Subpopulations of Normal Peripheral Blood and Bone Marrow Cells Express a Functional Multidrug Resistant Phenotype

By Doris Drach, Shourong Zhao, Johannes Drach, Radha Mahadevia, Claus Gattringer, Heinz Huber, and Michael Andreeff

The multidrug-resistance gene, MDR1, is expressed in many normal tissues, but little is known about its expression in normal hematopoietic cells. Using the monoclonal antibody C219 and flow cytometric analysis, P-glycoprotein (P-gp) was found to be expressed in all peripheral blood (PB) subpopulations (CD4, CD8, CD14, CD19, CD56) except granulocytes. To specifically determine MDR1 gene expression, these PB subpopulations were isolated by fluorescence-activated cell sorting (FACS) and analyzed for MDR1 mRNA by polymerase chain reaction (PCR). All subsets were positive by PCR, but only minimal MDR1 mRNA was detected in monocytes and granulocytes. Significant efflux of Rhodamine-123 (Rh-123), a measure of P-gp function, was detected in CD4+, CD8+, CD14+, CD19+, and CD56+ cells but not in granulocytes. Next, PCR-analysis was performed on FACS-sorted bone marrow (BM) cells to assess MDR1 expression in different maturational stages. Precursors (CD34+), early and late myeloid cells (CD33+/CD34+, CD33+/CD34−) as well as lymphocytes of the B-cell lineage (CD19+/CD10+, CD19+/CD10−) expressed the MDR1 gene. BM monocytic cells (CD33+/CD34−) were negative, and a very weak signal was detected in erythroid cells (glycophorin A+). Significant Rh-123 efflux was found in CD34+, CD10+, CD33+, and CD33− BM cells, but not in glycophorin A+ cells. We conclude that PB and BM lymphocytes, PB monocytes, BM progenitors, and immature myeloid cells, but not late BM monocytes, erythroid cells, and PB granulocytes, express MDR1 mRNA and a functional P-gp. These results have to be taken into account when MDR1 expression is determined in tumor samples containing normal blood cells.

© 1992 by The American Society of Hematology.

From the University of Texas M.D. Anderson Cancer Center, Section of Experimental Hematology, Department of Hematology, Houston, and the University of Innsbruck, Department of Internal Medicine, Innsbruck, Austria.

Submitted April 1, 1992; accepted August 6, 1992.

Supported in part by National Institutes of Health Grants No. CA-16672 and CA-55164 to M.A., from the Bundesministerium fuer Wissenschaft und Forschung and Oesterreichische Krebsgesellschaft to D.D., and Grant No. J0595-MED from the Erwin Schroedinger Foundation, Austria to J.D.

Address reprint requests to Michael Andreeff, MD, PhD, Department of Hematology, Box 61, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1992 by The American Society of Hematology.

0006-4971/92/8011-0020$3.00/0

Blood, Vol 80, No 11 (December 1), 1992; pp 2729-2734
Fig 1. P-glycoprotein expression in normal peripheral blood subpopulations. Lymphocytes and monocytes were stained with MoAbs after Ficoll-Hypaque separation, granulocytes were isolated by density gradient centrifugation. All cell populations were subsequently stained with MoAb C-219 as described in Materials and Methods. C-219 fluorescence is shown for each cell population gated on the respective surface marker. (---) isotypic control; (--) C-219.

Fig 2. Analysis of MDR1 in normal peripheral blood cells. FACS-sorted lineage-specific subpopulations of cells were analyzed for MDR1 expression using reverse transcription PCR. Sensitive (8226/S) and MDR cell lines (8226/DOX-6, 8226/DOX-40) were used as controls.
Fig 3. Analysis of MDR1 in normal bone marrow cells. FACS-sorted lineage- and stage-specific subpopulations of cells were analyzed for MDR1 expression using PCR. Sensitive (8226/S) and multidrug-resistant cell lines (8226/DOX-6, 8226/DOX-40) were used as controls.

minutes at 37°C, washed twice in ice cold RPMI-1640 medium, and then transferred into dye-free medium with or without 10 µg/mL verapamil and incubated at 37°C for 90 minutes.

