Treatment of Hairy Cell Leukemia With 2-Chlorodeoxyadenosine (2-CdA)

By Elihu H. Estey, Razelle Kurzrock, Hagop M. Kantarjian, Susan M. O'Brien, Kenneth B. McCredie, Miloslav Beran, Charles Koller, Michael J. Keating, Cheryl Hirsch-Ginsberg, Yang O. Huh, Sanford Stass, and Emil J Freireich

We administered one course of 2-chlorodeoxyadenosine (2CdA) at 4 mg/m² daily for 7 days by continuous intravenous infusion to 46 patients with hairy cell leukemia. Complete remissions occurred in 36 patients (78%; 95% confidence limits, 63% to 89%), partial remissions in five (11%), and a minor response in one. One patient died of candida sepsis 3 weeks after beginning treatment and three patients were clearly resistant to therapy. These three either had morphologically atypical hairy cells, less than 20% of which expressed Ig light chain on the cell surface, or had failed prior treatment with deoxycoformycin and interferon-α. At a median of 37 weeks since discontinuation of therapy, recurrent thrombocytopenia has developed in one patient, whose marrow remains normal, while a bone marrow relapse has occurred in another patient, whose blood counts remain normal. Treatment produced a greater than 50% decrease in neutrophil count in 26 patients, which lasted 3 to 4 weeks and was associated with an increased incidence of febrile episodes. These episodes occurred in 21 patients but were associated with documented infection in only four patients. Decreases in the number of CD4 lymphocytes appeared to occur regularly after treatment and have persisted for a median of 18 weeks without obvious clinical significance. Although years of follow-up will be needed, our results confirm Piro et al's observation (N Engl J Med 322:1117, 1990) that 2CdA appears to be highly effective in the treatment of hairy cell leukemia.

© 1992 by The American Society of Hematology.
had persistent cytopenias, with cytopenia as defined above, while 2-CDA
nia, or thrombocytopenia (defined above) before receiving 2CdA,
median Hb was 11.9 g/dL. In 42 patients, the pretreatment
cytopenias before treatment; one had symptomatic splenomegaly
and the other mediastinal adenopathy thought to be due to hairy
cell infiltration. The median pretreatment neutrophil count was
0.8 \times 10^9/\mu L, the median platelet count was 89 \times 10^9/\mu L, and the
median Hb was 11.9 g/dL. In 42 patients, the pretreatment
diagnosis of HCL could be made using the BM aspirate (median
percentage of hairy cells, 22%); 39 of these 42 also underwent
marrow biopsy, which was positive in 33, negative in three, and
inadequate in four. In three patients in whom the pretreatment
marrow aspirate was inadequate, the diagnosis was based on the
biopsy. All of the patients were free of fever or infection immedi-
ately before therapy.

Response criteria after treatment were as follows: (1) CR—the
absence of hairy cells in the BM or the presence of less than 1%
atypical cells that, however, could not be definitely called hairy
cells, together with the disappearance of all evidence of HCL on
physical exam, and a platelet count greater than 100,000/\mu L, a
neutrophil count greater than 1,500/\mu L, and an Hb of \geq 12 g/dL;
(2) PR—the marrow contained 1% to 5% hairy cells, there was at
least a 50% reduction in palpable evidence of HCL, and the blood
counts were as defined for CR; (3) minor response (MR)—the
marrow and physical findings were as described for CR or PR, and
there was correction of greater than one cytopenia, as described
above without worsening of any other blood count; (4) failure—
other responses.

RESULTS

CRs were observed in 36 patients (78%), PRs in five
(11%), an MR in one (2%), and four patients (9%) failed to respond. Among the 36 patients classified as CR, 13 had
pancytopenia at the start of treatment, 12 had two cytope-
nias, and 11 had either isolated neutropenia (seven pa-
tients), thrombocytopenia (three patients), or anemia (one
patient). Of the five patients considered as PR, one began
treatment pancytopenic, two had two cytopenias, one had
isolated neutropenia, and one had isolated thrombocytope-
nia. The median time to CR was 10 weeks (range, 4 to 42
weeks) and the median time to PR was 15 weeks (range, 10
to 26 weeks). The patient considered to have had a MR
began treatment with 66% hairy cells in the marrow, a
platelet count of 91,000/\mu L and an Hb of 8.9 g/dL.
Eighteen weeks after treatment, the marrow contained less
than 1% atypical cells and the platelet count had increased
to 226,000/\mu L, but the Hb was only 9.3 g/dL.

