EVER SINCE Paul Ehrlich’s discovery that granule-laden cells (“mastzellen”) in the frog mesentery, originally observed by von Recklinghausen, possessed metachromatic staining properties,12 cells in the basophil and mast cell lineages have been the subject of much scrutiny. The description by dermatologists at the turn of the century led gradually to a widespread fascination with the role of these cells in biologic processes. In parallel with these observations were descriptions by Ehrlich2 and later by hematologists of the presence of a blood-borne metachromatic, histamine-producing granulocyte, the basophil, significantly prominent in a number of myeloproliferative diseases, especially in chronic myeloid leukemia. Historically, because of their common metachromatic staining properties, the basophil and the mast cell have been thought to be intimately related in terms of hematopoietic lineage, and the literature is indeed replete with this assumption. The mast cell in the tissue and the basophil in the blood have, however, not been proven to be derived from a common stem cell in either animals or humans; moreover, there appears to be an inverse relationship between the presence of basophils or mast cells as the prominent representative of a metachromatic cell among various species.3 This review will focus on the ontogeny of basophils and mast cells, exploring knowledge in this field as it relates to cytokine biology, allergy and inflammation, and clinical hematology. The extensive literature on the biology of the mast cell in various processes, such as wound healing, repair, and fibrosis or on basophil and mast cell secretory function, will be touched upon only briefly within the scope of this review.

MURINE MAST CELL GROWTH AND DIFFERENTIATION
The landmark observations of Ginsburg, providing evidence for the growth and differentiation in vitro of murine mast cells from lymphoid progenitors, paved the way for an understanding of conditions and growth factors for the differentiation of mast cells in vitro.4,6 Ginsburg observed that thymus, thoracic duct, or lymph node cells could be cultured, in the presence of serum, fibroblasts, and (at that time) unidentified growth factors, or after in vitro “immunization,” to give rise to relatively large populations of almost pure mast cells.5,10 Following upon these observations, Ishizaka et al observed the growth and differentiation of rat mast cells from cultures of thymus in vitro,11 providing an explanation for the presence of mast cells within lymphoid organs and especially the thymus gland; indeed, Sir MacFarlane Burnet had already discovered and speculated upon the origin of mast cells in the thymus of autoimmune mice, relating them to the T-cell lineage.12 Ironically, the notion of a similarity, if not lineage relationship, between T cells and mast cells or T cells and basophils13 has come back to bear upon this field in a rather dramatic fashion with the discovery of mast cell or basophil cytokines, as well as differentiation markers for mast cells and basophils (see below).

Several different investigators, over the course of the last two decades, have provided in vitro culture systems for the growth and differentiation of large numbers of murine mast cells in vitro, in which the constant presence of a mitogen-stimulated conditioned medium was essential.14,19 The factor in these conditioned media responsible for mast cell growth and differentiation was discovered to be interleukin-3 (IL-3)19,20; indeed, to this date, murine mast cells grown in vitro from bone marrow, spleen, and/or lymphoid organs are routinely used to assay for cytokines with mast cell growth factor activity such as IL-3. In murine systems, the identification of IL-3 as the factor responsible for mast cell growth coalesced several different lines of hematopoietic investigation on growth factor activities that promoted the growth and differentiation of cells of such apparently disparate lineages as erythroid, megakaryocytic, and mast cell.19 Using models of graft-versus-host disease20 or nema
tode infestation in vivo,22,23 it was shown that IL-3 was the active factor involved in vivo and in vitro in the promotion of the growth and differentiation of murine mast cells within mucosal tissues in these situations.24,25 For example, in the Nippostrongylus brasiliensis model of rat intestinal mastocytosis, in which Enerback first described a histochemically unique mucosa-associated mast cell,26 a systemic and local IL-3 response, which promotes mastocytosis, occurs in parallel with an IgE response, promoted by IL-4.27,28 In this system, Jarboe et al have dissected out two types of mast cell progenitors: one that is dependent, and another independ
ent, of the IL-3 stimulus29,30; the latter responds to a fibroblast-derived factor.30 Others have observed that in vitro one can culture both large and small murine mast cell colonies,31 presumably from different progenitors; one of these is a self-replicating, murine mast cell, which can also be identified after degranulation with specific or nonspecific stimuli.31,38 These progenitors may give rise to different subtypes of the mast cell in vivo, “connective tissue-type” (serosal) or “mucosal-type” (mucosal) mast cells.34

Elegant adoptive transfer studies by Kitamura and his group, using the W/W* mast cell-deficient mouse model have shown definitively that the origin of the murine mast
cell is in a bone marrow stem cell with self-renewal capacity (colony-forming unit-spleen [CFU-S]), which can give rise to the various subtypes (mucosal and serosal) ofmast cells derived from their more immediate progenitors. Using a beige granule marker to follow mast cells or their progenitors adoptively transferred into mast cell-deficient recipients, these investigators also provided the first formal evidence of the common origin of both mucosal and serosal mast cells in the rodent; bidirectional “transdifferentiation” between these two types of mast cell, or at least differentiation of a (putative) relatively immature mucosal into a serosal mast cell can occur.7,8 In these processes, IL-4 can induce a phenotype switch of mouse mucosal to serosal mast cells, in the presence of IL-3.9 Fibroblast-derived factors, some requiring fibroblast-mast cell contact in vitro, have also been found to be important in rodent mast cell phenotype switching and functional activation.9,10