Statistical analysis. Rh-123 efflux data were statistically analyzed using Student’s t-test for independent samples. Within each subpopulation, the percent decrease of mean fluorescence with and without verapamil was compared. Flow cytometric measurements were quantitated using the Kolmogorov-Smirnov analysis. Flow cytometry analysis and cell sorting was conducted with a FACStar PLUS flow cytometer (Becton Dickinson), equipped with an argon ion laser (Spectra Physics, Mountain View, CA) operated at 488 nm and 300 mW. Green (FITC, Rh-123) and red (phycoerythrin) fluorescence was detected using 530/30 nm and 585/40 nm bandpass filters, respectively. Spectral overlap between green (FITC, Rh-123) and red (PE) signals was electronically compensated. Data acquisition and analysis was performed with the FACStar PLUS Research software (Becton Dickinson). Forward and side scatter signals were collected using linear scales, and fluorescence signals were collected on logarithmic scales. Cells displaying more fluorescence than their controls were considered positive. Cell sorting was performed using the Normal R sorting mode. All cells were kept on ice during the sorting procedure. An aliquot of sorted cells was reanalyzed for purity.

RNA preparation and polymerase chain reaction (PCR). Total cellular RNA was isolated according to the acid-guanidinium-phenol-chloroform technique. cDNA was synthesized with a cDNA synthesis kit obtained from Boehringer Mannheim Corp (Indianapolis, IN) following the manufacturer’s instructions. PCR was performed using cDNA synthesized aliquots from 50 ng of RNA, 150 ng of each MDR1-specific primer, 1.5 U of Taq-Polymerase, and 5 µL of 10 x PCR buffer (both from Boehringer Mannheim Corp), 0.5 µL of 25 mmol dNTP and 3 µCi of 32P-dCTP (Du Pont, Wilmington, DE) in a final volume of 25 µL. MDR1-specific primers were kindly provided by Dr I.B. Roninson and used as previously described. β2-Microglobulin was used as control as previously described. Each cycle contained a denaturation step at 94°C for 1 minute, an annealing step at 63°C for 1 minute, and an elongation step at 72°C for 2 minutes. A total of 32 cycles was performed followed by a final elongation step at 72°C for 10 minutes, using an automatic PCR processor (Perkin Elmer Cetus, Norwalk, CT).

Ten-microliter aliquots of the PCR products were separated electrophoretically through a 6% acrylamide gel (BIO-RAD, Richmond, CA) for 2 hours and subsequently exposed overnight to a Kodak X-Omat film (Eastman Kodak, Rochester, NY) at −70°C without intensified screen. 32P incorporation was quantitated by radioactivity measurements using Betascope 603 (Betagen, Waltham, MA).

All experiments were performed in duplicate from 3 to 7 PB and BM samples.

RESULTS

Expression of P-gp is detectable by MoAbs when mononuclear PB cells are analyzed. To determine which normal cells express the protein, double staining with lineage-specific surface antibodies and C-219 (an MoAb that recognizes a cytoplasmic epitope of P-gp12) was performed (Fig 1). Kolmogorov-Smirnov analysis showed D-values (mean ± SD) of 0.48 ± 0.30 for CD4+ cells, 0.62 ± 0.13 for CD8+ cells, 0.64 ± 0.30 for monocytes, 0.00 ± 0.00 for

Fig 4. Ratio of MDR1 to β2-microglobulin (B2-M) expression in normal PB and BM cells. 32P was incorporated during PCR of FACS-sorted lineage- and stage-specific subpopulations and quantified using Betascope-603. Sensitive (8226/S) and multidrug-resistant cell lines (8226/DOX-6, 8226/DOX-40) were used as controls.
granulocytes, 0.48 ± 0.07 for B cells, and 0.48 ± 0.10 for natural killer (NK) cells. Because C-219 is known to detect not only the MDR1 but also the MDR3 gene product, we subsequently analyzed MDR1 mRNA.