The four patients who failed to improve included one
who died of candida sepsis 3 weeks after treatment began
(early death) and three who were considered resistant to
therapy. The patient who died of candidiasis was a 57-year-
old man who was our only patient with a documented
history of alcoholism, and was also our only patient who had
been receiving corticosteroids (prednisone 20 mg daily for 2
months) at the time of initiation of 2CdA, at which time the
neutrophil count was 200/\mu L. Prednisone was discontinued
on the day 2CdA began. The patient was admitted to
hospital with fever on day 3 of treatment, developed acute
tubular necrosis thought secondary to sepsis on day 10, and,
despite dialysis and administration of granulocyte-macro-
phage colony-stimulating factor (GM-CSF) beginning at
that time, died on day 20 with a neutrophil count less than
100/\mu L. Blood cultures were negative until the last week of
life, when candida tropicalis was grown.

Table 1 gives the characteristics of the three patients
considered resistant to 2CdA. Follow-up time after start of
2CdA ranged from 20 to 33 weeks, which was longer than
the time needed to see the beginnings of a response in any
of the 42 patients considered to have a CR, PR, or MR.
Characteristics distinguishing resistant from responding
(CR, PR, or MR) patients included atypical pretreatment
morphology: the resistant patients UPN 1 and UPN 2 were
the only two patients of the 46 treated who had variant
morphology, and UPN 1 was the only one who was TRAP
negative. Additionally, both UPN 1 and UPN 2 had
cocexpression of surface antigens CD11c, CD20, and
CD22 on greater than 90% of their hairy cells (the pattern
typical of HCL26), in both patients Ig light chain was only
weakly expressed on the hairy cell surface (<20% of the
hairy cells positive), with expression of these markers
determined by flow cytometric analysis.19 In contrast, among
32 patients who had either a CR, PR, or MR and in whom
surface light chain expression was analyzed, only three had

<table>
<thead>
<tr>
<th>Table 1. Characteristics of Resistant Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-2CdA</td>
</tr>
<tr>
<td>UPN</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<p>| Post 2CdA |
|---|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>UPN</th>
<th>% Marrow Hairy Cells</th>
<th>Extramedullary Disease</th>
<th>Platelets (x 10(^{-9}/\mu L)</th>
<th>Neutrophils (x 10(^{-2}/\mu L)</th>
<th>Hb (g/dL)</th>
<th>Subsequent Therapy</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>No change</td>
<td>148</td>
<td>5.4</td>
<td>14.6</td>
<td>Fludarabine (2 courses)</td>
<td>CR</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>-</td>
<td>10</td>
<td>0.8</td>
<td>10.0</td>
<td>None</td>
<td>Died</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td><50% decrease</td>
<td>241</td>
<td>1.8</td>
<td>12.7</td>
<td>Pending</td>
<td>Alive</td>
</tr>
</tbody>
</table>
less than 20% hairy cells expressing surface-light chain before therapy ($P = .05$, Fisher exact test for the comparison between the proportion of responding and nonresponding patients with <20% hairy cells positive for surface light chain expression before therapy). Finally, UPN 1 and UPN 3 were the only two patients who began treatment with normal blood counts and UPN 2 and UPN 3 were two of the only three patients who had received and proven resistant to DCF (the third such patient achieved a PR after 2CdA, but has had a BM relapse; see below).

Median pretreatment and posttreatment counts (in all 46 patients) were 89 and $200 \times 10^3/\mu\text{L}$ (platelets), 0.8 and $3.1 \times 10^3/\mu\text{L}$ (neutrophils), and 11.9 and 14.2 g/dL (Hb). Of 28 patients who began treatment with a platelet count less than $100 \times 10^3/\mu\text{L}$, the count was observed to increase above this level in 26 (Fig 1A) a median of 8 weeks (range, 3 to 17 weeks) after the initiation of treatment, while 36 of the 38 who had a pretreatment neutrophil count less than $1.5 \times 10^3/\mu\text{L}$ and 22 of the 25 with a pretreatment Hb less than 12 g/dL had increases above these levels (Fig 1B and C) observed a median of 10 weeks (range, 4 to 26 weeks) and 12 weeks (range, 7 to 42 weeks), respectively, after beginning therapy. When patients who began treatment with two or three cytopenias were seen at first follow-up, the cytopenias were usually observed to have been corrected simultaneously; in instances in which this was not the case, the platelet count was usually the first to be corrected. Thus, in patients in whom treatment corrected both the platelet and neutrophil counts, correction appeared simultaneous in 17 and the platelet count was corrected first in four, while when both platelets and Hb were corrected, correction appeared simultaneous in eight and platelets were corrected first in six.

Follow-up in responding patients

The median time since response in the 42 responding patients (36 patients CR, five patients PR, one patient MR) is currently 37 weeks (34 weeks in the CR group and 40 weeks in the PR group). Recurrent thrombocytopenia has occurred in one patient

![Fig 1. Pretreatment and posttreatment 2CdA platelet count (A), neutrophil count (B), and Hb (C) in all 46 patients. Each patient is represented by a pretreatment bar and a posttreatment bar.](image-url)
who began treatment with a platelet count of 19,000 that increased to 106,000 after a CR and is currently 82,000 4 months after CR was observed. The patient's marrow aspirate and biopsy continue without evidence of HCL. However, a second patient has had a clear relapse in the BM.

Toxicity. The neutrophil count temporarily decreased by at least 50% in 26 patients (57%), with the decrease occurring in the first 1 to 2 weeks after beginning therapy and generally reversing by the end of week 4. Febrile episodes occurred in 21 patients (46%), of whom two had pneumonia, one phlebitis (at the site of catheter insertion), one fatal candida sepsis, and 17 no documented infection. In neither case of pneumonia was an etiologic organism identified. Episodes of fever and infection were limited to the first month after beginning therapy (with the exception of UPN 3 who, as noted above, had no response to treatment) and occurred in 15 of the 26 patients in whom the neutrophil count decreased by ≥50% during treatment but in only 6 of the 20 in whom the count did not decrease or decreased less than 50%. A moderately severe rash occurred in one patient. There was no other symptomatic toxicity. However, decreases in the number of lymphocytes expressing the CD4 surface antigen ("helper" phenotype) occurred in all 15 patients in whom these cells were enumerated before and after treatment, and decreases in the number of CD8 surface antigen "positive" lymphocytes ("suppressor" phenotype) occurred in 12 of these 15. Each of the 15 belonged to the group of 42 responding patients. As seen in Table 2, the decreases in CD4+ and CD8+ lymphocytes was dramatic at times. The median pretreatment and posttreatment CD4 counts were 588 and 126/µL, respectively, and the CD4 count decreased below 50/µL in two patients. Corresponding medians for CD8 counts were 266 and 100/µL. The CD4 count remained decreased at 8

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Pretreatment CD4/CD8 Count (per µL)</th>
<th>2-16 Weeks*</th>
<th>17-25 Weeks*</th>
<th>26-34 Weeks*</th>
<th>55 Weeks*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>588/366</td>
<td>150/170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,210/2,340</td>
<td></td>
<td></td>
<td>94/108</td>
<td>148/96</td>
</tr>
<tr>
<td>3</td>
<td>852/121</td>
<td>34/47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>495/231</td>
<td>132/84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>517/352</td>
<td>455/546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>296/128</td>
<td>162/156</td>
<td>150/150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>750/430</td>
<td>180/100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>750/100</td>
<td>164/60</td>
<td>190/80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>348/168</td>
<td>126/51</td>
<td>160/56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>960/416</td>
<td>123/33</td>
<td>84/32</td>
<td>104/48</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>980/520</td>
<td>200/200</td>
<td>306/220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>301/175</td>
<td></td>
<td>105/196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>854/266</td>
<td>48/98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>475/102</td>
<td>110/61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>243/540</td>
<td></td>
<td></td>
<td>54/189</td>
<td></td>
</tr>
</tbody>
</table>

*Weeks after initiation of therapy.

Table 3. Response Rates With Current Study Using Various Criteria for Response

<table>
<thead>
<tr>
<th>Criteria Developed for</th>
<th>% CR for Current Study (95% confidence limits)</th>
<th>% CR + PR for Current Study (95% confidence limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2CdA</td>
<td>78 (63-89)</td>
<td>97 (89-99)</td>
</tr>
<tr>
<td>DCF</td>
<td>78 (63-89)</td>
<td>97 (89-99)</td>
</tr>
<tr>
<td>IFN-α</td>
<td>89 (77-96)</td>
<td>97 (89-99)</td>
</tr>
<tr>
<td>2CdA</td>
<td>76 (61-88)</td>
<td>97 (89-99)</td>
</tr>
</tbody>
</table>

