Optimization of Busulfan Dosage in Children Undergoing Bone Marrow Transplantation: A Pharmacokinetic Study of Dose Escalation

By Andrew M. Yeager, John E. Wagner, Jr, Michael L. Graham, Richard J. Jones, George W. Santos, and Louise B. Grochow

Busulfan (BU) is a widely used myeloablative and antineoplastic agent in clinical bone marrow transplantation (BMT). The lower incidence of BU-associated toxicities and lower therapeutic effectiveness in young children given BU doses based on body weight (ie, 16 mg/kg) is associated with altered pharmacokinetics of BU; the area under the curve (AUC) of BU concentration versus time is significantly less in these patients than those observed in older children and adults. To optimize BU dosage in young BMT recipients, we developed a dosage regimen based on body surface area (BSA) and determined BU pharmacokinetics and BU-associated toxicities. Seven children (median age, 3.9 years; range, 1.1 to 5.7) undergoing autologous or allogeneic BMT for leukemia received 40 mg/m²/dose BU every 6 hours for 16 doses; BU concentrations were measured in the plasma, and AUCs were determined for each patient after the first and 13th doses. Expressed as a function of body weight, the median BU dosage was 26.4 mg/kg (range, 24.3 to 28.2), a 60% increase over the BU dosage based on body weight. Four patients developed mucositis, and one of them also developed nonfatal hepatic veno-occlusive disease (VOD). No patients receiving 40 mg/m² BU developed neurotoxicity (eg, seizures) or interstitial pneumonitis. Prompt and sustained engraftment was observed in the allogeneic BMT recipients, and late graft failure was not seen. The mean BU AUCs were 1.105 μmol/L·min (range, 0.970 to 2.080) after the first dose and 1.022 μmol/L·min (range, 0.632 to 1.860) after the 13th dose of BU, comparable to the AUCs in adults given 16 mg/kg of BU. These studies suggest that, in young children, BSA-based dosing of BU (40 mg/m²) provides drug exposures (AUCs) closer to adult values with acceptable toxicities and may improve therapeutic effects.

© 1992 by The American Society of Hematology.

From the Oncology Center and the Departments of Medicine, Neurology, and Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD; and the Pediatric Bone Marrow Transplantation Program, Duke University Medical Center, Durham, NC.

Submitted March 25, 1992; accepted July 7, 1992.

Supported in part by Contract No. CM07302 from the National Cancer Institute (L.B.G.) and by Grants No. R01 CA54203 (R.J.J.), P01 CA15396 (G.W.S.), R01 CA40282 (A.M.Y.), and R01 NS24097 (A.M.Y.) from the National Institutes of Health, Department of Health and Human Services, Bethesda, MD. J.E.W., Jr is the recipient of Career Development Award No. 91-56 from the American Cancer Society.

Address reprint requests to Andrew M. Yeager, MD, Room 3-127, The Johns Hopkins Oncology Center, 600 N Wolfe St, Baltimore, MD 21205.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1992 by The American Society of Hematology.

0006-4971/92/8009-0027$3.00/0

2425
doses to establish trough concentrations. BU was assayed in plasma using the previously described gas-liquid chromatographic method of Chen et al.15

Clinical evaluation. In the post-BMT period, patients were evaluated by clinicians (M.L.G., A.M.Y.) for evidence of BU-related toxicity such as mucositis and VOD, which was defined according to published criteria.8 Total leukocyte counts (white blood cells), absolute neutrophil counts (ANCs), and serum bilirubin were measured every 24 hours after BMT.

Statistical analyses. AUC was calculated using a one-compartment pharmacokinetic model with zero- or first-order absorption and elimination, as previously described.10,16 Parameter estimation was performed using nonlinear least-squares analysis (PCNON-LIN; Statistical Consultants, Lexington, KY).

RESULTS

BU dosage. The median actual dosage of BU calculated from BSA was 38.9 mg/m2 (range, 36.7 to 41.7); these variations from the ideal study dosage of 40 mg/m2 were due to rounding off the BU dosage from the 2-mg tablet size. When BU doses were expressed as a function of body weight, the median was 26.4 mg/kg (range, 24.3 to 28.2), approximately a 60% increase over the standard BU dosage of 16 mg/kg (Table 1).