The rat basophilic leukemia (RBL) cell line had been used for several decades as a focus for studies on IgE receptor biology and basophil/mast cell function. Recently, based on proteoglycan content, ultrastructure, and protease markers, this cell lineage had originally been misnamed, because it represents a mucosal-type mast cell in vitro, and not a rodent basophil.11,12 Proteoglycan profiles can be shown to be unique for each species in IL-3–dependent murine mast cells, intestinal mucosal mast cells from helminth-infected rats, or retrovirally transformed murine mast cells.13,14 “The switch from nonheparin to heparin-containing mast cells occurs in conjunction with predictable changes in gene expression for and production of combinations of (at least) six distinct murine mast cell serine proteases; the latter accompany phenotype switch from mucosal to serosal mast cells and represent another set of features associated with mast cell heterogeneity.15,16

Such studies have culminated in the provision of more recent evidence for the existence of as yet another important hematopoietic and mast cell growth factor, stem cell factor (SCF), or c-kit ligand (KL), which is derived from fibroblasts. The discovery of this molecule provides an explanation for the reciprocal relationship between the two congenitally anemic mast cell-deficient mice, the aforementioned W/W" and the Sl/S1 strain,17,18 in the latter, SCF, a microenvironmental determinant of mast cell differentiation, is lacking.19,20 The W/W" mutant mouse is deficient in mast cell progenitor responses to SCF, a defect that has also been recently found in a new strain of rat, the Ws1 ("white spotting") mutant.21 Mutations at the c-kit (W) locus, a proto-oncogene that encodes a tyrosine kinase receptor for SCF, in both mice and rats appear to underlie mast cell deficiency, congenital anemia, melanocyte depletion, and sterility.22,23 Other factors, such as nerve growth factor (NGF) or extracellular matrices derived from fibroblasts, in conjunction with IL-3, may also be important in murine mast cell growth and differentiation, and could conceivably interact with c-kit in this process (see below) or with other mutations associated with osteopetrosis and mast cell deficiency in the m/+ mouse:24 Fibroblast-derived cytokines (including SCF, NGF; and, speculatively, IL-11) may interact with IL-3, IL-4, IL-9, and IL-10 to determine changes in mast cell/basophil phenotype in vitro and in vivo (Table 1). This area of investigation has been a prime example of the use of mast cell lines to assay for novel hematopoietic cytokines, both in murine and human systems.

MURINE BASOPHIL GROWTH AND DIFFERENTIATION

By contrast with murine mast cells or human basophils (see below), murine basophil growth and differentiation have proved difficult to investigate. These differences reflect the relative abundance of basophils and mast cells, in humans and murine species, respectively. The case with which basophils or mast cells can be grown in vitro from various hematopoietic tissues generally reflects the prominence of the given metachromatic cell in vivo. Dvorak et al and others have provided ultrastructural criteria for the identification of murine basophils,25,26 and for interspecies differences among basophils and mast cell subtypes.27,28

Many observations on the growth and differentiation of rodent basophils stem from a variety of observations on the prominence of both basophils and mast cells together with eosinophils in nematode-infested guinea pigs and rats.29,30 We demonstrated the bone marrow origin of guinea pig basophils, based on liquid suspension cultures of bone marrow in the presence of mitogen-stimulated or antigen-
stimulated conditioned media from splenic T lymphocytes. However, the precise identity of the guinea pig growth factor was never ascertained; it was shown probably not to be any of the known guinea pig lymphokines, and not to possess either rat or murine IL-3-like activity. Observations on murine basophil growth and differentiation have even been harder to obtain. A basophilia accompanies certain parasitic infections in rodents, including the rat and mouse, and morphologic observations have indicated the presence of what appears to be a basophil in murine hematopoietic organs and blood. More recently, a non-B, non-T, IgE high-affinity receptor (Fc,RI)-bearing cell in the mouse has been shown to be a source of several cytokines, especially IL-4, heretofore ascribed to murine, bone marrow-derived mast cells.

The hematopoietic origins of murine and human basophils and mast cells, grown in vitro, are listed in Table 2.

HUMAN MAST CELL GROWTH AND DIFFERENTIATION

Despite the relative ease with which mast cell growth and differentiation and the cytokine biology associated with it in the mouse and rat have proceeded over the last few decades, transfer of this knowledge and application of these methods to human systems have been fraught with difficulty. First, unlike murine cultures, up to very recently it has been virtually impossible to grow and maintain cultures of human mast cells in vitro for prolonged periods of time. Horton and O’Brien provided evidence for the growth of mast cells from a patient with systemic mastocytosis under culture conditions that included the presence of steroids and various other supplemented media. However, this was not the norm for even mastocytosis cells, because numerous failed attempts at growing mast cell lines from these patients were shared by many investigators. In addition, neither murine IL-3 nor human IL-3, IL-4, or IL-5 could induce significant mast cell differentiation in human cord blood or fetal liver cultures, which were replete with basophils and eosinophils; rare mast cells were observed in one study of human cord blood cultures stimulated by fractionated T-cell conditioned media. We cultured a metachromatic cell with ultrastructural features intermediate between a basophil and a mast cell from the peripheral blood of patients with systemic mastocytosis, following up on observations by Zucker-Franklin on the presence of similar cells in rat blood and the common ultrastructural features between basophils and mast cells seen in some patients with chronic myeloid leukemia (CML). In addition, colony-forming cells (CFU-C) giving rise to metachromatic progeny lacking basophil (or eosinophil) granule-specific proteins were cultured from the peripheral blood of some, but not all, patients with mastocytosis. Some metachromatic progeny of CFU-C from allergic patient peripheral blood were found to stain histochemically like mast cells found in, for example, human nasal mucosal tissues, but these properties also characterize human blood basophils. Specific markers for the human mast cell lineage were not available at the time of such studies, and in retrospect the cells cultured in colony assays in methylcellulose from the peripheral blood of patients with either mastocytosis or CML were probably, for the most part, basophils (see below).