DISCUSSION

Our results in 46 patients confirm Piro et al's initial observation, made in 12 patients, that 2CdA appears highly effective in the treatment of HCL. Using our criteria, we observed a CR rate of 78% (95% confidence limits, 63% to 89%) and a CR + PR rate of 89% (95% confidence limits, 77% to 96%). Table 3 places the CR and CR + PR rates observed in this study within the context of other investigators' criteria for response in HCL. As seen, our CR rate and CR + PR rate would be the same using our criteria or those developed by Cassileth et al or Kraut et al for DCF, and our CR + PR rate would also be the same using our criteria or those used by the University of Chicago group for IFN studies. With the criteria used by Piro et al for their study of 2CdA (which requires a platelet count > 130,000/µL, rather than 100,000/µL, for CR) our CR rate would be 76% and the 95% confidence limits about this rate (61% to 88%) would overlap the 95% confidence limits about the CR rate reported by Piro et al (11 of 12; 95% confidence limits, 61% to 100%). Similarly, the 95% confidence limits about our CR + PR rate of 89% (77% to 96%) overlap the 95% confidence limits about the CR + PR rate reported by Piro et al (12 of 12; 74% to 100%). In short, our data confirm Piro et al's observations of a high response rate after therapy of 2CdA with DCF.

However, the relatively large numbers of patients we treated have permitted certain new observations to be made. First, it seems clear that, at a minimum, BM relapse may occur after cessation of treatment. As noted, the one such relapse observed to date occurred in that patient who has been follow-up the longest (71 weeks), although it should be pointed out that this patient was unusual in being resistant to 4 months of DCF at 4 mg/m2 every other week. However, given that the patient with the longest follow-up has had a relapse, it must be stressed that median follow-up in our patients is only 37 weeks, whereas follow-up in DCF- or IFN-α–treated patients is measured in years. Clearly, comparison of recurrence rates in large numbers of patients treated with 2CdA, DCF, or IFN-α will require longer follow-up.

Additionally, although we, like Piro et al, did not note
toxicities such as nausea/vomiting, diarrhea, or lethargy, which have been reported to occur, although infrequently, after use of even low-dose DCF \(^{19,21,22}\) (4 mg/m\(^2\) every other week), our results indicate that fever or infection can occur in the few weeks after treatment with 2CdA. Like DCF, 2CdA is associated with a small but definite risk of fatal infection during this period, which corresponds to the time of maximum drug-induced neutropenia, although it should be pointed out that the one fatal infection that we observed occurred in a patient who had received corticosteroids for the 2 months before beginning 2CdA, and who thus may have been predisposed to the fungal infection that caused his death.

Of particular note, our report makes it clear that 2CdA, like DCF \(^{23,24}\), can produce profound depression in the number of CD4\(^+\) lymphocytes. Carrera et al\(^{23}\) recently reported that within 6 months of completing 2CdA, CD4/CD8 ratios had reverted to normal in most patients, although our experience suggests that low numbers of CD4\(^+\) lymphocytes may persist longer than this; little is known about the functional capabilities of the remaining CD4\(^+\) cells. With neither DCF nor 2CdA do they yet appear to be any major clinical consequences of the "immunosuppression."\(^{23,24}\) Indeed, depression in the number of CD4\(^+\) or CD8\(^+\) lymphocytes may be relevant to the mechanism of action of these drugs were these lymphocytes to produce cytokines that support the presence of hairy cells. As with comparison of recurrence rates, only further observation will indicate whether depression of CD4 lymphocyte number lasts longer with DCF or with 2CdA, or if clinical consequences of the immunosuppression eventually develop. Similar time (and patient accrual) will be needed to determine if patients who are resistant to DCF will be resistant to 2CdA (as suggested by data in Table 1), if patients who are relatively unlikely to respond to 2CdA can be identified (variant morphology, negative TRAP stain, or absence of surface light chain expression, also as suggested by data in Table 1), or if after relapse responses can be reinduced with a second course of 2CdA (as is the case with IFN-\(\alpha\) or DCF\(^{25,26}\)). Although several years will thus be probably required to define the role of 2CdA in the treatment of HCL, 2CdA, like IFN-\(\alpha\) or DCF, does appear to be a highly effective agent in this disease.

ACKNOWLEDGMENT

The investigators gratefully acknowledge the assistance with data collection provided by Jan Bole, RN, and the expert secretarial assistance of Kimberly Cutchall.

REFERENCES

Treatment of hairy cell leukemia with 2-chlorodeoxyadenosine (2-CdA)

EH Estey, R Kurzrock, HM Kantarjian, SM O'Brien, KB McCredie, M Beran, C Koller, MJ Keating, C Hirsch-Ginsberg and YO Huh