RAPID COMMUNICATION

Mutations in Jewish Patients With Gaucher Disease

By Ernest Beutler, Terri Gelbart, Wanda Kuhl, Ari Zimran, and Carol West

DNA from 100 unrelated patients, 97 of whom were Jewish and three half-Jewish, was analyzed for 22 mutations known to cause Gaucher disease. All but seven of the alleles were identified as having previously described mutations. Five of the unidentified mutations proved to be a previously undescribed nucleotide substitution in a splice junction (IVS2+1) that causes skipping of exon 2. Thus, only 2 of 197 alleles remained unidentified. Homozygotes for the most common mutation, that at nucleotide (nt) 1226, manifested, on average, the mildest disease and the latest age of onset. The mutation at nt 84 and the newly described IVS2+1 mutation, which do not produce any enzyme, were associated with earlier onset and more severe disease. Five of the mutations were considered to be “public,” in the sense that they were found in more than one unrelated individual. Screening for these five mutations permitted detection of 97.5% of all Gaucher alleles in this patient population. Because the mutation at nt 1226 is underrepresented in the patient population and because not all homozygotes come to medical attention, screening the Ashkenazi population using DNA analysis should detect approximately 99% of all heterozygotes.

© 1992 by The American Society of Hematology.

GAUCHER DISEASE is the most common glycolipid storage disorder. Although it is panethnic in distribution, it is most common by far in the Jewish population, where the gene frequency has been reported to be on the order of .035 to .040. Although DNA-based analysis for preslected mutations can never detect all of the mutations causing a disease, an understanding of the frequency of the various disease-producing alleles makes it possible to establish the most rational possible approach to screening. Therefore, we have now examined 197 Gaucher disease alleles from unrelated Jewish patients or the Jewish parent of half-Jewish patients. These studies indicate that mutations at nucleotide (nt) 1226, 84, 1448, 1297, and in intron 2 are found repeatedly in unrelated Jewish subjects and account for 97.5% of all the mutations that cause Gaucher disease in this population.

MATERIALS AND METHODS

Patients. One hundred unrelated Gaucher disease patients, 97 Ashkenazi Jewish and three half-Jewish, were investigated. In the case of the half-Jewish patients, DNA from the Jewish parent was available for study. About two thirds of the patients were seen personally by the investigators. Material from the others was submitted by their physicians. In most cases the diagnosis had been confirmed by the measurement of peripheral blood lymphocyte β-glucosidase activity. Clinical severity was assessed using a scoring system that we have described previously, modified so that age at diagnosis is not a component of the severity but rather is treated separately.

Detection of previously described mutations. High-molecular-weight DNA was isolated from peripheral blood leukocytes using an Applied Biosystems (Foster City, CA) DNA extractor. All samples were haplotyped for the polymorphic Pvu II site using the polymerase chain reaction (PCR) as previously described. Each sample was examined first for the mutation at nt 1226, and except as noted, DNA from individuals who were classified as 1226G/1226G homozygotes was not examined further. All other samples were examined for the 84G mutation using either mismatched PCR or allele-specific oligonucleotide hybridization, and for the 14484C mutation using allele-specific oligonucleotide hybridization or previously described methods. Samples that still had unidentified alleles were examined for all other published mutations using the techniques summarized in Table 1.

Detection of a new mutation. When the mutation in a patient had not been identified as one of those previously described and cultured lymphoblasts were available, total RNA was isolated from the cultured cells. cDNA was made from 2 to 4 μg of total RNA using reverse transcriptase for first-strand synthesis and the PCR with primers designed to amplify the cDNA in two overlapping fragments. To create the 5' fragment, first-strand synthesis was performed using an antisense primer made to cDNA nt 1298* through 1317 as previously described. This was followed by 35 cycles of the PCR using sense primer nt 46 through 27 and antisense primer 1271 through 1290. Single-stranded DNA was made using the PCR with sense primer nt -25 through -6 for the sense strand and antisense primer nt 891 through 910 for the antisense strand. First-strand synthesis for the 5' fragment was primed with antisense to cDNA nt 1211 through 2030 and PCR was performed with sense primer nt 468 through 487 and antisense primer nt 1821 through 1840. The sense strand for sequencing was primed with oligonucleotide nt 871 through 890 and antisense was primed at nt 1621 through 1640. Sequencing was performed using T7 DNA polymerase with primers spaced about 200 nucleotides apart along the cDNA.