Clinical course. All patients became aplastic within 2 to 8 days after BMT. Four patients developed mucositis, which required narcotic analgesia in two. In contrast, hepatic dysfunction was less frequently observed: in five patients, bilirubin did not exceed 1.9 mg/dL in the post-BMT period. In two patients undergoing allogeneic BMT for acute myeloid leukemia (AML) in remission, bilirubin elevations were observed. In patient 4, modest hyperbilirubinemia (maximum, 2.4 mg/dL at 23 days after BMT) was associated with weight gain, ascites, and tender hepatomegaly, consistent with the diagnosis of hepatic VOD6,5, with fluid restriction and diuretics, symptoms resolved and bilirubin fell below 1.5 mg/dL within 7 days. In patient 7, bilirubin increased to 4.4 mg/dL 33 days after allogeneic BMT, but there was no evidence for VOD; the course was felt to be most consistent with hepatic acute graft-versus-host disease, and hyperbilirubinemia slowly resolved within 2 weeks on cyclosporine and methylprednisolone therapy. No patients developed pulmonary insufficiency or manifestations of interstitial pneumonitis (Table 1).

Pharmacokinetic data. Table 2 shows the AUC after the first and 13th doses of BU and the mean trough BU concentration (C\textsubscript{min}) for each patient. The median and

Table 1. Clinical Data in Children Receiving BSA-Based BU Dosing for BMT

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age (yr)/ Gender</th>
<th>Diagnosis</th>
<th>Type of BMT</th>
<th>Height (cm)/ Weight (kg)/ BSA (m2)</th>
<th>BU Dosage mg/dose</th>
<th>Lowest WBC (days after BMT)</th>
<th>Days to ANC > 0.5 \times 109/L</th>
<th>Maximum Bilirubin (days after BMT)</th>
<th>VOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.7/M</td>
<td>AML, CR2</td>
<td>Auto</td>
<td>111.7/16.1/0.72</td>
<td>28</td>
<td>38.9</td>
<td>27.8</td>
<td>0 (day 7)</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>4.4/M</td>
<td>JCML, AP</td>
<td>Allo, sib, placental blood</td>
<td>95.3/15.0/0.62</td>
<td>25</td>
<td>39.5</td>
<td>26.1</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>3.9/F</td>
<td>AML, CR1</td>
<td>Allo, sib, placental blood</td>
<td>100/15.9/0.67</td>
<td>28</td>
<td>41.7</td>
<td>28.2</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>1.1/M</td>
<td>AML, CR2</td>
<td>Allo, sib, placental blood</td>
<td>77/10.4/0.49</td>
<td>18</td>
<td>36.7</td>
<td>27.7</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>4.8/M</td>
<td>AML, CR2</td>
<td>Auto</td>
<td>103/17.0/0.70</td>
<td>28</td>
<td>40</td>
<td>26.4</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>2.6/F</td>
<td>AML, CR3</td>
<td>Auto</td>
<td>87.5/14.5/0.59</td>
<td>22</td>
<td>37.3</td>
<td>24.3</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>1.6/M</td>
<td>AML, CR1</td>
<td>Allo, sib, placental blood</td>
<td>77/12.9/0.54</td>
<td>20</td>
<td>37</td>
<td>24.8</td>
<td>0 (day 5)</td>
<td>No</td>
</tr>
</tbody>
</table>

Abbreviations: Allo, allogeneic; Auto, autologous; AML, acute myeloid leukemia; ANC, absolute neutrophil count; AP, accelerated phase; CR, complete remission; GVHD, graft-versus-host disease; JCML, juvenile chronic myelogenous leukemia; WBC, total white blood cell count.

Table 2. Pharmacokinetic Data in Children Receiving 40 mg/m2/dose BU

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>AUC (\mu mol/L · min)</th>
<th>Mean C\textsubscript{min} (\mu mol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,138</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>2,080</td>
<td>1.80</td>
</tr>
<tr>
<td>3</td>
<td>790</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>818</td>
<td>0.76</td>
</tr>
<tr>
<td>5</td>
<td>1,262</td>
<td>1.16</td>
</tr>
<tr>
<td>6</td>
<td>850</td>
<td>0.96</td>
</tr>
<tr>
<td>7</td>
<td>800</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Mean ± SD 1.105 ± 0.468 959 ± 413 1.08 ± 0.42

Abbreviations: AUC, area under the curve of BU concentration; C\textsubscript{min}, minimum (trough) BU concentration.
mean BU AUC after the first dose were 850 and 1,105 μmol/L·min, respectively (range, 790 to 2,080). There was no alteration in AUC after the 13th BU dose, at which time the median and mean AUCs were 904 and 1,022 μmol/L·min, respectively (range, 632 to 1,860). These values are similar to the AUC in adults (ie, 1,200 to 1,600 μmol/L·min) that are therapeutic but not associated with increased risks of VOD or other life-threatening extramedullary toxicity.17 The range of trough plasma BU concentrations, times to peak BU levels, and clearance rates in these patients were all similar to those previously reported in children under age 6 years receiving standard doses (1.0 mg/kg/dose) of BU.

DISCUSSION

In children under age 6 years receiving a standard dosage of BU based on body weight (16 mg/kg), pharmacokinetic studies from this laboratory have shown that the mean AUC was 715 μmol/L·min.10 Using the BSA-derived BU dosage regimen (40 mg/m²), the AUC in our patients (1,105 μmol/L·min) was significantly higher (P = .019; two-tailed Student’s t test) and is comparable to the target AUC in adults receiving dose-adjusted BU. Expressed as a function of body weight in this group, the BSA-based BU dosages (24.3 to 28.2 mg/kg; median, 26.4 mg/kg) are similar to those extrapolated from the studies of Shaw et al5 and Vassal et al14,15 in which BU dosage was based on 20 mg/m² or 37.5 mg/m², respectively. Taken together, these studies confirm that, in younger children, at least 50% higher doses of BU are needed than calculated on the basis of body weight (ie, 16 mg/kg).

These pharmacokinetic data were corroborated by the increased incidence of mucositis in these children. Interestingly, neither the severity of mucositis nor the occurrence of VOD was correlated with elevated AUC in this series; the three patients with the most severe mucositis (no. 4, 5, and 6), one of whom also had VOD, had BU AUCs below the mean. No patients in this series had neurotoxicity, as previously attributed to BU, such as interstitial pneumonitis, were not observed in this or other series5,14,19 in which BU doses exceeding 1 mg/kg (or 20 mg/m²) were used. On balance, the observed toxicities, infrequent in children given conventional doses of BU, are acceptable and manageable consequences of attainment of higher BU dosages, which may improve therapeutic effect.

It has been suggested that both allograft rejection and higher relapse rates are more frequent in young children given BMT after regimens that use standard-dose BU4,9 consistent with lower drug exposures to both normal stem cells and neoplastic cells. The differences in diagnoses, remission number, and types of BMT in this series preclude conclusions about improved therapeutic effectiveness in recipients of BSA-determined BU dosing. Nevertheless, donor cell engraftment was prompt in the three recipients of allogeneic marrow and one recipient of HLA-compatible allogeneic placental blood, and was complete and sustained. No episodes of late graft failure, as reported in children receiving standard-dose BU for allogeneic BMT from related donors,3,7,19 were observed.

The reasons for altered disposition of BU in young children are unknown, but are probably multifactorial. Altered gastric pH (higher in infants and very young children), relative differences in distribution and percentages of body adipose tissue and total body water, and alterations in first-pass hepatic clearance and metabolism may all contribute to the relative underdosing of BU when the drug is administered on the basis of body weight.20-23 These and other observations24 suggest that BSA-based dosage of BU and other antineoplastic agents is the most rational and reliable approach in children. However, in infants under age 6 months, drug dosage based on BSA may be inaccurate,25 and studies of adjusted BU dosage have not yet been conducted in this age group.

Although BSA-based BU dosage in children provides drug exposures closer to adult values, the wide range of AUC observed in this and other18 studies suggests that further studies are warranted; ultimately, therapeutic monitoring of BU levels and individualized adjustment of BU dosage may be used to provide optimal drug exposures for each patient. As high AUC for BU has been associated in adults with an increased risk of VOD, which has a high case-fatality rate,6,8,17 dose-adjustment strategies may retain or enhance the therapeutic effectiveness of high-dose BU and reduce the incidence of life-threatening drug-associated toxicities.

ACKNOWLEDGMENT

The authors thank Viki Altomonte for excellent technical assistance, Donna Burgess for manuscript preparation, and the nursing staff of the Bone Marrow Transplantation and Pediatric Oncology Units for compassionate care of these patients.

REFERENCES

3. Parkman R, Rappeport JM, Hellman S, Lipton J, Smith B, Geha R, Nathan DG: Busulfan and total body irradiation as...
antihematopoietic stem cell agents in the preparation of patients with congenital bone marrow disorders for allogeneic bone marrow transplantation. Blood 64:852, 1984

Optimization of busulfan dosage in children undergoing bone marrow transplantation: a pharmacokinetic study of dose escalation

AM Yeager, JE Jr Wagner, ML Graham, RJ Jones, GW Santos and LB Grochow