Analysis of normal unseparated PB and BM cells for MDR1 mRNA was positive (data not shown). PB cells from three healthy volunteers were stained with lineage-specific MoAbs and subsequently sorted by FACS. Staining was performed with antibodies for pan-T-cells (CD3), major T-cell subsets (CD4, CD8), NK cells (CD56), B cells (CD19), monocytes (CD14) and granulocytes (CD15). Subpopulations ranged from 3.8% to 55%, and the purity after sorting was 98.3% ± 0.98% (median ± SD). Immediately after sorting, RNA was extracted and analyzed for MDR1 mRNA by PCR amplification using MDR1-specific primers. A sensitive (8226/S) and two multidrug-resistant (8226/DOX-6 and 8226/DOX-40) cell lines were included as controls for the PCR technique. MDR1 expression was undetectable in 8226/S cells and elevated in 8226/DOX-6 and 8226/DOX-40 cell lines. Results of the PCR study are shown in Fig 2 for PB and in Fig 3 for BM cells. Strong bands for MDR1 mRNA were detected in NK cells, B and T cells. T-cell subsets were studied in seven normal individuals; in all cases, CD8+ cells appeared to have higher levels of MDR1 expression than CD4+ cells. This was confirmed by quantitative 32P measurements of MDR1 and β2-microglobulin using the Betascope: For CD8+ cells, the ratio was significantly higher than for CD4+ cells (Fig 4). Monocytes and granulocytes expressed MDR1 mRNA at very low levels.

To investigate MDR1 expression during hematopoietic differentiation, the following BM subsets were studied in three normal individuals: CD34+ (progenitor cells), CD33+/CD34+ (myeloid progenitors), CD33+/CD34− (myeloid cells), CD33+/CD34+ (monocytic cells), CD10+/CD19+ (early B cells), CD10−/CD19− (mature B cells) and glycophorin A+ cells (erythroid precursors). BM subpopulations comprising 2.8% to 39.2% of unsorted BM were enriched to 96.1% ± 3.1% (median ± SD) by the sorting procedure. As shown in Figs 3 and 4, CD34+ cells were positive for MDR1; within this population, myeloid-committed progenitors (CD33+/CD34+) expressed MDR1, whereas only a faint band was detected in CD34−negative myeloid cells. Monocytic cells at a more differentiated stage did not show any MDR1 expression. In B cells, MDR1 was detectable in both early and late maturational stages. Erythroid cells expressed MDR1 only at extremely low levels. This could be attributable to the 4.4% contamination with remaining glycophorin A negative cells after the sorting procedure. A dilution experiment with 8226/S and 8226/DOX-40 cells, which have an MDR1/β2-microglobulin ratio comparable to T cells (Fig 4), was performed to test whether a low percentage of MDR1-expressing cells could cause positivity in this PCR-assay. Even 1% 8226/DOX-40 cells admixed to 8226/S cells resulted in detectable MDR1 expression using the same conditions as in the analysis of the PB and BM cells (data not shown).

Finally it is of importance to show that P-gp is not only present but also functionally active in normal cells. Efflux of rhodamine 123 (Rh-123) was applied as a functional test using 8226/S and 8226/DOX-6 cell lines as negative and positive controls (Fig 5A). PB and BM cells were double stained with surface MoAbs and Rh-123 and efflux was measured in the presence and absence of verapamil. In PB, significant efflux was seen in all lymphocyte subpopulations, which was most prominent in NK cells. In monocytes and granulocytes, a slight decrease of Rh-123 mean fluorescence was found after 90 minutes, but compared with the controls without verapamil, this decrease was significant only in CD14+ cells at a level of P < .05. In BM, CD34+ cells effluxed the dye as did CD10+, CD33+, and CD33+++, but to a lesser extent. In glycophorin A+ cells, the efflux was not significantly different from its control (P > .05).
To test whether residual normal cells could influence the assessment of MDR1 expression in patient samples, we analyzed sorted blast cells and normal T cells from two leukemic patients for MDR1 expression (newly diagnosed AML, relapsed CALL). In both samples, not only blast cells but also T cells were shown to be positive (Fig 6).

DISCUSSION

This study investigates the expression of P-gp and MDR1 mRNA in blood and marrow cells from normal individuals. P-gp was found to be expressed and functionally active in all PB subpopulations except in granulocytes. Following reverse transcription PCR, a band for MDR1 mRNA was detected in all PB-subpopulations. Both expression and function appeared to be highest in NK cells and CD8+ T cells, as determined by 32P-incorporation during PCR and by Rh-123 efflux measurements.