Genomic sequencing. Genomic DNA was amplified using 50 ng each of each of sense primer genomic 9171 through 936 and antisense primer genomic 1558 through 1576 for 15 cycles followed by 35 cycles of amplification with antisense primer genomic 1317.

* cDNA nucleotides are numbered starting with the upstream ATG as no. 1.
† Genomic nucleotides are numbered according to Horowitz et al.

© 1992 by The American Society of Hematology.

From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA; and Shaare Zedek Medical Center, Jerusalem, Israel.

Submitted December 20, 1991; accepted January 17, 1992.

Supported by National Institutes of Health Grants DK36639 and RR00833 and the Sam Stein and Rose Stein Charitable Trust Fund.

This is manuscript 7154-MEM from The Scripps Research Institute.

Presented, in part, at the 32nd Annual Meeting of the American Society of Hematology, Dec 7-10, 1991, Denver, CO.

Address reprint requests to Ernest Beutler, MD, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10666 N Torrey Pines Rd, La Jolla, CA 92037.
JEWISH GAUCHER MUTATIONS

RESULTS

Discovery of a new splicing mutation. Sequencing of cDNA from a patient heterozygous for the 1226G mutation, whose other allele did not contain any of the known mutations, showed that exon 2 was missing. Accordingly, the genomic sequence of the area including the splice donor of intron 2 was determined. A point mutation was found at genomic nucleotide 1067, the first nucleotide in intron 2, which was changed from g to a. This mutation is designated IVS2+1, to designate that the first nucleotide of the intervening sequence is mutated. Samples from those patients in whom both mutations had not been found were screened for this mutation as indicated in Table 1.

Incidence of various mutations. The results of genotyping are summarized in Tables 2 and 3. Both of the disease-producing alleles were identified in 95 of the 97 Jewish patients. In the three half-Jewish patients, the Jewish allele was identified in all cases by analysis of DNA from the parents. Only 2 of 197 Jewish alleles remained unidentified, and 90.4% of the Gaucher disease alleles were either the 1226G or 84GG mutations. The most common genotype was, as expected, the 1226G/1226G homozygous state, and the second was the 1226G/84GG heterozygous state.

Genotype/phenotype correlation. The relationship between clinical severity, age at evaluation, and the genotype is summarized in Fig 1. The average severity of clinical manifestations in the patients homozygous for the 1226G mutation was the least of any genotype. The average severity was considerably greater for the patients who were heterozygous for the 1226G, and either the 84GG, IVS2, or 1448C mutations. The median, mean, and range of age of onset for patients with different genotypes is summarized in Table 4.

DISCUSSION

When a disease-producing gene exists at polymorphic levels in a population, it may be presumed to confer some advantage, usually among heterozygotes. When such a selective advantage does exist, more than one mutation often achieves a high population frequency. This seems to be the case with Gaucher disease where it has previously been found that two mutations, 1226G and 84GG, both achieve relatively high gene frequencies in the Jewish population. Although the vast majority of mutations may