Very recently, Furitsu et al made an important observation in long-term human cord blood cultures, following upon evidence for the growth and differentiation in this system of basophils, eosinophils, and other lineages by several investigators. After prolonged culture of cord blood in the presence of monolayers of murine 3T3 fibroblasts or soluble factors derived from these, but not human fibroblast lines, mast cells with characteristic protease granule markers, tryptase and chymase, could be cultured and maintained. Although as of this writing the identity of the human fibroblast-derivated, mast cell growth factor has not been clarified, it is apparent that in the human system neither IL-3 nor IL-4 nor any other known growth factor activity is primarily responsible for cord blood, bone marrow, or fetal liver-derived human mast cell growth and differentiation in vitro (Ishizaka T, personal communication, October, 1991). SCF is produced by murine and presumably human fibroblasts, but it has not yet been proven to be the factor responsible for mast cell growth in the human cord blood/3T3 fibroblast coculture system. Along these lines, several investigators have shown the growth and differentiation of both basophils and mast cells in CD34-positively selected fetal liver or bone marrow cell populations, a process that may involve SCF. Other investigators have shown that IL-3 is a human and primate basophil differentiation and activation factor, but does not bind to human mast cells. Indeed, as Valent et al have shown, human mast cells differ phenotypically from basophils, including differences in their respective expressions of cytokine receptors, especially for IL-3 and IL-4, as well as other immunophenotypic markers. The latter are summarized in Table 3.

Table 2. Hematopoietic Origins of Basophils and Mast Cells In Vitro

<table>
<thead>
<tr>
<th>Tissue or Cell Source</th>
<th>Murine</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basophils</td>
<td>Bone marrow<sup>26,28</sup></td>
<td>Bone marrow<sup>198,111,137</sup></td>
</tr>
<tr>
<td>Spleen<sup>19,26</sup></td>
<td>Cord blood<sup>19,93,96</sup></td>
<td></td>
</tr>
<tr>
<td>Mast Cells</td>
<td>Bone marrow<sup>26,32,43,45,46,61</sup></td>
<td>Bone marrow<sup>95,108,109</sup></td>
</tr>
<tr>
<td>Spleen<sup>22</sup></td>
<td>Cord blood<sup>118</sup></td>
<td></td>
</tr>
<tr>
<td>Thymus<sup>1,11</sup></td>
<td>Fetal liver<sup>111</sup></td>
<td></td>
</tr>
<tr>
<td>Thoracic duct<sup>9</sup></td>
<td>Peripheral blood<sup>112,116</sup></td>
<td></td>
</tr>
<tr>
<td>Lymph nodes<sup>17,18,19,22,22,29-36</sup></td>
<td>Leukemic cell lines<sup>119</sup></td>
<td></td>
</tr>
<tr>
<td>Retrrovirally transfected cell lines<sup>8,12</sup></td>
<td>Peritoneum<sup>30,34,38,41</sup></td>
<td></td>
</tr>
<tr>
<td>Peripheral blood<sup>41</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
precisely identify differentiation-specific or mature cell immunophenotypic markers on human basophils and mast cells.110,114,116-126 Emerging is the concept that basophils express some T-cell activation markers, such as CD25 (IL-2R), leucocyte adhesion molecules such as CD11b/l8, receptors for IgG (CDw32 or Fc,RII), and some unique markers (basophil-specific protein or BSP-1)110-114,116,125; on the other hand, mast cells express some monocyte-macrophage markers,115 ICAM-1 (CD54 or LFA-1 ligand), and some unique markers such as YB5B8,114-117 the latter recently shown to be identical to c-kit126 (Table 4). However, these studies have been performed in vitro on, primarily, leukemic cells; demonstration of in vivo or physiologic relevance of these findings is still lacking. In addition, HL-60 cell immunophenotyping during differentiation of basophilic differentiation,120,123 a process in which NGF synergizes with either granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-5,120-122,127,128 has led to a somewhat different understanding of the phenotypic profile of these cells, leaving open the question of lineage relationship between human basophils and mast cells, at least in terms of a possible immature myeloid stem cell giving rise to both these phenotypes in vitro.

