35. Michie HR, Manogue KR, Spriggs DR, Revhann A,
O'Dwyer S, Dinarello CA, Cerami A, Wolff SM, Wilmore DW:
Detection of circulating tumor necrosis factor after endotoxin ad-
36. Cannon JG, Tompkins RG, Gelfand JA, Michie HR, Stand-
gord GG, van der Meer JW, Endres S, Lonnemann G, Corsetti J,
Chernow B, Wilmore DW, Wolff SM, Burke JF, Dinarello CA:
Circulating interleukin-1 and tumor necrosis factor in septic shock
37. Martich GD, Danner RL, Ceska M, Suffredini AF: Detection
of interleukin 8 and tumor necrosis factor in normal humans
after intravenous endotoxin: The effect of anti-inflammatory
38. Fong Y, Moldauer LL, Marano M, Wei H, Tatter SB, Cla-
rick RH, Santhanam U, Sherris D, May LT, Sehgal PB, Lowry SF:
Endotoxemia elicits increased circulating beta 2-IFN/IL-6 in man.
J Immunol 142:2321, 1989
39. Emeis JJ, Kooistra T: Interleukin 1 and lipopolysaccharide
induce an inhibitor of tissue-type plasminogen activator in vivo
40. Schleef RR, Bevilacqua MP, Sawdey M, Gimbrone MA Jr,
Loskutoff DL: Cytokine activation of vascular endothelium: Effects
on tissue-type plasminogen activator and type 1 plasminogen activ-
41. Bauldry SA, Bass DA, Cousart SI, McCay CE: Tumor ne-
crosis factor alpha priming of phospholipase D in human neutro-
phils: Correlation between phosphatidic acid production and super-
Activation of the kallikrein-kinin system after endotoxin administration to normal human volunteers

RA DeLa Cadena, AF Suffredini, JD Page, RA Pixley, N Kaufman, JE Parrillo and RW Colman