Table 1. Mutations Detected in the Present Study and Method of Detection

<table>
<thead>
<tr>
<th>cDNA No.</th>
<th>Genomic No.</th>
<th>nt SUB</th>
<th>Sense Primer Genomic No.</th>
<th>Antisense Primer Genomic No.</th>
<th>Restriction Enzyme</th>
<th>Normal Pattern bp</th>
<th>Mutant Pattern bp</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>1035</td>
<td>G → GG</td>
<td>979-997</td>
<td>1035-1053</td>
<td>HpaII</td>
<td>56, 19</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Intron 2</td>
<td>1097</td>
<td>g → a*</td>
<td>979-997</td>
<td>1316-1335</td>
<td>HpaII</td>
<td>141, 117, 99</td>
<td>240, 117</td>
<td>This report</td>
</tr>
<tr>
<td>476</td>
<td>3090</td>
<td>G → A</td>
<td>2678-2907</td>
<td>3121-3140</td>
<td>BstNI</td>
<td>163</td>
<td>82, 81</td>
<td>10</td>
</tr>
<tr>
<td>481</td>
<td>3085</td>
<td>C → T</td>
<td>2678-2907</td>
<td>3474-3493</td>
<td>KpnI</td>
<td>428, 88</td>
<td>516</td>
<td>Unpublished</td>
</tr>
<tr>
<td>535</td>
<td>3119</td>
<td>G → C</td>
<td>3052-3071</td>
<td>3474-3493</td>
<td>BspHl</td>
<td>442</td>
<td>375, 67</td>
<td>11</td>
</tr>
<tr>
<td>586</td>
<td>3170</td>
<td>A → C</td>
<td>3052-3071</td>
<td>3474-3493</td>
<td>SgrI</td>
<td>220, 166, 48, 6</td>
<td>166, 111, 109, 48, 8</td>
<td>12</td>
</tr>
<tr>
<td>751</td>
<td>3545</td>
<td>T → C</td>
<td>3465-3484</td>
<td>3791-3810</td>
<td>DraII</td>
<td>346</td>
<td>280, 86</td>
<td>Unpublished</td>
</tr>
<tr>
<td>754</td>
<td>3548</td>
<td>T → A*</td>
<td>3528-3547</td>
<td>3791-3810</td>
<td>(NsiI)</td>
<td>283</td>
<td>262, 21</td>
<td>13</td>
</tr>
<tr>
<td>764</td>
<td>4113</td>
<td>T → A</td>
<td>3465-3484</td>
<td>4240-4259</td>
<td>KpnI</td>
<td>795</td>
<td>648, 147</td>
<td>14</td>
</tr>
<tr>
<td>1043</td>
<td>5259</td>
<td>C → T</td>
<td>5183-5202</td>
<td>5307-5326</td>
<td>Banl</td>
<td>86, 58</td>
<td>144</td>
<td>12</td>
</tr>
<tr>
<td>1053</td>
<td>5269</td>
<td>G → T</td>
<td>5183-5202</td>
<td>5307-5326</td>
<td>KpnI</td>
<td>90, 54</td>
<td>144</td>
<td>12</td>
</tr>
<tr>
<td>1090</td>
<td>5306</td>
<td>G → A*</td>
<td>5156-5175</td>
<td>5490-5610</td>
<td>Bsu36I</td>
<td>355</td>
<td>205, 150</td>
<td>15</td>
</tr>
<tr>
<td>1093</td>
<td>5309</td>
<td>G → A</td>
<td>5156-5175</td>
<td>5490-5610</td>
<td>BsmAI</td>
<td>121, 23</td>
<td>144</td>
<td>11</td>
</tr>
<tr>
<td>1141</td>
<td>5537</td>
<td>T → G</td>
<td>5156-5175</td>
<td>5490-5610</td>
<td>SstI</td>
<td>199, 156</td>
<td>355</td>
<td>15</td>
</tr>
<tr>
<td>1208</td>
<td>5424</td>
<td>G → C</td>
<td>5406-5423</td>
<td>5490-5610</td>
<td>(AccI)</td>
<td>107</td>
<td>90, 17</td>
<td>12</td>
</tr>
<tr>
<td>1226</td>
<td>5841</td>
<td>A → G</td>
<td>5821-5840</td>
<td>5906-5925</td>
<td>(XhoI)</td>
<td>105</td>
<td>89, 16</td>
<td>16</td>
</tr>
<tr>
<td>1297</td>
<td>5912</td>
<td>G → T</td>
<td>5865-5885</td>
<td>5914-5933</td>
<td>(BanI)</td>
<td>47, 22</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>1342</td>
<td>5957</td>
<td>G → C*</td>
<td>5878-5897</td>
<td>6468-6487</td>
<td>StyI</td>
<td>342, 156, 75, 37</td>
<td>342, 156, 112</td>
<td>15</td>
</tr>
<tr>
<td>1343</td>
<td>5958</td>
<td>A → T</td>
<td>5878-5897</td>
<td>6031-6050</td>
<td>AffII</td>
<td>92, 81</td>
<td>173</td>
<td>17</td>
</tr>
<tr>
<td>1231</td>
<td>5976</td>
<td>C → G</td>
<td>5878-5897</td>
<td>6031-6050</td>
<td>HhaI</td>
<td>173</td>
<td>98, 76</td>
<td>18</td>
</tr>
<tr>
<td>1448</td>
<td>6433</td>
<td>T → C*</td>
<td>5183-5202</td>
<td>6516-6535</td>
<td>NciI</td>
<td>1353</td>
<td>1250, 103</td>
<td>19</td>
</tr>
<tr>
<td>1504</td>
<td>6489</td>
<td>C → T</td>
<td>6463-6482</td>
<td>6516-6535</td>
<td>MspI</td>
<td>47, 26</td>
<td>73</td>
<td>20</td>
</tr>
<tr>
<td>1604</td>
<td>6683</td>
<td>G → A</td>
<td>6633-6661</td>
<td>6782-6801</td>
<td>HpaII</td>
<td>170</td>
<td>128, 42</td>
<td>Unpublished</td>
</tr>
</tbody>
</table>