Previous studies showed that normal lymphocytes have the ability to eliminate Rh-123 and to bind the antibody HYB241 (unpublished observation, March 1988), suggesting an MDR1-like activity in these cells. However, these studies did not investigate the expression of P-gp or MDR1 mRNA in specific cell types. The data reported here provide evidence that subpopulations of normal PB cells express MDR1 mRNA at different levels. This pattern is consistent with the results of rhodamine-efflux studies, and we can now attribute those findings specifically to MDR1 expression.

Antibody studies have shown that P-gp is expressed in CD34+ progenitor cells. In a recent publication, in situ mRNA hybridization showed positivity for MDR1 in a subset of BM cells that could be assigned to the myeloid and lymphoid lineage. Therefore, it was of interest to analyze MDR1 expression in marrow cells of different hematopoietic lineages and maturational stages. In a purified (97.7%) population of normal CD34+ progenitor cells, MDR1 mRNA was found at high levels. MDR1 was also detected in myeloid-committed progenitors (CD33+/CD34+), CD34-negative myeloid cells, and in different subsets of B-cell maturation, but not in CD34-negative monocytic cells. In contrast, the Rh-123 efflux study showed pumping activity in a CD33+ monocytic BM population, which suggests P-gp expression at least at an early stage of monocytic differentiation. The Rh-123 study showed a decrease in the mean fluorescence for Rh-123 in all BM subpopulations. This efflux could be blocked by verapamil, which implies that the efflux is caused by P-gp. Glycophorin A+ BM cells showed no significant efflux of Rh-123 and 32P-incorporation during PCR was very low. Because the glycophorin-A–positive population was only 95.6% pure, we cannot definitely conclude that erythroid cells express MDR1. We have found that contamination of MDR1-negative cells with as few as 1% MDR1-positive cells results in MDR1 positivity using the PCR technique.

The finding that MDR1 is expressed in normal blood cells has important implications for MDR studies of patient samples. In a leukemia sample with a mixture of normal and leukemic cells, positive results may be attributable to residual normal cells. Likewise, MDR1 expression in normal cells has implications for the interpretation of results obtained from lymph nodes and other tissues with high numbers of reactive lymphocytes. Because none of the published studies were performed on “pure” leukemic cells, the results have to be interpreted with caution. Depending on the sensitivity of the assay used, it is possible that low levels of residual normal cells do not influence the results of MDR studies. However, if a sensitive technique like PCR is applied, it is necessary to study the MDR phenotype exclusively within the malignant cell population. Also, determination of the level of gene expression may be influenced by the presence of normal cells, which could lead to overestimates or underestimates of the actual MDR1 level in malignant cells.

Our study also raises the question of the physiologic role of MDR1 in normal leukocytes. As P-gp is known to function as an efflux pump, it may facilitate the extrusion of...
factors exerting immunologic effects? What level of toxic or perhaps even regulatory substances in these cells. Do lymphocytes use P-gp as a pump for enzymes and other factors exerting immunologic effects? What level of MDR1 expression is of clinical significance in malignant cells? Furthermore, expression of MDR1 in hematopoietic progenitor and functional, differentiated cells may render them more vulnerable to chemotherapy if a P-gp inhibitor is administered at the same time. Increased myelosuppression was observed in one clinical trial using cyclosporine A and etoposide in combination, but the physiologic and pathophysiologic roles of P-gp have to be better defined to fully understand the implications for chemotherapy/P-gp antagonist combination therapies.

Our data provide evidence that normal PB and BM cells express MDR1 and that its gene product P-gp is functionally active in these cells. These results have to be considered in the analysis of MDR1 expression in any tumor sample that may contain normal blood cells.

ACKNOWLEDGMENT

The authors thank Dr J.B. Roninson (The University of Illinois at Chicago) for his gift of the MDR1-specific primers.

REFERENCES

Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype [see comments]

D Drach, S Zhao, J Drach, R Mahadevia, C Gattringer, H Huber and M Andreeff