Irani et al., using monoclonal antibodies developed against the human mast cell proteinases, tryptase and chymase,195 have proposed a separate ontology of mast cell populating the human, based on studies of protease expression by mast cells in bowel biopsies from patients with T-cell or combined immunodeficiency.195 This model is at odds with that proposed in the mouse model, in which predictable expression of several serine protease genes appears to correlate with differentiation of an immature, IL-3-dependent mast cell progenitor into mucosal or serosal phenotypes in vivo.193,196 Fetal liver cultures have also been used as a source of human mast cells in vitro193,196,197 again providing evidence for the lack of activity of human IL-3 in these experiments and the presence of factors from murine fibroblasts that appear essential for human mast cell growth in vitro.195 A newly discovered human mast cell line, HMC-1,119 has provided a focus of interest for the study of mast cells and their ontogeny in humans,114,116,117 but its derivation from a mast cell leukemic patient and its lack of high-affinity IgE receptors198 have cast some doubt on the applicability of findings based on these cells to the understanding of physiologic processes of mast cell differentiation in humans. Nonetheless, many of the observations on binding of cytokines, cell proliferation in the presence of cytokines, immunophenotyping, some functional studies, and microenvironmental influences on phenotype have shown analogies between mast cells derived from sources in vivo and the HMC-1 line.114,117,119,113 More work needs to be done to clarify the in vivo relevance of observations derived from the HMC-1 line.

HUMAN BASOPHIL GROWTH AND DIFFERENTIATION

A CFU-C in either methylcellulose or agar culture systems has been described by numerous investigators to give rise to pure or mixed colonies containing metachromatic, polymorphonuclear granulocytes,97,132-135 Using mediator content and release (primarily histamine), histochemistry, immunostaining, and/or ultrastructure, basophils or basophil-like cells have been shown to be progeny of these progenitors (termed “CFU-baso” or “CFU-baso/c”), that can be grown in semi-solid or suspension cultures from human peripheral blood, bone marrow, or cord blood in the presence of various conditioned media or recombinant cytokines, from normal, atopic, or leukemic human specimens.136-138 Initially, in these systems, basophils were grown predominantly from patients with CML or related myeloproliferative disorders, acute myeloid leukemia (AML), and systemic mastocytosis,97,143,144,146,150-152 however, with observations of the presence of high numbers of histamine and metachromatic cell-containing colonies grown from normal and, especially, atopic individuals,90-92,118,134,146,144-146 it has been possible to routinely culture human basophils in vitro. A list of various cell sources for progenitors of human basophils in vitro is given in Table 2. Included in these are two cell lines derived from CML or AML patients, KU-812183,184 and HL-60, which can differentiate along the basophilic lineage, using appropriate inductive stimuli, cytokines and culture conditions.100-102,117,145

As already noted, IL-3 is the principal recombinant cytokine in humans responsible for basophil growth and differentiation.111 However, other factors appear certainly to be important and include GM-CSF,97,103-113,135 IL-4,91,92 and, most recently, IL-5,115,116 which acts not only as an eosinophilopoietin91,92,105,117,118 but also as a basophilopoietin, based on observations with HL-60 as well as peripheral and cord blood cells. It is not surprising that the human leukemic cell line, HL-60, can differentiate also along the basophilic lineage, because it was derived from a patient originally with an FAB-M2 type of myeloid leukemia that included the presence of atypical basophils and eosinophils.

Table 3. Cytokine Receptors on Human Basophils and Mast Cells

<table>
<thead>
<tr>
<th>Marker</th>
<th>Basophils</th>
<th>Mast Cells</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2R (CD26)</td>
<td>+</td>
<td>-</td>
<td>Binding immunophenotyping</td>
</tr>
<tr>
<td>IL-3R</td>
<td>+</td>
<td>-</td>
<td>Binding</td>
</tr>
<tr>
<td>IL-4R</td>
<td>+</td>
<td>+</td>
<td>Binding</td>
</tr>
<tr>
<td>IL-5R</td>
<td>+</td>
<td>+</td>
<td>Binding</td>
</tr>
<tr>
<td>IL-8R</td>
<td>+</td>
<td>+</td>
<td>Binding</td>
</tr>
<tr>
<td>GM-CSFR</td>
<td>-</td>
<td>-</td>
<td>Binding</td>
</tr>
</tbody>
</table>

See Valent et al.,110,114,116,117 Stain et al.,124 Denburg et al.,135 and Plaetinck et al.146

*Using leukemic HL-60 cells.

Table 4. Immunophenotype of Mature Human Basophils and Mast Cells

<table>
<thead>
<tr>
<th>Marker</th>
<th>Basophils</th>
<th>Mast Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSP-1</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>YB5B8 (c-kit product)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CD11b/18</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>CD14</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>CD25</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>CD54 (ICAM-1)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>CD68</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Peripheral blood basophils or lung mast cells were used predominantly.116,117,124,126
in the original bone marrow specimen. Conditions in vitro favoring basophilic differentiation of HL-60 include the presence of sodium butyrate, alkaline passage, cytokines such as GM-CSF, IL-3, IL-5, NGF, and a potentially novel basophil differentiation factor. In vivo parallels have been found: primates administered IL-3 together with GM-CSF develop prominent basophilia and eosinophilia, along with an egress from the marrow of granulocyte, and, specifically, basophil/eosinophil progenitors. Accompanying this is the development of a dermatitis that involves YB58-positive metachromatic cells as part of its histologic features. These observations provide support for the in vivo role of both IL-3 and GM-CSF in the promotion of basophilia and basophil growth and differentiation.

The use of CFU-bas0 or CFU-bas0/eo assays to analyze various clinical conditions has proved interesting. In CML, mastocytosis and various allergic-type conditions of the airways, such as allergic rhinitis, nasal polyposis, and asthma, these CFU are increased in circulation. In these situations as well as under normal conditions, it can be shown that the basophil and eosinophil share a common committed stem cell, a fact confirmed by their parallel increase and decrease under both in vitro and in vivo conditions, as well as their sharing of numerous granular proteins, cell markers, and congenital anomalies. It should be noted that in bone marrow, cord blood, and peripheral blood cultures there is evidence that basophil and eosinophil differentiation is regulated reciprocally from this common progenitor; different cytokines, such as IL-3, and IL-5, as well as transforming growth factor-β (TGFβ) and perhaps other (novel?) factors can regulate basophil/eosinophil differentiation.

Recent observations on transient leukemia occurring in Down's syndrome (trisomy 21) as well as in megakaryoblastic leukemia, showing the presence of basophils or basophil-like cells in cultures derived from these leukemic cell populations as well as the increased numbers of mast cells in various hematologic malignancies, underscore the relationship between the leukemic process and basophil or mast cell lineage commitment (see below). Whether cells in these various bone marrow disorders represent basophils, mast cells, or an atypical hybrid remains to be determined.

MAST CELL-BASOPHIL LINEAGE RELATIONSHIPS

As can be derived from the above, the lineage relationship between basophils and mast cells either in rodents or humans remains unclear. While numerous in vivo situations can be pointed out in which basophils and mast cells, together with eosinophils, are stimulated to differentiate concurrently by antigen or other provocations, there is no proof, as yet, of a common mast cell-basophil progenitor. Both basophils and mast cells do arise in cultures of human cord blood, fetal liver or peripheral blood progenitors; ultrastructural evidence for hybrid basophils-mast cells in CML hints at their common origin, although a normal physiologic counterpart to these cells has not yet been described. The mast cell subpopulation in mucosal tissues, containing tryptase (MCr-type), but not chymase, shares some histochemical features with basophils. The observation of mast cell heterogeneity in rodents and humans, wherein mast cells populating mucosal tissues (e.g., intestine, lung, and nose) differ in phenotype and function from mast cells in connective tissues such as skin, peritoneal cavity, and adventitia, may also be related to the basophil-mast cell lineage question. For example, in studies of mast cells and basophils in the nasal mucosa of patients with allergic rhinitis, the phenotype of the mast cell in the stromal layers resembles that of skin (serosal) mast cells in that it contains both tryptase and chymase (MCcr-type), whereas the nasal epithelial mast cell resembles other mucosa-associated mast cells (MCr-type) as well as (apart from tryptase) metachromatic cells (basophils) found in nasal secretions primarily (Table 5). However, knowledge of protease and proteoglycan diversity in human mast cells, in relation to differentiation and/or function, is still rudimentary.

Further circumstantial evidence for transitional forms among human or rodent mast cell subtypes and basophils includes the presence of both MCr and MCcr-types in 3T3-fibroblast-supported human cord blood cultures, the finding of large, tryptase-negative metachromatic cells (possibly basophils) in some cord blood cultures stimulated with SCF and IL-3, an intermediate phenotype of murine neonatal peritoneal mast cells as well as the development of both serosal- and mucosal-type rat mast cells after in vivo treatment with SCF and, in humans, the consistent inverse relationship between circulating basophil progenitors (CFU-bas0) and nasal mucosal mast cells. Alternatively, definitive proof that human MCr can switch to MCcr type in the presence of fibroblasts or factors derived from them, as has been established in the mouse W/Wv and Sl/SI models as well as in vitro, is still lacking. Immunoelectron microscopy of human mast cells has provided evidence for characteristic ultrastructural appearances of MCr and MCcr-types; however, there are cells with hybrid appearances, suggesting the possibility of phenotype switching (and thus lineage relationship) between the two human mast cell subtypes. The recent availability of mutant Ws and congenic control rats, a species in which both mucosal mast cell hyperplasia and peripheral blood basophilia are observed in response to nematode infection, may allow for definitive analysis of basophil-mast cell lineage relationships.

What is attractive about the hypothesis that there exist

<table>
<thead>
<tr>
<th>Basophils</th>
<th>Epithelial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formlyd0xy-sensitive*</td>
<td>+</td>
</tr>
<tr>
<td>Formlyd0xy-resistant*</td>
<td>-</td>
</tr>
<tr>
<td>Safrafin-positivity*</td>
<td>-</td>
</tr>
<tr>
<td>Tryptase</td>
<td>+</td>
</tr>
<tr>
<td>Chymase</td>
<td>-</td>
</tr>
</tbody>
</table>

* Using toluidine blue at acid pH.
1 Using alcian blue-safrafin staining.
lineage relationships among mucosal and serosal mast cells and basophils in humans is that it provides a parsimonious explanation for the parallel presence of both cell types in relation to signs, symptoms, and treatment of nasal mucosal allergic reactions, their separation into compartments, and the observation that nasal polyp mononuclear cells contain a highly enriched basophil/mucosal mast cell-like progenitor. It is thus possible that the human blood basophil is more closely related in lineage to the mucosal type mast cell than to its serosal counterpart, and that microenvironmental differentiative stimuli are important in determining the final phenotype. Such observations, if they can be confirmed and extended, would be in accord with those by several groups showing evidence for transdifferentiation of mast cell subtypes in the mouse, and protease/proteoglycan expression dependent on the microenvironment with which the cells or their progenitors are in contact. Although marker studies showing distinct profiles of human mast cells and basophils promote the concept of different lineages for these two cell types, a precise phenotypic, functional, and hematopoietic characterization of human mucosal mast cell progenitors, compared with basophil progenitors, has not yet been undertaken.

CYTOKINES WITH BASOPHIL OR MAST CELL GROWTH- AND DIFFERENTIATION-PROMOTING ACTIVITIES

Table 1A and B lists the cytokines involved in basophil or mast cell growth and differentiation in rodent or human systems. As noted, IL-3 is the prototypical mast cell growth factor in mouse and rat, and is a basophil differentiation factor in humans, IL-4, also possessing mast cell growth factor activity in murine systems, with the additional feature of promotion of rodent serosal mast cell differentiation, appears to have minor activity on human basophil growth and differentiation, but not on human mast cell growth and differentiation. IL-4 receptors are present, however, on both basophils and mast cells in humans and induce ICAM-1 expression on mast cells. GM-CSF, on the other hand, present either in T-cell-conditioned media (eg, from the hairy cell leukemic line MOLP), or in recombinant form, is a prominent basophilopoietic and basophil activation factor both in vitro and in vivo in murine, primate, and human systems, IL-5 is primarily an eosinophilopoietin in rodents and humans, but more recently has been discovered to possess basophil growth and differentiation-promoting activities in the human. Indeed, there are IL-5 receptors present on subclones of human HL-60 cells. IL-9, an erythropoietic factor, also enhances mast cell growth in murine cultures. Hematopoietic regulatory factors may be common to erythroid, megakaryocytic, and mast cell lineages in both mice and humans, IL-3 as well as IL-9 effects may underlie some of these. IL-10, in concert with IL-3 and/or IL-4, also exhibits mast cell growth factor activity, although this is not its most prominent biologic activity. Stem cell factor (SCF or KL) contains, both in humans and murine species, a mast cell growth-promoting activity (see above); defects in either c-kit or KL provide explanations for the absence of mast cells in W/W- or Sl/S-I mice and in W4l mutant rats.

The precise identity, however, of the fibroblast-derived factor from murine 3T3 cells that promotes human cord blood-derived mast cell growth and differentiation is not yet clear. Combinations of SCF with IL-3 or GM-CSF may be necessary for the proper regulation of CD34+ granulocyte progenitor differentiation into human mast cells. IL-4 downregulates the expression of the marker YB5B8 into human mast cells, and may through this contribute to mast cell differentiation or phenotype switch. In the mouse, NGF, IL-4, and SCF may each separately or together regulate mast cell phenotype or differentiation; the effects of NGF may be mediated via degranulation products of mast cells, a process that may involve novel or novel cytokines derived from these cells. These observations provide a starting point for the analysis of microenvironmental stimuli that may be important in the ultimate phenotypic direction and lineage commitment of basophils and mast cell subtypes in humans. Consideration must also be given to other cytokines that may regulate, even negatively, mast cell or basophil differentiation, including TGF-β, IL-4, and interferon γ (IFNγ); Nonetheless, the contrast between the murine and human systems in terms of cytokines required for either basophil or mast cell growth and differentiation, the phenotypic heterogeneity of these cells in different species, and the lack of correspondence or easy transferability of information across species must be taken into account in any analysis of basophil and mast cell lineages.

CLINICAL RELEVANCE OF BASOPHIL AND MAST CELL DIFFERENTIATION

Hematopoietic malignancies. The prototypical hematopoietic malignancies providing experiments in nature in which basophil and mast cell lineages appear to be dysregulated are, respectively, CML and related myeloproliferative disorders on the one hand, and systemic mastocytosis on the other. The presence of basophilia or basophil crisis heralding terminal blast crisis in CML has long been known. In addition, hyperhistaminemia is an important symptom in CML and myeloproliferative disorders, indicating increased numbers of turnover of basophils (and, possibly, mast cells). Several different studies or predictors have pointed out the poor prognostic implication of basophilia in CML. Related to this have been in vitro observations that indices of increased basophil growth and differentiation (ie, progenitor increases) are also poor prognostic indicators in CML and related myeloproliferative disorders. Such phenomena may relate, in turn, to fundamental aberrations of chromosomes that are associated clinicopathologically with atypical forms of leukemia in which there is prominent basophilia or eosinophilia. This has been described in an inversion of chromosome 16 (inv 16) associated with atypical eosinophils with basophilic granulation; in a (6;9) chromosomal translocation associated with basophilia and leukemia; in trisomy 21; and in various abnormalities of
other chromosomes associated with increased numbers of basophils in the marrow of patients with acute leukemia [e.g., t(15;17) with t(9;14)]. Basophils have been shown to be derived from the leukemic clones by analysis of chromosomal breakpoints (such as Ph) in relatively pure or separated populations present in the peripheral blood. To this date, the precise relationship between the chromosomal aberrations described and atypical or abnormal differentiation of basophils or their prominence in vivo has not been delineated. Moreover, the significance of increased numbers of mast cells in a variety of lymphoid malignancies and refractory anemias has also not yet been elucidated.

In systemic mastocytosis and the related cutaneous disorder, urticaria pigmentosa, proliferations of mast cells within tissues are while systemic elevations of basophil progenitors are present in circulation in these disorders, leading to symptoms such as urticaria, syncope, anaphylaxis, asthma, and diarrhea. Moreover, the significance of increased numbers of mast cell or basophil progenitors is present in circulation in these conditions, and there is inferential evidence for increased turnover of mast cell progenitors, based on studies in psoralen and ultraviolet A (PUVA) treatment of mouse skin mast cells. It is not yet fully clear in humans whether such progenitors represent basophil or mast cell lineages, or both; some cultures of peripheral blood in mastocytosis patients have shown the presence of metachromatic cells with ultrastructural features of mast cells or the absence of basophil/eosinophil granule proteins in colony cells, as is found in vivo. An increase in metachromatic cell CFU-C in the peripheral blood can be an indication of a switch from urticaria pigmentosa to the more systemic form of mastocytosis.

The cytokines involved in the induction of either the basophilia of myeloproliferative disorders or the mast cell hyperplasia of mastocytosis have not been fully defined in vivo. It is far from clear that abnormalities in the regulation of relevant hematopoietic cytokines represent a primary cause in these disorders, nor whether dysregulated cytokine genes related to leukemogenic breakpoints, such as is found for IL-3, IL-4, IL-5, and GM-CSF in 5q- leukemias, are responsible for basophilia or mastocytosis in hematopoietic malignancies. Recent observations of the expression of the GATA-1 transcription factor in mast cells, erythroblasts, and megakaryocytes may help explain the prominence of basophils (and, possibly, mast cells) in certain megakaryoblastic leukemias or in trisomy 21. Molecular probing for cytokine gene expression in these conditions, immunostaining for cytokines in tissues and in cells, and study of transgenic immunodeficient mice may help in understanding the pathogenesis of these conditions and their corresponding aberrations in hematopoietic cytokines or progenitors for basophils and mast cells.

Allergy and inflammation. More clearly defined over the last few years has been the prominence of CFU-baso or CFU-baso/eo in a variety of allergic inflammatory conditions such as rhinitis, polyposis, asthma, and atopic dermatitis. While mast cells are also prominent in inflammatory bowel disease and rheumatoid synovium, changes in progenitors or cytokines have not been examined carefully in these conditions. The elevated numbers of CFU-baso and CFU-baso/eo in allergic conditions, their fluctuation with signs and symptoms of disease, and increase in relation to the presence of cells such as mucosal mast cells in tissues or under conditions of natural or provoked allergen exposure all point out the clinical relevance and importance of increased availability of these CFU-C in allergic inflammation. Measurement of CFU-baso/eo represents a very sensitive, early marker of exacerbations of asthma. These findings appear to be related to those in the primate in which IL-3 and GM-CSF provoke CFU-baso/eo increases in the blood; one can speculate that allergic inflammation is attended by increases in these CFU-C because of in vivo allergen-stimulated production of such hematopoietins (basophilopoietins) as IL-3, IL-5, and GM-CSF from T cells, basophils, or mast cells.

Topical corticosteroids given to asthmatics will prevent or suppress many inflammatory cell functions as well as the increase in CFU-baso/eo, suggesting that local production by the tissue microenvironment in the airways of cytokines that promote systemic increases in progenitors may be the mechanism responsible for this phenomenon. Indeed, recent observations on tissue structural (epithelial cell, fibroblast, and endothelial cell) production of GM-CSF and other proinflammatory cytokines, as well as T-cell production and in situ expression of the IL-3, IL-4, IL-5, and GM-CSF gene cluster in atopic dermatitis and asthma, provide evidence for the elaboration within and by inflamed allergic tissues, after induction with proinflammatory cytokines such as IL-1, of hematopoietic cytokines capable of inducing the growth and differentiation of human basophils and/or mast cells in vivo.

Table 6. Cytokines and Basophil/Eosinophil Progenitors in Allergic-Type Diseases: Facts and Predictions

<table>
<thead>
<tr>
<th>Clinical Paradigm</th>
<th>Hemopoietic Cytokine(s) Expressed</th>
<th>Basophil/Eosinophil Progenitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic rhinitis, in season</td>
<td>No changes</td>
<td>↑ IL-3/IL-5, ↑ IL-6/IL-8, ↑ GM-CSF</td>
</tr>
<tr>
<td>Allergic rhinitis, out of season</td>
<td>No changes</td>
<td>↑ GM-CSF</td>
</tr>
<tr>
<td>Allergic asthma or nasal polyposis</td>
<td>↑ IL-3/IL-5, ↑ GM-CSF</td>
<td>↑ IL-3/IL-5, ↑ IL-6/IL-8, ↑ GM-CSF, ↑ TGFβ</td>
</tr>
</tbody>
</table>

Already established.
The use of basophil or mast cell markers to monitor allergic diseases and certain hematopoietic malignancies is also now possible. Immunoassay of mast cell tryptase in blood during anaphylaxis is already in use; immunophenotypic analysis of human mast cell subpopulations, as well as basophils, using protease (eg, tryptase and chymase) markers, is now in use. Immunoassay of granule proteins (eg, major basic protein and Charcot-Leyden crystal protein) and BSP-1 also provide new vistas in understanding inflammation as well as other more specific markers of either basophils or mast cells based on immunophenotype of cells or cell lines analyzed during differentiation to basophils or mast cells can also be now used both in tissues and on cells in circulation. In situ hybridization and immunostaining for cytokine gene expression and production by mature granulocytes such as human basophils and mast cells (as has been done in murine mast cells) would provide new vistas in understanding inflammation as it affects various organs, as well as useful knowledge of basophil and mast cell biology for the purposes of clinical investigation and management. Indeed, recent evidence has been provided that eosinophils in humans, either from blood or in nasal tissues express and produce TGFα and TGFβ as well as GM-CSF. Whether or not human mast cells and/or basophils possess such cytokine profiles in vitro or in vivo remains to be determined.

FUTURE DIRECTIONS

Both cellular and molecular approaches will be required to fully understand basophil and mast cell lineage commitment and phenotype switching. Knowledge of the biology of these specialized granulocytes will likely prove relevant to a better understanding of chronic inflammation, allergic diseases, fibrosis, neoplasia, and wound healing and repair. A pertinent example of the application of molecular techniques to the understanding of inflammatory cell dysregulation in relation to cytokine gene activation due to chromosomal translocation has been recently provided in a study of cosinophil and IL-3 in acute lymphocytic leukemia. Similar studies need to be performed in nonmalignant states.

Useful for the last three decades as targets of cytokines, mast cells and basophils, along with eosinophils, also represent potential sources of cytokines that may impact on inflammatory or neoplastic processes. Understanding the growth and differentiation processes of these cells may thus lead to a better general understanding of cytokine biology and its curious interweaving of autocrine, paracrine, and endocrine patterns of cell-to-cell interaction. Finally, in hematopoiesis, mapping of cytokine genes and the relationship of cytokine gene expression to chromosomal aberrations in various leukemic and dysmyelopoietic disorders may provide important biologic and diagnostic information into the relationships among basophils, mast cells, and disease expression.

ACKNOWLEDGMENT

I am indebted to my numerous colleagues, students, and collaborators for their ideas and openness. Special thanks to Lynne Larocque for her painstaking review of the manuscript.

REFERENCES

1. Ehrlich P: Beiträge zur Theorie und Praxis der histologischen Färbung. Leipzig; 1878 thesis
5. Riley JF, West GB: Presence of histamine in virus and culture of mast cells. J Physiol (Lond) 120:528, 1953
17. Schrader JW: The in vitro production and cloning of the P cell, a bone marrow-derived null cell that expresses H-2 and Ia-antigens, has mast cell-like granules, and is regulated by a factor released by activated T cells. J Immunol 126:452, 1981
34. Kobayashi T, Nakano T, Nakahata T, Asai H, Yagi Y, Tsuji K, Komiya M, Akaban T, Kojima S, Kitamura Y: Formation of mast cell colonies in methylcellulose by mouse peritoneal cells and differentiation of these cloned cells in both the skin and the gastric mucosa of W/W' mice: evidence that a common precursor can give rise to both "connective tissue-type" and "mucosal" mast cells. J Immunol 136:1378, 1986

56. Zsebo KM, Williams DA, Geissler EN, Birkett NC, Okino KH, Murdock DC, Jacobson FW, Langlely KE, Smith KA, Takeishi T, Cattanach BM, Gali SJ, Suggs SV: Stem cell factor is encoded at the S1 locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213, 1990

74. Ogilvie BM, Askenase PW, Rose ME: Basophils and eosinophils in three strains of rats and in athymic (nude) mice following infection with the nematode Nippostrongyulus brasiliensis or Trichinella spiralis. Immunology 39:385, 1980

78. Rothwell TLW, Dineen JK: Cellular reactions in guinea-pigs following primary and challenge infection with Trichostongyulus colubriformis with special reference to the roles played by eosinophils and basophils in rejection of the parasite. Immunology 22:733, 1972

79. Rothwell TLW, Low RJ: Studies of the responses of basophil and eosinophil leucocytes and mast cells to the nematode Trichostongyulus colubriformis. II. Changes in cell numbers following infection of thymectomised and adoptively or passively immunised guinea-pigs. J Pathol 116:183, 1975

86. Wodnar-Filipowicz A, Heusser CH, Moron C: Production
121. Tsuda T, Wong DA, Dolovich J, Bienenstock J, Denburg

122. Tsuda T, Switzer J, Bienenstock J, Denburg JA: Interactions of hemopoietic cytokines on differentiation of HL-60 cells; nerve growth factor is a basophilic lineage-specific co-factor. Int Arch Allergy Appl Immunol 91:15, 1990

141. Stadler BM, Hirai K, Brantschen S, DeWeck AL: Biologic and biochemical characteristics of the basophil like cell promoting activity (BaPa) and a human IL-3-like activity. Immunology 172:225, 1986

From www.bloodjournal.org by guest on October 30, 2017. For personal use only.

208. Pearson MG, Vardimann JW, LeBeau MM, Rowley JD, Schwarz S, Kerman SL, Cohen MM, Fleischman EW, Progonina EL: Increased numbers of marrow basophils may be associated with a t(6;9) in ANLL. Am J Hematol 18:393, 1985

216. van Leeuwen BH, Martinson ME, Webb GC, Young IG: Molecular organization of the cytokine gene cluster, involving the human IL-3, IL-4, IL-5, and GM-CSF genes, on human chromosome 5. Blood 73:1141, 1989

Basophil and mast cell lineages in vitro and in vivo [published erratum appears in Blood 1992 Aug 1;80(3):855]

JA Denburg