(), Mismatched to create restriction site. *Sequence matches glucocerebrosidase pseudogene at this position.

mutation was the least of any genotype. The average severity was considerably greater for the patients who were heterozygous for the 1226G, and either the 84GG, IVS2, or 1448C mutations. The median, mean, and range of age of onset for patients with different genotypes is summarized in Table 4.

Table 2. Frequency of Jewish Gaucher Disease Mutations in 97 Jewish and 3 Half-Jewish Patients

<table>
<thead>
<tr>
<th>Mutation</th>
<th>No. of Alleles</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1226G</td>
<td>152</td>
<td>77.16</td>
</tr>
<tr>
<td>84GG</td>
<td>28</td>
<td>13.20</td>
</tr>
<tr>
<td>1448C and XOVR*</td>
<td>6</td>
<td>3.05</td>
</tr>
<tr>
<td>Intron 2</td>
<td>5</td>
<td>2.54</td>
</tr>
<tr>
<td>1287T</td>
<td>3</td>
<td>1.52</td>
</tr>
<tr>
<td>1604A</td>
<td>1</td>
<td>0.51</td>
</tr>
<tr>
<td>1504T</td>
<td>1</td>
<td>0.51</td>
</tr>
<tr>
<td>751C</td>
<td>1</td>
<td>0.51</td>
</tr>
<tr>
<td>?</td>
<td>2</td>
<td>1.02</td>
</tr>
</tbody>
</table>

*XOVR is a fusion gene.
be regarded as being "public" in that they are found repeatedly in unrelated individuals, there is a baseline frequency of new ("private") mutations, such as will occur with any gene in any population. Thus, disease diagnosis and/or screening the heterozygotes can never be 100% accurate if based on the detection of specific, prevalent mutations. Therefore, it is essential to know which disease alleles exist in a population and to assess their frequency, an undertaking that requires the examination of large numbers of alleles.

In the present study, we have been able to obtain DNA samples from 100 patients with Gaucher disease, representing 197 alleles of Jewish origin. The mutations in all but two of these alleles have been identified at the DNA level. Most of these mutations have been described previously, but the mutation in intron 2 was detected for the first time in this study, although the same mutation has apparently been detected independently by G. He and G.A. Grawbowski (personal communication, December 1991). Like several other mutations that cause Gaucher disease, this mutation represents the normal pseudogene sequence. Like the pseudogene-derived transcript, the transcript from the mutant gene lacks exon 2, the usual consequence of a mutation in the 5' splice consensus.20

Four of the mutations may be regarded as being "public" in that they occurred in more than one family in this population, always in a single haplotype. A fifth mutation, at nt 1448, is public in the sense that it occurs repeatedly but is actually probably sporadic in nature because it occurs both in the Pvl.1+ and Pvl.1- haplotype, as we have previously shown.3 This substitution seems to be in a mutational hot spot, and may be formed repeatedly either by point mutations or by gene conversion, since the pseudogene contains this sequence.

Together, these five mutations accounted for 192 (97.5%) of the disease-producing alleles. The mutations exist in two clusters. At the 5' end of the gene are the 84GG and IVS2+1 mutations; near the 3' end of the gene are the 1226G, 1297T, and 1448C mutations. The clustering of the mutations is fortunate from a practical point of view, because it facilitates screening for all five based on PCR amplification of merely two segments of the gene. This, in point of fact, is readily accomplished simultaneously in one step using 4 amplimers (unpublished data).

The present study confirms, in a larger population of Ashkenazi Jewish patients, that the most common mutations are the ones at nt 1226 and 84.2,3,6 It is also apparent that the great majority of alleles that cause Gaucher disease in the Jewish population have now been identified. The 1226G and 84GG mutations accounted for 90.4% of the mutations in the present series. Including the other three public mutations, the percentage of mutations identified in Jewish Gaucher disease patients increases to 97.5%.

It is important to recognize that the proportion of the different mutations to each other in the population of Gaucher disease patients, viz, 152:26:6:5:3 (1226G:84GG:1448C:IVS2+1:1297T), does not constitute an unbiased estimate of the relative frequency of these mutations in the population as a whole. This is the case because the clinical manifestations of the common 1226G/1226G genotype may be minimal, or not exist at all,1 so that the frequency of the 1226G mutation is bound to be underestimated with respect to the other, more severe mutations.

We have previously pointed out that patients with 1226G/1226G homozygotes have a milder disease course than do patients with the other mutations.4,5,6 and this observation has been confirmed by others.7,24 The milder nature of disease produced by the 1226G allele was also evident in the present study, although as before, there was considerable variability in the severity of the disease within each genotype. Not only do patients homozygous for the 1226G genotype tend to have milder disease, but it is not an
infrequent experience to find siblings of patients with the
1226G homozygous genotype who are totally unaware of
the fact that they have Gaucher disease. Moreover, 1226G
homozygotes have been encountered in a survey of the
normal Ashkenazi Jewish population. Therefore, it follows
that the population of patients with Gaucher disease seen
by physicians and referred to centers is biased toward the
mutations that produce the most severe disease genotype,
namely the 84GG mutation, which makes no protein
product, and the IVS2+1 mutation which, presumably, is
also incapable of directing the production of any enzyme.
Therefore, the percentage of 1226G alleles in any Ash-
kenazi Jewish patient population will always represent an
underestimation of the relative population frequency of this
mutation. We have recently examined over 1,000 blood
samples from healthy Ashkenazi Jewish subjects for the
1226G and 84GG alleles. Fifty-nine 1226G alleles were
found among 1,145 samples and only 6 84GG alleles in
1,053 samples examined, a ratio of 9:1, which is as pre-
dicted, higher than the 5.8:1 ratio found in the Gaucher
disease patient population. From the point of view of
population screening, 97.4% of alleles detected among
patients represents an underestimate and the percentage of
Gaucher disease alleles represented by one of the public
alleles described here would probably detect about 99% of
all Gaucher disease producing alleles in the Ashkenazi
Jewish population.

The present investigation has been limited to the popula-
tion in which Gaucher disease is most common, Ashkenazi
Jews. In other populations, where Gaucher disease is not
polymorphic, the incidence of the “public” alleles is much
lower. It appears that less than 80% of the Gaucher disease
producing alleles in the non-Jewish population fall into this
category, and most of these are the 1448C mutation. The
latter mutation is not really public in the sense of being the
result of a founder effect, but represents the result of a
mutational hot spot. The representation of more “private”
alleles in such populations is to be expected because propor-
tionately a much larger number of mutations repre-
sent rare sporadic events.

REFERENCES

modern diagnosis of Gaucher disease: Discovery of a second
common Jewish mutation makes DNA-based diagnosis and screen-
ning feasible. Blood 78:165a, 1991 (abstr, suppl)
2. Zimran A, Gelbart T, Westwood B, Grabowski GA, Beutler
E: High frequency of the 1226 mutation for type I Gaucher disease
among the Ashkenazi Jewish population. Am J Hum Genet 49:855,
1991
disease and its carrier state in peripheral-blood leukocytes. Lancet
1:612, 1970
4. Zimran A, Sorge J, Gross E, Kubitz M, West C, Beutler E:
Prediction of severity of Gaucher’s disease by identification of muta-
tions at DNA level. Lancer 2:349, 1989
The natural history of adult type Gaucher disease. Clinical,
laboratory, radiologic and genetic features of 53 patients. In
preparation, 1992
7. Sorge J, Gelbart T, West C, Westwood B, Beutler E:
Heterogeneity in type I Gaucher disease demonstrated by restric-
tion mapping of the gene. Proc Natl Acad Sci USA 82:5442, 1985
8. Zimran A, Gelbart T, Beutler E: Linkage of the Pru II
polymorphism with the common Jewish mutation for Gaucher
of the second common Jewish Gaucher disease mutation makes
possible population based screening for the heterozygote state.
Proc Natl Acad Sci USA 88:10544, 1991
10. Graves PN, Grabowski GA, Eisner R, Palese P, Smith FI:
Gaucher disease type 1: Cloning and characterization of a cDNA
encoding acid β-glucosidase from an Ashkenazi Jewish patient.
DNA 7:521, 1988
unique base pair changes in a family with Gaucher disease. Hum
Genet 87:328, 1991
12. Latham TE, Theophilus BDM, Grabowski GA, Smith FI:
Heterogeneity of mutations in the acid β-glucosidase gene of
Gaucher disease patients. DNA Cell Biol 10:15, 1991
mutation responsible for neuronopathic Gaucher disease in Japa-
14. Beutler E, Gelbart T: Gaucher disease associated with a
unique KpnI restriction site: Identification of the amino acid
15. Eyal N, Wilder S, Horowitz M: Prevalent and rare mutations
16. Tsuji S, Martin BM, Barranger JA, Stubblefield BK, La-
Marca ME, Ginns EI: Genetic heterogeneity in type I Gaucher
disease: Multiple genotypes in Ashkenazi and non-Ashkenazi
individuals. Proc Natl Acad Sci USA 85:2349, 1988
17. Theophilus BDM, Latham T, Grabowski GA, Smith FI:
Comparison of RNase A, chemical cleavage, and GC-clamped
denaturing gradient gel electrophoresis for the detection of muta-
tions in exon 9 of the human acid β-glucosidase gene. Nucleic
Acids Res 17:7707, 1989
18. Wigderson M, Firon N, Horowitz Z, Wilder S, Frishberg Y,
Reiner O, Horowitz M: Characterization of mutations in Gaucher
19. Tsuji S, Choudary FV, Martin BM, Stubblefield BK, Mayor
JA, Barranger JA, Ginns EI: A mutation in the human glucocereb-
316:570, 1987
20. Hong CM, Ohashi T, Yu XI, Weiler S, Barranger JA: Sequence
of two alleles responsible for Gaucher disease. DNA Cell Biol
9:233, 1990
isolation by acid guanidinium thiocyanate-phenol-chloroform ex-
and nucleotide sequence of the human glucocerebrosidase gene.
Proc Natl Acad Sci USA 82:7289, 1985
of the glucocerebrosidase pseudogene in normal subjects and
24. Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T,
Beutler E: The human glucocerebrosidase gene and pseudogene:

Mutations in Jewish patients with Gaucher disease

E Beutler, T Gelbart, W Kuhl, A Zimran and C West