To the Editor:

Means and Krantz\(^2\) assert that the importance of iron metabolism in the anemia of chronic disease has been controversial. We agree and wish to point out that there is overwhelming evidence that the sequestration of iron in the RE system is an epiphenomenon unrelated to the anemia.

The diversion of red blood cell (RBC) iron to the RE system cannot explain the anemia in chronic disease, because the anemia does not respond to oral iron.\(^2,5\) A recent study of the anemia associated with adjuvant arthritis in the rat found that there is no response to parenteral iron\(^6\) in this circumstance as well.

Orally administered iron is absorbed normally in the anemia secondary to uremia,\(^7,9\) and normally or almost normally in the anemia secondary to rheumatoid arthritis. In comparison to normal controls, it is sometimes slightly decreased,\(^9\) sometimes unchanged,\(^10\) and sometimes slightly increased.\(^11\)

Iron absorbed from the gastrointestinal tract binds to transferrin and transferrin-bound iron (when the tracer is administered intravenously) is incorporated efficiently into the erythron in the anemia of chronic disease.\(^13\) It cannot be argued that absorbed iron follows some other route in chronic disease because, when the tracer is administered orally, iron is incorporated into the erythrocytes in uremia\(^12\) and in rheumatoid arthritis\(^13\) just as well as in the normal control.

Why then is there hypochromia and increased free erythrocyte protoporphyrin in chronic disease? It is probably because the iron taken up by the RBCs in chronic disease is not used normally. The iron goes possibly, instead of to hemoglobin, to intracellular ferritin and hemosiderin.\(^14\) Indeed, siderocytes (ie, circulating RBCs with iron inclusions) are seen in azotemia.\(^15,16\) Moreover, there is increased ferritin in bone marrow erythroblasts\(^17,18\) in chronic disease, further suggesting a utilization defect. Although the ferritin in the circulating RBCs in chronic disease is normal,\(^19,20\) suggesting that the utilization defect is not complete, nevertheless, there remains a sharp contrast with iron deficiency, in which RBC ferritin is decreased.\(^21\)

A decrease in marrow sideroblasts in the anemia of chronic disease (claimed in some studies)\(^12\) is seemingly inconsistent with the conclusion that iron does not limit erythropoiesis. But even where a decrease is claimed, the sideroblast count is still much greater than that in iron deficiency. It must also be noted that some investigators\(^23\) have found the sideroblast count in the marrow of the anemia of chronic disease to be the same as that in the normal.

The failure of the RBC to use iron could be secondary to a mitochondrial lesion, a block in heme synthesis, or failure of the mitochondria to take up iron or transport it into the mitochondria from their receptors.\(^24,25\)

SIMEON POLLACK
Albert Einstein College of Medicine
Bronx, NY

REFERENCES

6. Asai F, Oshima T: Recombinant human erythropoietin, but transferrin-bound iron is not used normally. The failure of the RBC to use iron could be secondary to a mitochondrial lesion, a block in heme synthesis, or failure of the mitochondria to take up iron or transport it into the mitochondria from their receptors. J Clin Pathol 6:307, 1953

From www.bloodjournal.org by guest on October 23, 2017. For personal use only.
Iron and the anemia of chronic disease [letter; comment]

S Pollack

Updated information and services can be found at:
http://www.bloodjournal.org/content/80/12/3252.citation.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml