Thrombolytic Properties of Desmodus rotundus (vampire bat) Salivary Plasminogen Activator in Experimental Pulmonary Embolism in Rats

By Werner Witt, Berthold Baldus, Peter Bringmann, Linda Cashion, Peter Donner, and Wolf-Dieter Schleuning

rDSPα1 (recombinant Desmodus salivary plasminogen activator α1) is a recombinant protein corresponding to a natural plasminogen activator from the vampire bat Desmodus rotundus. The thrombolytic properties of rDSPα1 and tissue-type plasminogen activator (t-PA) were compared in a rat model of pulmonary embolism. Whole blood clots, produced in vitro and labeled with 125I-fibrinogen, were embolized into the lungs of anesthetized rats. Thrombolysis was calculated from the difference between initial clot radioactivity and that remaining in the lungs at 60 minutes. Blood was sampled for 2 minutes, measurement of hemostatic factors, and plasminogen activator antigen levels. Thrombolysis was compared at 3.18%, 3.38%, 3.58%, 4.1%, 4.3%, and 6.1%. compared with t-PA, rDSPα1 is the more potent and more clot specific (fibrin specific) thrombolytic agent. These results suggest that rDSPα1 may be safer and more efficacious than currently used thrombolytics.

MATERIALS AND METHODS

Animal model. The method is based on that described by Clozel et al. Normotensive male Wistar rats (320 to 400 g) were anesthetized with 90 mg/kg i.p. pentobarbital sodium. Blood was withdrawn from a carotid artery catheter and anticoagulated with 3.18% sodium citrate solution (9 + 1 vol + vol). One milliliter of citrated whole blood + 40 μL (about 1.5 × 10⁶ Bq) radiolabeled fibrinogen (3.4 MBq/mg 125I-fibrinogen; Amersham, Buckinghamshire, England) was then clotted by the addition of 20 μL (500 mmol/L) calcium and 30 μL thromboplastin (Thromborel; Behring, Marburg, Germany) in a silicone catheter (0.058 in. ID). The clot was then aged for 2 hours at 37°C including the time for withdrawal from the catheter and careful washing in warm saline to remove 125I-fibrinogen not bound to the clot. Thereafter, 12-mm pieces of the clot (about 3 × 10⁶ Bq) were counted in a gamma counter, aspirated into the tip of a polyethylene catheter (PE205), and injected into the left external jugular vein. The clot was flushed into the venous circulation with 0.5 mL warm saline. Embolization into the lungs was successfully achieved in all but three animals, which did not show radioactivity in the lungs nor in blood at any time and were therefore excluded. Immediately after clot injection thrombolytic treatment was started and continued for 1 hour.

The intensive search for new and safer plasminogen activators with increased clot specificity has shown no major breakthrough until recently, when a series of reports described the isolation, cloning, and characterization of a new class of plasminogen activators derived from saliva of the vampire bat Desmodus rotundus. A family of four Desmodus plasminogen activators encoded by four distinct genes has been discovered. Although there is striking structural homology of these bat plasminogen activators to human t-PA, their fibrin specificity is greatly increased in comparison with t-PA. Most interesting, the increased fibrin dependence of bat plasminogen activators does not correlate with fibrin binding because the two smaller forms of the family actually have no fibrin affinity. In this study we demonstrate that rDSPα1, the recombinant protein corresponding to one of the two larger natural plasminogen activator forms (α1, α2) from Desmodus, is an effective thrombolytic agent in vivo in experimental pulmonary embolism in rats. rDSPα1 is more potent and more fibrin-specific in vivo than t-PA at doses that achieve full thrombolytic efficacy. There is also evidence that rDSPα1 may lyse blood clots faster and more completely in vivo than t-PA. The in vivo results reported here confirm the in vitro data previously obtained by other investigators (see Discussion) and exhibit some additional interesting features that may further improve the profile of this new thrombolytic agent.

From the Research Laboratories of Schering AG, Berlin, Germany; and Berlex Biosciences, Brisbane, CA.

Address reprint requests to Werner Witt, PhD, Laboratory for Thrombosis Research, Cardiovascular Pharmacology, Schering AG, Müllernstr. 170-178, 1000 Berlin 65, Germany.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1992 by The American Society of Hematology.

0006-4971/92/7905-0025$3.00/0
during which blood samples for radioactivity measurement were withdrawn (0, 10, 20, 40, and 60 minutes). Before the treatment period and at the end (60 minutes) blood samples were taken to obtain plasma for determination of hemostasis factors and plasminogen activator antigen levels (see below). The heart and lungs were then removed and residual radioactivity was counted. Thrombolysis was determined as the remaining radioactivity in the lungs divided by that injected with the clot.

Whole blood samples (200 μL) were used for gamma counting of radioactivity. Plasma was obtained from 400 μL of whole blood to which 40 μL of 3.16% sodium citrate and 50 μL of 10 μmol/L PPACK (Calbiochem, La Jolla, CA) were added to stabilize the plasma against proteolytic degradation. All plasma samples were stored frozen at −80°C.

Hemostasis factors. Plasma fibrinogen was measured as clottable protein according to the method of Clauss. Plasminogen and α1-antiplasmin were determined on microtiter plates using the chromogenic substrate S-2251 (KabiVitrum, Munich, Germany) and expressed as percentage of that in normal pooled rat plasma. For comparisons among groups, the percent changes from initial values were calculated from the original data.

Plasminogen activator antigen determinations. rDSPΔ18, antigen levels in rat plasma were determined using a sandwich enzyme-linked immunosorbent assay (ELISA) employing biotinylated rabbit anti-rDSPΔ18 antibodies. This assay had a linear range expanding from 2 ng/mL to 100 ng/mL with a lower detection limit of 1 ng/mL. t-PA antigen concentrations in rat plasma were also determined by ELISA using a commercially available kit (Biopool, Umea, Sweden).

Plasminogen activators. Each dose of plasminogen activator was administered in 2 mL of isotonic saline. Ten percent of the total volume was injected as an intravenous (IV) bolus followed by the remaining 1.8 mL infused over 1 hour.

rDSPΔ18 was produced by heterologous expression of its cDNA in CHO cells. The entire cDNA clone was subcloned into the expression plasmid pSVLRI. Transfection of dhfr-CHO cells was performed according to Chen and Okayama. Transfectants were screened for producers by fibrin plate assay and immediately selected in α MEM (minimum essential medium) containing increasing amounts of methotrexate. Methotrexate treatment led to substantial amplification of expression levels and one clone was grown in a small bioreactor for fermentation. Purification of the recombinant protein was achieved by affinity chromatography on immobilized *Erythrina* trypsin inhibitor followed by ion exchange chromatography on a Mono S resin. The purity of isolated rDSPΔ18 was determined by RP-HPLC, gel electrophoresis, and N-terminal sequence identity. Its apparent molecular weight was assessed to be 52,000 Kd. Bioactivity was measured on fibrin plates and expressed as t-PA units by comparison to the activity of the international standard preparation of t-PA (86/670). Specific activity was estimated as 330,000 U/mg protein using amino acid composition for determination of mass.

A commercial recombinant t-PA preparation registered for clinical use (Actilyse) was purchased from Thomae (Biberach, Germany). Its specific activity on fibrin plates was determined as 1,000,000 U/mg.

Statistics. All data were presented as means ± SEM. For comparisons of single doses versus control and equimolar doses of the two plasminogen activators, multiple t-tests (two-tailed, α = .05 per comparison) were used. A comparison of the dose-response relationships (thrombolytic effects, lung radioactivity) was performed by means of linear regression and analysis of covariance. To get linear log-dose-response relationships logarithms of percent lysis values (see below) were taken and the highest dose of rDSPΔ18 was excluded. Parallel lines fitted did not show a deviation from the hypothesis of parallelism (α = .05) and their distance differed significantly from zero (α = .05).

RESULTS

Thrombolysis (lung radioactivity). rDSPΔ18 and t-PA at 3 to 100 nmol/kg IV diminished thrombus radioactivity in a dose-dependent manner achieving significance over controls at total doses ≥ 10 nmol/kg (Fig 1, Table 1). Spontaneous thrombolysis in controls amounted to 28.5% ± 1.5% (n = 13). At 10 and 30 nmol/kg rDSPΔ18 was significantly more effective than equimolar doses of t-PA, achieving 50.7% ± 3.7% and 85.0% ± 3.8% lysis for rDSPΔ18 and 40.7% ± 3.0% and 56.7% ± 6.1% for t-PA, respectively (n = 6 to 8). Regression analysis (see above) showed that rDSPΔ18 was significantly more potent than t-PA, 2 times on a molar and 2.5 times on a weight basis.

Time course of blood radioactivity. Mean peak levels of whole blood radioactivity increased in a dose-dependent manner for rDSPΔ18 and t-PA (Fig 2, Table 1). Usually in controls, as well as at doses up to 30 nmol/kg, the blood radioactivity increased to a maximum at 60 minutes after the start of (plasminogen activator) infusion. However, with 100 nmol/kg t-PA or rDSPΔ18 the maxima of mean blood radioactivity were already reached at 40 or 20 minutes, respectively (Fig 2). In six of six animals receiving 100 nmol/kg rDSPΔ18 the early maximum in blood radioactivity was followed by a decrease, whereas for the same dose of t-PA this was seen in only three of eight rats, namely the three animals that showed the highest lytic efficacy. Although the extent of thrombolysis measured by lung radioactivity was slightly higher with 100 nmol/kg rDSPΔ18 compared with the equimolar dose of t-PA, peak blood counts were more than 50% lower in the case of rDSPΔ18. Estimated from peak blood counts at 100 nmol/kg and assuming a total blood volume of 50 mL/kg in rats, about 21% of the initial clot radioactivity was recovered in the blood with rDSPΔ18, 43% with t-PA.

Fig 1. Thrombolytic effects of 3, 10, 30, and 100 nmol/kg IV (10% bolus, 90%/60 min) rDSPΔ18 and t-PA in pulmonary embolism in rats. Percentage thrombolysis was calculated from the difference between initial radioactivity of the thrombus and that remaining in the lungs at 60 minutes. Asterisks refer to significance versus control (α = .05, multiple t-test; mean ± SEM, n = 6 to 8, control n = 13).
THROMBOLYTIC PROPERTIES OF rDSP4,

Table 1. Plasma Levels, Thrombolysis, and Peak Blood Radioactivity Levels

<table>
<thead>
<tr>
<th>Dose (nmol/kg)</th>
<th>Plasma Level (µg/mL)</th>
<th>Thrombolysis (lung radioactivity, %)</th>
<th>Peak Levels of Blood Radioactivity (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>28.5 ± 1.5</td>
<td>65 ± 3</td>
</tr>
<tr>
<td>rDSP4,</td>
<td>3</td>
<td>0.3 ± 0.0</td>
<td>29.8 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.8 ± 0.1</td>
<td>50.7 ± 3.7*</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.7 ± 0.2</td>
<td>85.0 ± 3.8*</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>9.7 ± 0.6</td>
<td>98.4 ± 0.2*</td>
</tr>
<tr>
<td>t-PA</td>
<td>3</td>
<td>0.2 ± 0.1</td>
<td>29.9 ± 2.9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.3 ± 0.0</td>
<td>40.7 ± 3.0*</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.2 ± 0.6</td>
<td>56.7 ± 6.1*</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>7.5 ± 2.1</td>
<td>92.5 ± 1.5*</td>
</tr>
</tbody>
</table>

Values represent mean ± SEM of n = 6 to 8 (control n = 13) animals per group; blood radioactivity reflects mean of individual peaks (Fig 2 shows means at a given time).

*Significant versus control.
†Significant versus equimolar dose of t-PA (α = .05 per comparison, multiple t-test).

Plasminogen activator antigen levels. The plasma levels of both rDSP4, and t-PA measured at 60 minutes increased in a dose-dependent manner up to means of 9.7 µg/mL and 7.5 µg/mL for 100 nmol/kg rDSP4, and t-PA, respectively (Table 1). The dose-response curves of thrombolysis (lung radioactivity) versus mean plasma levels (instead of total dose as in Fig 1) at 60 minutes show both plasminogen activators to be approximately equipotent (Fig 3). At equimolar doses mean plasma levels were 1.5, 2.7, 3.1, and 1.3 times higher for rDSP4, at 3, 10, 30, and 100 nmol/kg, respectively.

Hemostasis factors. α2-Antiplasmin levels measured at the end of the treatment period (60 minutes) decreased significantly at 100 nmol/kg of either rDSP4, or t-PA (Table 2). In contrast, neither plasma fibrinogen nor plasminogen concentrations changed significantly with rDSP4, up to 100 nmol/kg, while the same dose of t-PA depleted fibrinogen and plasminogen levels significantly by 33% ± 7% and 38% ± 8%, respectively (n ≥ 6).

DISCUSSION

Desmodus rotundus plasminogen activator rDSP4, has previously been shown to be a potent plasminogen activator in vitro with a markedly higher fibrin specificity than t-PA.

We now report that rDSP4, is a very effective thrombolytic agent in vivo. rDSP4, is 2.5 times more potent than t-PA (by mass). However, at equal antigen plasma levels both plasminogen activators have a comparable thrombolytic potency, i.e., their specific activity in vivo (thrombolytic activity/plasma level) is about equal. The higher plasma levels for rDSP4, compared with t-PA at 60 minutes indicate different pharmacokinetic profiles of the two plasminogen activators. Indeed, preliminary pharmacokinetic studies in rats and dogs show that rDSP4, has a longer β-elimination half-life and a slower clearance than t-PA (unpublished results). Hence, infusion of rDSP4, could lead to higher steady-state plasma levels, which would then account for the observed differences in effectiveness of equimolar doses of rDSP4, and t-PA.

The pulmonary lung embolism model in rats described here is highly reproducible. Therefore, even the small difference in potency between t-PA and rDSP4, becomes significant. The rate of spontaneous thrombolysis in controls, which is stable and acceptably low, has been shown to be due to release of endogenous t-PA in the lungs. A specific advantage of this model is that full effectiveness of t-PA is only achieved at doses where clot specificity is lost,

Fig 2. Time course of blood radioactivity during thrombolysis with 3 to 100 nmol/kg IV (10% bolus, 90%/60 min) rDSP4, and t-PA in rats with radiolabeled pulmonary emboli. Ordinate gives radioactivity in 200 µL whole blood (cpm = counts per minute; mean ± SEM, n = 6 to 8, control n = 13).

Fig 3. Thrombolytic effects of 3, 10, 30, and 100 nmol/kg IV (10% bolus, 90%/60 min) rDSP4, and t-PA in pulmonary embolism in rats. Percentage thrombolysis was calculated from the difference between initial radioactivity of the thrombus and that remaining in the lungs at 60 minutes. Instead of dose, like in Fig 1, abscissa shows (mean) plasma levels (mean ± SEM, n = 6 to 8, control n = 13).

From www.bloodjournal.org by guest on January 22, 2018. For personal use only.
and systemic plasminogen activation and consumption of coagulation factors (fibrinogenolysis) are induced. This is very similar to the clinical usage of t-PA in patients with myocardial infarction, although fibrinogenolysis in humans appears to occur at lower plasma levels than in rats. In contrast to t-PA, rDSPA is an effective thrombolytic agent in experimental pulmonary embolism in rats. Compared with t-PA, rDSPA is the more potent thrombolytic agent, it may also achieve lysis more rapidly and more completely and, because of its improved clot (fibrin) specificity, rDSPA may also be the safer agent, reducing the risk of bleeding, which is still the predominant side effect of all thrombolytics.

TABLE 2. Decrease in Hemostasis Parameters

<table>
<thead>
<tr>
<th>Dose (nmol/kg)</th>
<th>Fibrinogen (%)</th>
<th>Plasminogen (%)</th>
<th>α2-Antiplasmin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7 ± 3</td>
<td>2 ± 5</td>
<td>6 ± 3</td>
</tr>
<tr>
<td>rDSPA</td>
<td>30 8 ± 3</td>
<td>3 ± 4</td>
<td>12 ± 5</td>
</tr>
<tr>
<td>t-PA</td>
<td>30 15 ± 2*</td>
<td>9 ± 6*</td>
<td>29 ± 6**</td>
</tr>
<tr>
<td>100</td>
<td>30 9 ± 4</td>
<td>9 ± 5</td>
<td>6 ± 5</td>
</tr>
<tr>
<td>100</td>
<td>100 33 ± 7†</td>
<td>38 ± 8†</td>
<td>61 ± 9†</td>
</tr>
</tbody>
</table>

Values represent percentage decrease (at 60 minutes) from initial values of hemostasis parameters; mean ± SEM of n = 6 to 8 (control n = 13) animals per group.

*Significant versus equimolar dose of t-PA (α = 0.05 per comparison, multiple t-test).

†Significant versus control.

REFERENCES

Thrombolytic properties of Desmodus rotundus (vampire bat) salivary plasminogen activator in experimental pulmonary embolism in rats

W Witt, B Baldus, P Bringmann, L Cashion, P Donner and WD Schleuning